1
|
Yoon S, Kim MA, Lee JS, Sohn YC. Functional analysis of LFRFamide signaling in Pacific abalone, Haliotis discus hannai. PLoS One 2022; 17:e0267039. [PMID: 35511902 PMCID: PMC9071130 DOI: 10.1371/journal.pone.0267039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/31/2022] [Indexed: 12/29/2022] Open
Abstract
The invertebrate LFRFamide (LFRFa) and short neuropeptide F (sNPF), consisting of 6 to 10 amino acids, are orthologs for bilaterian NPF/Y, which consist of 36 to 40 amino acids. Recently, a molluscan G protein-coupled receptor (GPCR) for NPF was characterized in Pacific abalone (Haliotis discus hannai). To address the functional evolutionary route of the invertebrate LFRFa and NPF signaling system, in this study, we identified cDNAs encoding LFRFa precursors and the sNPF receptor (Hdh-sNPFR) in Pacific abalone. Four LFRFa mature peptides with 6 or 7 amino acids were predicted: GSLFRFa, GGLFRFa, GTLFRFa, and GSTLFRFa. Hdh-sNPFR was identified as a classical rhodopsin-like GPCR and classified into a molluscan sNPFR group. In HEK293 cells, Hdh-sNPFR was mainly localized in the cell membranes and internalized in the cytoplasm following treatment with LFRFa peptides. Reporter assays demonstrated that LFRFa peptides inhibit forskolin-stimulated cAMP accumulation in Hdh-sNPFR-expressing HEK293 cells. LFRFa precursor and Hdh-sNPFR transcripts were more strongly expressed in the cerebral and pleural-pedal ganglia of Pacific abalone than in the peripheral tissues such as the ovary, gills, intestine, and hepatopancreas. The levels of LFRFa transcripts in the ovary, intestine, and hepatopancreas were significantly higher in mature female abalone than in immature females. Injection of LFRFa induced the egg release and spawning behavior of mature abalone, but suppressed food intake. These results suggest that LFRFa peptides are endogenous ligands for Hdh-sNPFR involved in food intake and reproduction through a Gαi-protein dependent signaling pathway.
Collapse
Affiliation(s)
- Sungwoo Yoon
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
| | - Mi Ae Kim
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon, Republic of Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Gwangju, Jeonnam, Republic of Korea
| | - Young Chang Sohn
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
- * E-mail:
| |
Collapse
|
2
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Bendena WG, Hui JHL, Chin-Sang I, Tobe SS. Neuropeptide and microRNA regulators of juvenile hormone production. Gen Comp Endocrinol 2020; 295:113507. [PMID: 32413346 DOI: 10.1016/j.ygcen.2020.113507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
The sesquiterpenoid juvenile hormone(s) (JHs) of insects are the primary regulators of growth, metamorphosis, and reproduction in most insect species. As a consequence, it is essential that JH production be precisely regulated so that it is present only during appropriate periods necessary for the control of these processes. The presence of JH at inappropriate times results in disruption to metamorphosis and development and, in some cases, to disturbances in female reproduction. Neuropeptides regulate the timing and production of JH by the corpora allata. Allatostatin and allatotropin were the names coined for neuropeptides that serve as inhibitors or stimulators of JH biosynthesis, respectively. Three different allatostatin neuropeptide families are capable of inhibiting juvenile hormone but only one family is utilized for that purpose dependent on the insect studied. The function of allatotropin also varies in different insects. These neuropeptides are pleiotropic in function acting on diverse physiological processes in different insects such as muscle contraction, sleep and neuromodulation. Genome projects and expression studies have assigned individual neuropeptide families to their respective receptors. An understanding of the localization of these receptors is providing clues as to how numerous peptide families might be integrated in regulating physiological functions. In recent years microRNAs have been identified that down-regulate enzymes and transcription factors that are involved in the biosynthesis and action of juvenile hormone.
