1
|
Tsai PS, Sanders KN, Dai X, Plachetzki D. Authentication of a lophotrochozoan adipokinetic hormone receptor in a Gastropod, Aplysia californica. Gen Comp Endocrinol 2024; 345:114393. [PMID: 37865149 DOI: 10.1016/j.ygcen.2023.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/03/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) superfamily comprises multiple families of signaling peptides in both protostomes and deuterostomes. Among this superfamily, vertebrate GnRH stimulates reproduction, but other GnRH superfamily members elicit diverse pleiotropic effects. Within the GnRH superfamily members, adipokinetic hormone (AKH) and its receptor are well described in ecdysozoans but understudied in other lineages. To fill this knowledge gap, we deorphanized a putative receptor for a lophotrochozoan AKH in a gastropod mollusk, Aplysia californica, and named it Aplca-AKHR. Phylogenetic analysis revealed an orthologous relationship of Aplca-AKHR with ecdysozoan AKHRs and other putative lophotrochozoan AKHRs. Aplca-AKHR bound specifically to the previously identified Aplca-AKH with high affinity and activated the inositol phosphate pathway. Aplca-AKHR was expressed widely among central and peripheral tissues, but most prominently in several central ganglia and the heart. The expression of Aplca-AKHR was downregulated by a hyposaline challenge, consistent with a role in volume and fluid regulation previously described for its ligand, Aplca-AKH. In summary, this is the first pairing of a lophotrochozoan AKH with its cognate receptor. Expression data further support diverse central and peripheral roles, including volume and fluid control, of this ligand/receptor pair.
Collapse
Affiliation(s)
- Pei-San Tsai
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA.
| | - Kelsey N Sanders
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Xin Dai
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - David Plachetzki
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
2
|
Fodor I, Svigruha R, Bozsó Z, Tóth GK, Osugi T, Yamamoto T, Satake H, Pirger Z. Functional characterization and related evolutionary implications of invertebrate gonadotropin-releasing hormone/corazonin in a well-established model species. Sci Rep 2021; 11:10028. [PMID: 33976353 PMCID: PMC8113230 DOI: 10.1038/s41598-021-89614-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
In vertebrates, gonadotropin-releasing hormone (GnRH) peptide is the central mediator of reproduction. Homologous peptides have previously also been identified in molluscan species. However, emerging evidence suggests that these molecules might serve diverse regulatory functions and proposes to consider them as corazonin (CRZ). We previously isolated the full-length cDNA of the invGnRH/CRZ peptide (termed ly-GnRH/CRZ) in the well-established invertebrate model species, the great pond snail Lymnaea stagnalis; however, its predicted functions remain to be verified. In this study, we first confirmed the presence of the deduced active peptide from the central nervous system of L. stagnalis. Further, we performed in vivo and in vitro studies to explore the functions of ly-GnRH/CRZ. Injection of sexually mature specimens with synthetic active peptide had an inhibitory effect on locomotion and an acceleratory effect on egg-laying, but had no effect on feeding. The previously predicted modulatory effect of ly-GnRH/CRZ was supported by its identified co-localization with serotonin on the surface of the heart atria. Lastly, we demonstrated not only the presence of ly-GnRH/CRZ in the penial complex but also that ly-GnRH/CRZ-containing neurons project to the efferent penis nerve, suggesting ly-GnRH/CRZ may directly modulate the motor output of this peripheral tissue. Overall, our findings strongly support that ly-GnRH/CRZ is a multifunctional neuropeptide. These results contribute to the understanding of the GnRH superfamily and, more broadly, disciplines such as comparative endocrinology and neurobiology.
Collapse
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3., Tihany, 8237, Hungary
| | - Réka Svigruha
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3., Tihany, 8237, Hungary
| | - Zsolt Bozsó
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tatsuya Yamamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3., Tihany, 8237, Hungary.
