1
|
Komarla A, Dufresne S, Towers CG. Recent Advances in the Role of Autophagy in Endocrine-Dependent Tumors. Endocr Rev 2023; 44:629-646. [PMID: 36631217 PMCID: PMC10335171 DOI: 10.1210/endrev/bnad001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Autophagy plays a complex role in several cancer types, including endocrine-dependent cancers, by fueling cellular metabolism and clearing damaged substrates. This conserved recycling process has a dual function across tumor types where it can be tumor suppressive at early stages but tumor promotional in established disease. This review highlights the controversial roles of autophagy in endocrine-dependent tumors regarding cancer initiation, tumorigenesis, metastasis, and treatment response. We summarize clinical trial results thus far and highlight the need for additional mechanistic, preclinical, and clinical studies in endocrine-dependent tumors, particularly in breast cancer and prostate cancer.
Collapse
Affiliation(s)
- Anvita Komarla
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Suzanne Dufresne
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christina G Towers
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Abooshahab R, Ardalani H, Zarkesh M, Hooshmand K, Bakhshi A, Dass CR, Hedayati M. Metabolomics-A Tool to Find Metabolism of Endocrine Cancer. Metabolites 2022; 12:1154. [PMID: 36422294 PMCID: PMC9698703 DOI: 10.3390/metabo12111154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 05/18/2024] Open
Abstract
Clinical endocrinology entails an understanding of the mechanisms involved in the regulation of tumors that occur in the endocrine system. The exact cause of endocrine cancers remains an enigma, especially when discriminating malignant lesions from benign ones and early diagnosis. In the past few years, the concepts of personalized medicine and metabolomics have gained great popularity in cancer research. In this systematic review, we discussed the clinical metabolomics studies in the diagnosis of endocrine cancers within the last 12 years. Cancer metabolomic studies were largely conducted using nuclear magnetic resonance (NMR) and mass spectrometry (MS) combined with separation techniques such as gas chromatography (GC) and liquid chromatography (LC). Our findings revealed that the majority of the metabolomics studies were conducted on tissue, serum/plasma, and urine samples. Studies most frequently emphasized thyroid cancer, adrenal cancer, and pituitary cancer. Altogether, analytical hyphenated techniques and chemometrics are promising tools in unveiling biomarkers in endocrine cancer and its metabolism disorders.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19395-4763, Iran
- Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Hamidreza Ardalani
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19395-4763, Iran
| | - Koroush Hooshmand
- System Medicine, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Ali Bakhshi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd P.O. Box 8915173160, Iran
| | - Crispin R. Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19395-4763, Iran
| |
Collapse
|
3
|
Xu F, Shi J, Qin X, Zheng Z, Chen M, Lin Z, Ye J, Li M. Hormone-Glutamine Metabolism: A Critical Regulatory Axis in Endocrine-Related Cancers. Int J Mol Sci 2022; 23:ijms231710086. [PMID: 36077501 PMCID: PMC9456462 DOI: 10.3390/ijms231710086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The endocrine-related cancers and hormones are undoubtedly highly interconnected. How hormones support or repress tumor induction and progression has been extensively profiled. Furthermore, advances in understanding the role of glutamine metabolism in mediating tumorigenesis and development, coupled with these in-depth studies on hormone (e.g., estrogen, progesterone, androgen, prostaglandin, thyroid hormone, and insulin) regulation of glutamine metabolism, have led us to think about the relationship between these three factors, which remains to be elucidated. Accordingly, in this review, we present an updated overview of glutamine metabolism traits and its influence on endocrine oncology, as well as its upstream hormonal regulation. More importantly, this hormone/glutamine metabolism axis may help in the discovery of novel therapeutic strategies for endocrine-related cancer.