Collapse
Affiliation(s)
- William G Bendena
- Department of Biology and Centre for Neuroscience, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Ramsey-Wright Bldg., 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
4
|
Gershkovich MM, Groß VE, Kaiser A, Prömel S. Pharmacological and functional similarities of the human neuropeptide Y system in C. elegans challenges phylogenetic views on the FLP/NPR system. Cell Commun Signal 2019; 17:123. [PMID: 31533726 PMCID: PMC6751662 DOI: 10.1186/s12964-019-0436-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/02/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The neuropeptide Y system affects various processes, among others food intake, and is frequently discussed in the context of targeting obesity. Studies in model organisms are indispensable to enable molecular studies in a physiological context. Although the NPY system is evolutionarily conserved in all bilaterians, in the widely used model Caenorhabditis elegans there is controversy on the existence of NPY orthologous molecules. While the FMRFamide-like peptide (FLP)/Neuropeptide receptor-Resemblance (NPR) system in the nematode was initially suggested to be orthologous to the mammalian NPY system, later global phylogenetic studies indicate that FLP/NPR is protostome-specific. METHODS We performed a comprehensive pharmacological study of the FLP/NPR system in transfected cells in vitro, and tested for functional substitution in C. elegans knockout strains. Further, we phenotypically compared different flp loss-of-function strains. Differences between groups were compared by ANOVA and post-hoc testing (Dunnett, Bonferroni). RESULTS Our pharmacological analysis of the FLP/NPR system including formerly functionally uncharacterized NPY-like peptides from C. elegans demonstrates that G protein-coupling and ligand requirements for receptor activation are similar to the human NPY system. In vitro and in vivo analyses show cross-reactivity of NPY with the FLP/NPR system manifesting in the ability of the human GPCRs to functionally substitute FLP/NPR signaling in vivo. The high pharmacological/functional similarities enabled us to identify C. elegans FLP-14 as a key molecule in avoidance behavior. CONCLUSIONS Our data demonstrate the pharmacological and functional similarities of human NPY and C. elegans NPR systems. This adds a novel perspective to current phylogenetic reconstructions of the neuropeptide Y system. NPY and NPR receptors are pharmacologically so similar that the human receptors can functionally compensate for the C. elegans ones, suggesting orthologous relationships. This is also underlined by the presence of NPY-like peptides and parallels in peptide requirements for receptor activation. Further, the results presented here highlight the potential of this knowledge for physiological as well as molecular studies on neuropeptide GPCRs such as the NPY system in the future.
Collapse
Affiliation(s)
| | - Victoria Elisabeth Groß
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Anette Kaiser
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Simone Prömel
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Christie AE, Pascual MG, Yu A. Peptidergic signaling in the tadpole shrimp Triops newberryi: A potential model for investigating the roles played by peptide paracrines/hormones in adaptation to environmental change. Mar Genomics 2018. [DOI: 10.1016/j.margen.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Jedličková V, Jedlička P, Lee HJ. Characterization and expression analysis of adipokinetic hormone and its receptor in eusocial aphid Pseudoregma bambucicola. Gen Comp Endocrinol 2015; 223:38-46. [PMID: 26432101 DOI: 10.1016/j.ygcen.2015.09.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/22/2015] [Accepted: 09/29/2015] [Indexed: 01/13/2023]
Abstract
Aphids display an extraordinary phenotypic plasticity ranging from widespread reproductive and wing polyphenisms to the occurrence of sterile or subfertile soldier morphs restricted to eusocial species of the subfamilies Eriosomatinae and Hormaphidinae. Individual morphs are specialized by their behavior, anatomy, and physiology to perform different roles in aphid societies at different stages of the life cycle. The capacity of the insects to cope with environmental stressors is under the control of a group of neuropeptides of the adipokinetic hormone/red pigment-concentrating hormone family (AKH/RPCH) that bind to a specific receptor (AKHR). Here, we describe the molecular characteristics of AKH and AKHR in the eusocial aphid Pseudoregma bambucicola. The sequence of the bioactive AKH decapeptide and the intron position in P. bambucicola AKH preprohormone were found to be identical to those in a phylogenetically distant aphid Dreyfusia spp. (Adelgidae). We detected four transcript variants of AKHR that are translated into three protein isoforms. Further, we analyzed AKH/AKHR expression in different tissues and insects of different castes. In wingless females, a remarkable amount of AKH mRNA was only expressed in the heads. In contrast, AKHR transcript levels increased in the order gut<ovary<fat body<head. In aphids from both the primary and secondary hosts (Styrax suberifolia and Bambusa spp., respectively), the highest AKH expression levels were recorded in winged, migratory females and soldiers, whereas reduced levels were found in wingless, sedentary females that are functionally oriented to reproduction. The highest AKHR expression was found in soldiers in gall-dwelling populations, whereas in bamboo colonies the highest transcript level was detected in winged females. We propose a possible explanation for the correlation between AKH and AKHR transcript levels and task partitioning among individual forms in P. bambucicola colonies.