| |
Collapse
|
3
|
Fodor I, Zrinyi Z, Horváth R, Urbán P, Herczeg R, Büki G, Koene JM, Tsai PS, Pirger Z. Identification, presence, and possible multifunctional regulatory role of invertebrate gonadotropin-releasing hormone/corazonin molecule in the great pond snail (Lymnaea stagnalis). Gen Comp Endocrinol 2020; 299:113621. [PMID: 32966777 DOI: 10.1016/j.ygcen.2020.113621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/15/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
In the last years, our interpretation of the origin and function of the gonadotropin-releasing hormone (GnRH) neuropeptide superfamily has changed substantially. A main driver for these conceptual changes came from increased investigations into functions and evolutionary lineage of previously identified molluscan GnRH molecules. Emerging evidence suggests not only reproductive, but also diverse biological effects of these molecules and proposes they should most likely be called corazonin (CRZ). Clearly, a more global understanding requires further exploration of species-specific functions and structure of invGnRH/CRZ peptides. Towards this goal, we have identified the full-length cDNA of invGnRH/CRZ peptide in an invertebrate model species, the great pond snail Lymnaea stagnalis, termed ly-GnRH/CRZ, and characterized the transcript and peptide distribution in the central nervous system (CNS) and peripheral organs. Our results are consistent with previous data that molluscan GnRHs are more related to CRZs and serve diverse functions. Hence, our findings support the notion that peptides originally termed molluscan GnRH are multifunctional modulators and that nomenclature change should be taken into consideration.
Collapse
Affiliation(s)
- István Fodor
- Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237 Tihany, Hungary
| | - Zita Zrinyi
- Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237 Tihany, Hungary
| | - Réka Horváth
- Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237 Tihany, Hungary
| | - Péter Urbán
- Microbial Biotechnology Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; Genomics and Bioinformatics Core Facilities, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Róbert Herczeg
- Genomics and Bioinformatics Core Facilities, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Gergely Büki
- Department of Medical Genetics, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Joris M Koene
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Pei-San Tsai
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, CO 80309-0354, United States
| | - Zsolt Pirger
- Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237 Tihany, Hungary.
| |
Collapse
|
4
|
Ibrahim G, Luisetto M, Latyshev O. Glial cells in the posterior sub-esophageal mass of the brain in Sepia officinalis (Linnaeus, 1758) (decapodiformes-sepiida): ultrastructure and cytochemical studies. INVERTEBRATE NEUROSCIENCE 2020; 20:16. [PMID: 32876847 DOI: 10.1007/s10158-020-00249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Electron microscopy revealed that glial cells in the posterior sub-esophageal mass of the brain in Sepia officinalis had a well-developed rough endoplasmic reticulum formed by long coverslips with rectilinear or curvilinear arrangements. The coverslips appeared dilated and have a large amount of adhered polysomes. Vesicular lamellae coexisted with the elongated lamellae of RER and dictyosomes of Golgi apparatus. Endocytosis was evidenced through the pale vesicles which were appeared next to the apical border of microvilli in some glial cells. Sub-cellular features of endocytosis, predominantly the fluid phase, were observed in the apical glial cell cytoplasm. Glial cells were related to phagocytosis of apoptotic neurons, endocytosis, pinocytosis and adsorption. These functions were proposed based on their ultrastructure characteristics and a significant number of vesicles with different shapes (oval to polygonal), sizes 0.052-0.67 µm and contents. Glycogen, MPS and lipid were detected in the glial cells. Alkaline phosphatase was not observed, while an activity of acid phosphatase was bound to lysosomes. ATPases were present in the glial cells along the lateral and basal plasma lemma as well as on the membranes of cell organelles. Unspecific esterase was clearly recognizable by electron microscopy. The monoamine and cytochrome oxidase activities were demonstrated, while the succinate dehydrogenase showed a weak enzyme activity.
Collapse
Affiliation(s)
- G Ibrahim
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21547, Egypt.