Collapse
Affiliation(s)
- Fengyuan Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jialu Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200010, China
| | - Xueyun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zimeng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200010, China
| | - Jiangfeng Ye
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China
- Correspondence:
| |
Collapse
|
4
|
Lin HY, Hsieh MT, Cheng GY, Lai HY, Chin YT, Shih YJ, Nana AW, Lin SY, Yang YCSH, Tang HY, Chiang IJ, Wang K. Mechanisms of action of nonpeptide hormones on resveratrol-induced antiproliferation of cancer cells. Ann N Y Acad Sci 2017; 1403:92-100. [PMID: 28759712 DOI: 10.1111/nyas.13423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 12/28/2022]
Abstract
Nonpeptide hormones, such as thyroid hormone, dihydrotestosterone, and estrogen, have been shown to stimulate cancer proliferation via different mechanisms. Aside from their cytosolic or membrane-bound receptors, there are receptors on integrin αv β3 for nonpeptide hormones. Interaction between hormones and integrin αv β3 can induce signal transduction and eventually stimulate cancer cell proliferation. Resveratrol induces inducible COX-2-dependent antiproliferation via integrin αv β3 . Resveratrol and hormone-induced signals are both transduced by activated extracellular-regulated kinases 1 and 2 (ERK1/2); however, hormones promote cell proliferation, while resveratrol induces antiproliferation in cancer cells. Hormones inhibit resveratrol-stimulated phosphorylation of p53 on Ser15, resveratrol-induced nuclear COX-2 accumulation, and formation of p53-COX-2 nuclear complexes. Subsequently, hormones impair resveratrol-induced COX-2-/p53-dependent gene expression. The inhibitory effects of hormones on resveratrol action can be blocked by different antagonists of specific nonpeptide hormone receptors but not integrin αv β3 blockers. Results suggest that nonpeptide hormones inhibit resveratrol-induced antiproliferation in cancer cells downstream of the interaction between ligand and receptor and ERK1/2 activation to interfere with nuclear COX-2 accumulation. Thus, the surface receptor sites for resveratrol and nonpeptide hormones are distinct and can induce discrete ERK1/2-dependent downstream antiproliferation biological activities. It also indicates the complex pathways by which antiproliferation is induced by resveratrol in various physiological hormonal environments. .
Collapse
Affiliation(s)
- Hung-Yun Lin
- PhD program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Meng-Ti Hsieh
- PhD program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Guei-Yun Cheng
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Yu Lai
- PhD program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Ya-Jung Shih
- PhD program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - André Wendindondé Nana
- PhD program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shin-Ying Lin
- PhD program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York
| | | | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Does pregnancy after a diagnosis of melanoma affect prognosis? Systematic review and meta-analysis. Dermatol Surg 2015; 41:875-82. [PMID: 26177116 DOI: 10.1097/dss.0000000000000406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Whether pregnancy after diagnosis of melanoma affects a woman's prognosis is unknown. The authors conducted a systematic review and meta-analysis to answer this question. OBJECTIVE To evaluate the effect of a subsequent pregnancy on cause-specific death and recurrence of melanomas. MATERIALS AND METHODS Five databases (Cochrane Database, MEDLINE, EMBASE, CINAHL, and PubMed) were searched for studies assessing the effect of subsequent pregnancy on risk of melanoma death or recurrence. The authors collated all longitudinal studies of women of childbearing age diagnosed with incident melanoma that compared melanoma outcomes among those who became pregnant after the diagnosis and those who did not. Individual study effect estimates were pooled when available using the weighted average method, and other findings were summarized narratively. RESULTS Of 304 citations identified, 5 studies met the inclusion criteria. All 5 assessed melanoma death, and 2 of the 5 assessed recurrence. There was no significant effect of subsequent pregnancy on melanoma mortality after 11 to 20 years of follow-up (pooled hazard ratio, 0.81; 95% confidence interval, 0.60-1.09) and no significant differences in melanoma recurrence. Only one study included patients with all stages of melanoma beyond Stage 1. CONCLUSION Current evidence does not support the hypothesis that pregnancy subsequent to successful treatment of melanoma worsens prognosis. However, relevant data are sparse, suggesting that a precautionary approach is warranted regarding childbearing advice to melanoma survivors.
Collapse
|
6
|
Enninga EAL, Holtan SG, Creedon DJ, Dronca RS, Nevala WK, Ognjanovic S, Markovic SN. Immunomodulatory effects of sex hormones: requirements for pregnancy and relevance in melanoma. Mayo Clin Proc 2014; 89:520-35. [PMID: 24684874 PMCID: PMC4286150 DOI: 10.1016/j.mayocp.2014.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022]
Abstract
Similarities between the pathologic progression of cancer and the physiologic process of placentation (eg, proliferation, invasion, and local/systemic tolerance) have been recognized for many years. Sex hormones such as human chorionic gonadotropin, estrogens, progesterone, and others contribute to induction of immunologic tolerance at the beginning of gestation. Sex hormones have been shown to play contributory roles in the growth of cancers such as breast cancer, prostrate cancer, endometrial cancer, and ovarian cancer, but their involvement as putative mediators of the immunologic escape of cancer is still being elucidated. Herein, we compare the emerging mechanism by which sex hormones modulate systemic immunity in pregnancy and their potentially similar role in cancer. To do this, we conducted a PubMed search using combinations of the following keywords: "immune regulation," "sex hormones," "pregnancy," "melanoma," and "cancer." We did not limit our search to specific publication dates. Mimicking the maternal immune response to pregnancy, especially in late gestation, might aid in design of better therapies to reconstitute endogenous antitumor immunity and improve survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Svetomir N Markovic
- Department of Oncology, Mayo Clinic, Rochester, MN; Department of Medicine, Division of Hematology, Mayo Clinic, Rochester, MN.
| |
Collapse
|