Collapse
Affiliation(s)
- Veronika Jedličková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic; Department of Entomology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Pavel Jedlička
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic; Department of Entomology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.
| | - How-Jing Lee
- Department of Entomology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
8
|
Peymen K, Watteyne J, Frooninckx L, Schoofs L, Beets I. The FMRFamide-Like Peptide Family in Nematodes. Front Endocrinol (Lausanne) 2014; 5:90. [PMID: 24982652 PMCID: PMC4058706 DOI: 10.3389/fendo.2014.00090] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/31/2014] [Indexed: 12/31/2022] Open
Abstract
In the three decades since the FMRFamide peptide was isolated from the mollusk Macrocallista nimbosa, structurally similar peptides sharing a C-terminal RFamide motif have been identified across the animal kingdom. FMRFamide-like peptides (FLPs) represent the largest known family of neuropeptides in invertebrates. In the phylum Nematoda, at least 32 flp-genes are classified, making the FLP system of nematodes unusually complex. The diversity of the nematode FLP complement is most extensively mapped in Caenorhabditis elegans, where over 70 FLPs have been predicted. FLPs have shown to be expressed in the majority of the 302 C. elegans neurons including interneurons, sensory neurons, and motor neurons. The vast expression of FLPs is reflected in the broad functional repertoire of nematode FLP signaling, including neuroendocrine and neuromodulatory effects on locomotory activity, reproduction, feeding, and behavior. In contrast to the many identified nematode FLPs, only few peptides have been assigned a receptor and there is the need to clarify the pathway components and working mechanisms of the FLP signaling network. Here, we review the diversity, distribution, and functions of FLPs in nematodes.
Collapse
Affiliation(s)
- Katleen Peymen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Watteyne
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lotte Frooninckx
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
- *Correspondence: Isabel Beets, Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Naamsestraat 59, Leuven 3000, Belgium e-mail:
| |
Collapse
|
9
|
Kiss B, Szlanka T, Zvara Á, Žurovec M, Sery M, Kakaš Š, Ramasz B, Hegedűs Z, Lukacsovich T, Puskás L, Fónagy A, Kiss I. Selective elimination/RNAi silencing of FMRF-related peptides and their receptors decreases the locomotor activity in Drosophila melanogaster. Gen Comp Endocrinol 2013; 191:137-45. [PMID: 23770020 DOI: 10.1016/j.ygcen.2013.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 05/21/2013] [Accepted: 05/29/2013] [Indexed: 02/07/2023]
Abstract
Five neuropeptide genes are classified in the FMRF-related (FaRP) group: the Fmrf, dromyosuppressin (Dms), drosulfakinin (Dsk), neuropeptide F (npf) and short neuropeptide F (sNPF) genes coding for 8, 1, 2, 1 and 4 peptides, respectively. In order to compare their effects on the locomotor activity of Drosophila adults, we made RNAi knockdown of the peptides and their specific receptor genes. In addition, we constructed Gal4 drivers with three distinct parts of the Fmrf gene's 5' regulatory sequence (RS8-Gal4, RS11-Gal4, RS17-Gal4), and used them to ablate FMRF-positive neurons inducing apoptosis by expressing the reaper (rpr) gene. We examined the locomotor activity of flies by measuring the mean velocity of movement (MVM) following repeated air-puffs. Locomotor activity was decreased by RNAi knockdown induced in the CNS by the elav-Gal4 driver. According to the MVM curve profiles, RNAi knockdown most effectively decreased the velocity when the DmsR-1 and DmsR-2 genes were silenced together (DmsR-1-RNAi/elav-Gal4; DmsR-2-RNAi/+). Similar effect was observed in Dsk-RNAi/ elav-Gal4; DskR-2-RNAi/+, while moderate effects were found in three other combinations (Fmrf-RNAi/elav-Gal4; FR-RNAi/+, Dms-RNAi/ elav-Gal4;DmsR-2-RNAi/+, CCKLR-17D1-RNAi/elav-Gal4; CCKLR-17D3-RNAi/+), and weak effect in DmsR-2-RNAi/elav-Gal4; DmsR-1-RNAi/+. Male and female flies were not different in this respect. In the cell ablation experiment, the MVM profiles of the female flies were different from the controls when the UAS-rpr transgene was driven by RS8-Gal4 or RS17-Gal4. The RS11-Gal4 and Fmrf-Gal4 drivers were ineffective. In the males only the RS17-Gal4 showed a weak effect. RNAi silencing of the FaRP and FaRP-receptor genes effectively decreased the startle-induced locomotor activity of flies. Ablation of FMRF-positive neurons by the RS8-Gal4 and/or RS17-Gal4 drivers also decreased the flies' activity.