| | - M Luisetto
- Applied Pharmacology, IMA Academy, Natural Science Branch, Turin and Pavia University, Pavia, 29121, Italy
| | - O Latyshev
- Science and Democracy Network Harvard University's John F. Kennedy School of Government in Cambridge, Cambridge, 02142, USA
| |
Collapse
|
5
|
Zhang M, Wang Y, Li Y, Li W, Li R, Xie X, Wang S, Hu X, Zhang L, Bao Z. Identification and Characterization of Neuropeptides by Transcriptome and Proteome Analyses in a Bivalve Mollusc Patinopecten yessoensis. Front Genet 2018; 9:197. [PMID: 29922332 PMCID: PMC5996578 DOI: 10.3389/fgene.2018.00197] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 05/15/2018] [Indexed: 11/28/2022] Open
Abstract
Neuropeptides play essential roles in regulation of reproduction and growth in marine molluscs. But their function in marine bivalves – a group of animals of commercial importance – is largely unexplored due to the lack of systematic identification of these molecules. In this study, we sequenced and analyzed the transcriptome of nerve ganglia of Yesso scallop Patinopecten yessoensis, from which 63 neuropeptide genes were identified based on BLAST and de novo prediction approaches, and 31 were confirmed by proteomic analysis using the liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifty genes encode known neuropeptide precursors, of which 20 commonly exist in bilaterians and 30 are protostome specific. Three neuropeptides that have not yet been reported in bivalves were identified, including calcitonin/DH31, lymnokinin and pleurin. Characterization of glycoprotein hormones, insulin-like peptides, allatostatins, RFamides, and some reproduction, cardioactivity or feeding related neuropeptides reveals scallop neuropeptides have conserved molluscan neuropeptide domains, but some (e.g., GPB5, APGWamide and ELH) are characterized with bivalve-specific features. Thirteen potentially novel neuropeptides were identified, including 10 that may also exist in other protostomes, and 3 (GNamide, LRYamide, and Vamide) that may be scallop specific. In addition, we found neuropeptides potentially related to scallop shell growth and eye functioning. This study represents the first comprehensive identification of neuropeptides in scallop, and would contribute to a complete understanding on the roles of various neuropeptides in endocrine regulation in bivalve molluscs.
Collapse
Affiliation(s)
- Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangfan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Ruojiao Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xinran Xie
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Nagasawa K, Muroi K, Thitiphuree T, Minegishi Y, Itoh N, Osada M. Cloning of invertebrate gonadotropin-releasing hormone receptor ( GnRHR )-like gene in Yesso scallop, Patinopecten yessoensis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aggene.2016.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Kavanaugh SI, Tsai PS. Functional Authentication of a Novel Gastropod Gonadotropin-Releasing Hormone Receptor Reveals Unusual Features and Evolutionary Insight. PLoS One 2016; 11:e0160292. [PMID: 27467252 PMCID: PMC4964986 DOI: 10.1371/journal.pone.0160292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/15/2016] [Indexed: 01/16/2023] Open
Abstract
A gonadotropin-releasing hormone (GnRH)-like molecule was previously identified in a gastropod, Aplysia californica, and named ap-GnRH. In this study, we cloned the full-length cDNA of a putative ap-GnRH receptor (ap-GnRHR) and functionally authenticated this receptor as a bona fide ap-GnRHR. This receptor contains two potential translation start sites, each accompanied by a Kozak sequence, suggesting the translation of a long and a short form of the receptor is possible. The putative ap-GnRHR maintains the conserved structural motifs of GnRHR-like receptors and shares 45% sequence identity with the octopus GnRHR. The expression of the putative ap-GnRHR short form is ubiquitous in all tissues examined, whereas the long form is only expressed in parts of the central nervous system, osphradium, small hermaphroditic duct, and ovotestis. The cDNA encoding the long or the short receptor was transfected into the Drosophila S2 cell line and subject to a radioreceptor assay using 125I-labeled ap-GnRH as the radioligand. Further, the transfected cells were treated with various concentrations of ap-GnRH and measured for the accumulation of cAMP and inositol monophosphate (IP1). Radioreceptor assay revealed that only the long receptor bound specifically to the radioligand. Further, only the long receptor responded to ap-GnRH with an increased accumulation of IP1, but not cAMP. Our studies show that despite the more prevalent expression of the short receptor, only the long receptor is the functional ap-GnRHR. Importantly, this is only the second report on the authentication of a protostome GnRHR, and based on the function and the phylogenetic grouping of ap-GnRHR, we suggest that this receptor is more similar to protostome corazonin receptors than chordate GnRHRs.
Collapse
Affiliation(s)
- Scott I. Kavanaugh
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, United States of America
| | - Pei-San Tsai
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
8
|
Nagasawa K, Osugi T, Suzuki I, Itoh N, Takahashi KG, Satake H, Osada M. Characterization of GnRH-like peptides from the nerve ganglia of Yesso scallop, Patinopecten yessoensis. Peptides 2015; 71:202-10. [PMID: 26238596 DOI: 10.1016/j.peptides.2015.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/24/2015] [Accepted: 07/24/2015] [Indexed: 11/23/2022]
Abstract
There is yet no firm experimental evidence that the evolutionary ancient gonadotropin-releasing hormone GnRH (i.e., GnRH1) also acts in invertebrate gametogenesis. The objective of this paper is to characterize candidate invGnRH peptides of Yesso scallop Patinopecten yessoensis (i.e., peptide identification, immunohistochemical localization, and immunoquantification) in order to reveal their bioactive form in bivalves. Using mass spectrometry (MS), we identified two invGnRH (py-GnRH) peptides from the scallop nerve ganglia: a precursor form of py-GnRH peptide (a non-amidated dodecapeptide; py-GnRH12aa-OH) and a mature py-GnRH peptide (an amidated undecapeptide; py-GnRH11aa-NH2). Immunohistochemical staining allowed the localization of both py-GnRH peptides in the neuronal cell bodies and fibers of the cerebral and pedal ganglia (CPG) and the visceral ganglion (VG). We found that the peptides showed a dimorphic distribution pattern. Notably, the broad distribution of mature py-GnRH in neuronal fibers elongating to peripheral organs suggests that it is multi-functional. Time-resolved fluorescent immunoassays (TR-FIA) enabled the quantification of each py-GnRH form in the single CPG or VG tissue obtained from one individual. In addition, we observed greater abundance of mature py-GnRH in VG compared with its level in CPG, suggesting that VG is the main producing organ of mature py-GnRH peptide and that py-GnRH may play a central regulatory role in neurons of scallops. Our study provides evidence, for the first time, for the presence of precursor and mature forms of invGnRH peptides in the nerve ganglia of an invertebrate.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan
| | - Tomohiro Osugi
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Iwao Suzuki
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan
| | - Naoki Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keisuke G Takahashi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan
| | - Honoo Satake
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan.
| |
Collapse
|
9
|
Nagasawa K, Oouchi H, Itoh N, Takahashi KG, Osada M. In Vivo Administration of Scallop GnRH-Like Peptide Influences on Gonad Development in the Yesso Scallop, Patinopecten yessoensis. PLoS One 2015; 10:e0129571. [PMID: 26030928 PMCID: PMC4451010 DOI: 10.1371/journal.pone.0129571] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/11/2015] [Indexed: 11/29/2022] Open
Abstract
Existing research on the role of gonadotropin-releasing hormone (GnRH) in bivalve reproduction is inadequate, even though a few bivalve GnRH orthologs have been cloned. The objective of this paper was to elucidate the in vivo effect of GnRH administration in Yesso scallop reproduction. We performed in vivo administration of scallop GnRH (py-GnRH) synthetic peptide into the developing gonad, and analyzed its effect on gonad development for 6 weeks during the reproductive season. The resulting sex ratio in the GnRH administered (GnRH(+)) group might be male biased, whereas the control (GnRH(-)) group had an equal sex ratio throughout the experiment. The gonad index (GI) of males in the GnRH(+) group increased from week 2 to 24.8% at week 6. By contrast the GI of the GnRH(-) group peaked in week 4 at 16.6%. No significant difference was seen in female GI between the GnRH(+) and GnRH(-) groups at any sampling point. Oocyte diameter in the GnRH(+) group remained constant (about 42–45 μm) throughout the experiment, while in the GnRH(-) group it increased from 45 to 68 μm i.e. normal oocyte growth. The number of spermatogonia in the germinal acini of males in the GnRH(+) group increased from week 4 to 6. Hermaphrodites appeared in the GnRH(+) group in weeks 2 and 4. Their gonads contained many apoptotic cells including oocytes. In conclusion, this study suggests that py-GnRH administration could have a potential to accelerate spermatogenesis and cause an inhibitory effect on oocyte growth in scallops.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Hitoshi Oouchi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Naoki Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Keisuke G. Takahashi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
10
|
Patel H, Orchard I, Veenstra JA, Lange AB. Reprint of "The distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus: Adipokinetic hormone, corazonin and adipokinetic hormone/corazonin-related peptide". Gen Comp Endocrinol 2014; 203:307-14. [PMID: 25016049 DOI: 10.1016/j.ygcen.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have examined the distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus. These neuropeptides, adipokinetic hormone (RhoprAKH), corazonin (CRZ) and adipokinetic hormone/corazonin-related peptide (RhoprACP) are present in distinct, non-overlapping neuronal subsets in the central nervous system (CNS), as determined by immunohistochemistry. Corazonin-like immunoreactive cell bodies are present in the brain and ventral nerve cord, whereas ACP-like immunoreactive cell bodies are only present in the brain, and AKH-like immunoreactive cell bodies only present in the corpus cardiacum (CC). The immunoreactivity to ACP, CRZ and AKH in R. prolixus suggests that ACP and CRZ are released within the CNS, and that CRZ and AKH are released as neurohormones from the CC. Injection of RhoprAKH into adult males elevated haemolymph lipid levels, but injection of CRZ or RhoprACP failed to have any effect on haemolymph lipid levels. Corazonin stimulated an increase in heart-beat frequency in vitro, but RhoprAKH and RhoprACP failed to do so. Thus, although all three neuropeptides share sequence similarity, the AKH and CRZ receptors only respond to their own ligand.