Collapse
Affiliation(s)
- Brigitta Kiss
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Audsley N, Jensen D, Schooley DA. Signal transduction for Schistocerca gregaria ion transport peptide is mediated via both cyclic AMP and cyclic GMP. Peptides 2013; 41:74-80. [PMID: 23147644 DOI: 10.1016/j.peptides.2012.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
The second messengers involved in the signal transduction for Schistocerca gregaria, ion transport peptide (Schgr-ITP) that regulates ion and fluid transport across the ileum of the desert locust S. gregaria, were measured using competitive enzyme-linked immunosorbent assays (ELISAs). Synthetic Schgr-ITP elevates intracellular levels of both cyclic AMP and cyclic GMP, measured over a 15 min period in the presence of 3-isobutyl-1-methylxanthine, in a dose-dependent manner. Furthermore, crude corpora cardiaca (CC) extracts elevate intracellular cyclic AMP levels 2-fold greater than Schgr-ITP, suggesting that factors present in the CC, other than Schgr-ITP, also act via this second messenger. These results suggest that the interaction of Schgr-ITP with two separate receptors, most likely a G-protein coupled receptor and a membrane bound guanylate cyclase, elevates intracellular levels of cyclic AMP and cyclic GMP to regulate ion and fluid transport across the locust ileum. Cyclic AMP stimulates Cl(-), K(+) and Na(+) reabsorption, whereas secretion of H(+) into the lumen of the ileum is most likely mediated via cyclic GMP. Cyclic GMP also stimulates Cl(-) uptake in a similar manner to cyclic AMP. The measurement of tissue (central nervous system) levels of Schgr-ITP using an indirect ELISA confirms that the peptide is only present in the locust brain and the CC. The amounts present are greatest in the CC, where the peptide is presumably stored for release into the hemolymph when locusts feed.
Collapse
Affiliation(s)
- Neil Audsley
- The Food and Environment Research Agency, Sand Hutton, York, UK.
| | | | | |
Collapse
|
11
|
Hull JJ, Matsumoto S. Molecular mechanisms underlying insect behaviors: receptors, peptides, and biosynthetic pathways. Front Endocrinol (Lausanne) 2013; 4:120. [PMID: 24062724 PMCID: PMC3770957 DOI: 10.3389/fendo.2013.00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 08/28/2013] [Indexed: 11/24/2022] Open
Affiliation(s)
- J. Joe Hull
- USDA-ARS, US Arid Land Agricultural Research Center, Maricopa, AZ, USA
- *Correspondence:
| | - Shogo Matsumoto
- Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Japan
| |
Collapse
|
12
|
Caers J, Verlinden H, Zels S, Vandersmissen HP, Vuerinckx K, Schoofs L. More than two decades of research on insect neuropeptide GPCRs: an overview. Front Endocrinol (Lausanne) 2012; 3:151. [PMID: 23226142 PMCID: PMC3510462 DOI: 10.3389/fendo.2012.00151] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/14/2012] [Indexed: 11/30/2022] Open
Abstract
This review focuses on the state of the art on neuropeptide receptors in insects. Most of these receptors are G protein-coupled receptors (GPCRs) and are involved in the regulation of virtually all physiological processes during an insect's life. More than 20 years ago a milestone in invertebrate endocrinology was achieved with the characterization of the first insect neuropeptide receptor, i.e., the Drosophila tachykinin-like receptor. However, it took until the release of the Drosophila genome in 2000 that research on neuropeptide receptors boosted. In the last decade a plethora of genomic information of other insect species also became available, leading to a better insight in the functions and evolution of the neuropeptide signaling systems and their intracellular pathways. It became clear that some of these systems are conserved among all insect species, indicating that they fulfill crucial roles in their physiological processes. Meanwhile, other signaling systems seem to be lost in several insect orders or species, suggesting that their actions were superfluous in those insects, or that other neuropeptides have taken over their functions. It is striking that the deorphanization of neuropeptide GPCRs gets much attention, but the subsequent unraveling of the intracellular pathways they elicit, or their physiological functions are often hardly examined. Especially in insects besides Drosophila this information is scarce if not absent. And although great progress made in characterizing neuropeptide signaling systems, even in Drosophila several predicted neuropeptide receptors remain orphan, awaiting for their endogenous ligand to be determined. The present review gives a précis of the insect neuropeptide receptor research of the last two decades. But it has to be emphasized that the work done so far is only the tip of the iceberg and our comprehensive understanding of these important signaling systems will still increase substantially in the coming years.
Collapse
Affiliation(s)
| | | | | | | | | | - Liliane Schoofs
- *Correspondence: Liliane Schoofs, Department of Biology, Research Group of Functional Genomics and Proteomics, Naamsestraat 59, KU Leuven, 3000 Leuven, Belgium. e-mail:
| |
Collapse
|