Collapse
Affiliation(s)
- H Patel
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| | - I Orchard
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| | - J A Veenstra
- Université de Bordeaux, INCIA UMR 5287 CNRS, 33400 Talence, France.
| | - A B Lange
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
11
|
Patel H, Orchard I, Veenstra JA, Lange AB. The distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus: Adipokinetic hormone, corazonin and adipokinetic hormone/corazonin-related peptide. Gen Comp Endocrinol 2014; 195:1-8. [PMID: 24184870 DOI: 10.1016/j.ygcen.2013.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/10/2013] [Accepted: 10/21/2013] [Indexed: 12/15/2022]
Abstract
We have examined the distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus. These neuropeptides, adipokinetic hormone (RhoprAKH), corazonin (CRZ) and adipokinetic hormone/corazonin-related peptide (RhoprACP) are present in distinct, non-overlapping neuronal subsets in the central nervous system (CNS), as determined by immunohistochemistry. Corazonin-like immunoreactive cell bodies are present in the brain and ventral nerve cord, whereas ACP-like immunoreactive cell bodies are only present in the brain, and AKH-like immunoreactive cell bodies only present in the corpus cardiacum (CC). The immunoreactivity to ACP, CRZ and AKH in R. prolixus suggests that ACP and CRZ are released within the CNS, and that CRZ and AKH are released as neurohormones from the CC. Injection of RhoprAKH into adult males elevated haemolymph lipid levels, but injection of CRZ or RhoprACP failed to have any effect on haemolymph lipid levels. Corazonin stimulated an increase in heart-beat frequency in vitro, but RhoprAKH and RhoprACP failed to do so. Thus, although all three neuropeptides share sequence similarity, the AKH and CRZ receptors only respond to their own ligand.
Collapse
Affiliation(s)
- H Patel
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| | - I Orchard
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| | - J A Veenstra
- Université de Bordeaux, INCIA UMR 5287 CNRS, 33400 Talence, France.
| | - A B Lange
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
12
|
Jung LH, Kavanaugh SI, Sun B, Tsai PS. Localization of a molluscan gonadotropin-releasing hormone in Aplysia californica by in situ hybridization and immunocytochemistry. Gen Comp Endocrinol 2014; 195:132-7. [PMID: 24246309 DOI: 10.1016/j.ygcen.2013.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 11/16/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) plays important roles in vertebrate reproduction. Recently, molecules structurally similar to vertebrate GnRH were discovered in mollusks, including a gastropod, Aplysia californica. As an important step toward understanding the function of A. californica GnRH (ap-GnRH), the present study examined the localization of ap-GnRH peptide and transcript in the central and peripheral tissues. Reverse transcription polymerase chain reaction (RT-PCR) revealed wide expression of ap-GnRH in all ganglia (abdominal, buccal, cerebral, and pedal ganglia) of the central nervous system (CNS) and in multiple peripheral organs. However, in situ hybridization (ISH) revealed that cells positive for ap-GnRH are detectable only in the CNS, with the pedal ganglia containing the highest number of ap-GnRH-positive neurons, followed by the cerebral and abdominal ganglia. Most neurons positive for the transcript were simultaneously positive for the peptide, although some discrepancies were observed in cerebral and abdominal ganglia. Overall, our data suggest the de novo synthesis of ap-GnRH is restricted to the CNS, with the pedal ganglia being the primary source of ap-GnRH. Our results support the notion that ap-GnRH is a bona-fide neuropeptide that may assume diverse central functions, including those unrelated to reproduction.
Collapse
Affiliation(s)
- Lisa H Jung
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, United States
| | - Scott I Kavanaugh
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, United States
| | - Biao Sun
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, United States
| | - Pei-San Tsai
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, United States.
| |
Collapse
|