1
|
Liu G, Su F, Zou X, Yang X, Tian L. Impact of an extended light regimen imposed during nursery period on the performance and lipid metabolism of weanling pigs. Anim Biosci 2025; 38:176-188. [PMID: 39483030 PMCID: PMC11725737 DOI: 10.5713/ab.24.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/05/2024] [Accepted: 09/06/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE This study aimed to assess the impact of a prolonged photoperiod on the growth performance and lipid metabolism of weaned piglets. METHODS Twenty-four piglets weaned at 28 days of age were randomly dichotomized into two groups that were alternatively subjected to either long photoperiod (LP) group (16 L:8 D) or short photoperiod (SP) group (10 L:14 D) for 42days. Four replicates of three animals per replicates were used per experimental treatment. RESULTS Our results demonstrated that prolonged photoperiod increased piglet body weight, average daily weight gain (ADG), backfat thickness (BF), backfat index during the nursery period, and increased ADG, average daily feed intake (ADFI), and decreased the F/G of piglets during the experiment days 29 to 42. Meanwhile, we observed LP piglets' plasma melatonin, growth hormone and serotonin levels were decreased at 14 d and 42 d compared to SP piglets. Moreover, up-regulated mRNA or protein expression of PPARγ and CEBPα, and lower mRNA or protein expression of MTR1, ATGL, HSL, PPARα, and CPT1α, were observed in back subcutaneous fat of LP group compared with that of SP group. Significant increases were observed in the mRNA or protein contents of lipogenic genes, including C/EBPα, SREBP-1c, ACCα, and FAS, in the liver of LP piglets, whereas CPT1α and ACOX1 mRNA levels and PPARα and MTR1 protein expression were significantly downregulated in LP group compared to SP group. Extended photoperiod also increased lipid content in longissimus dorsi muscle that was associated with higher mRNA or protein levels of SREBP-1c, ACCα, FAS, Pref1, and LPL, decreased mRNA or protein contents of LeptinR, MTR1, HSL, and ACOX1. CONCLUSION Together, these findings suggest that there is an advantage, in terms of growth performance and fat deposition, in imposing a prolonged light program (16-h light/d) on nursery piglets to alleviate the negative aspects of weaning stress.
Collapse
Affiliation(s)
- Guangfan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095,
China
| | - Fen Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095,
China
| | - Xingyue Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095,
China
| | - Xingming Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095,
China
| | - Liang Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095,
China
| |
Collapse
|
2
|
Méndez N, Corvalan F, Halabi D, Vasquez A, Vergara K, Noriega H, Ehrenfeld P, Sanhueza K, Seron-Ferre M, Valenzuela GJ, Torres-Farfan C. Sex-Specific Metabolic Effects of Gestational Chronodisruption and Maternal Melatonin Supplementation in Rat Offspring. J Pineal Res 2024; 76:e70015. [PMID: 39648694 DOI: 10.1111/jpi.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
Gestational chronodisruption, increasingly common due to irregular light exposure, disrupts maternal-fetal circadian signaling, leading to long-term health issues in offspring. We utilized a chronic photoperiod shifting model (CPS) in pregnant rats to induce chronodisruption and investigated the potential mitigating effects of maternal melatonin supplementation (CPS + Mel). Male and female offspring were evaluated at 3 ages (90, 200, and 400 days of age) for metabolic profiles, hormonal responses, cytokine levels, and adipose tissue activity. Our findings indicate that gestational chronodisruption leads to increased birth weight by approximately 15% in male and female offspring and increased obesity prevalence in male offspring, accompanied by a 30% reduction in nocturnal melatonin levels and a significant disruption in corticosterone rhythms. Male CPS offspring also exhibited decreased lipolytic activity in white adipose tissue, with a 25% reduction in glycerol release compared to controls, indicating impaired metabolic flexibility. In contrast, female offspring, while less affected metabolically, showed a 25% increase in adipose tissue lipolytic activity and higher levels of pro-inflammatory cytokines such as IL-6 (increased by 40%). Scheduled melatonin supplementation in chronodisrupted mothers, administered throughout gestation, effectively normalized birth weights in both sexes, reduced obesity prevalence in males by 18%, and improved lipolytic activity in male offspring, bringing it closer to control levels. In females, melatonin supplementation moderated cytokine levels, reducing IL-6 by 35% and restoring IL-10 levels to near-control values. These results highlight the importance of sex-specific prenatal interventions, particularly the role of melatonin in preventing disruptions to fetal metabolic and inflammatory pathways caused by gestational chronodisruption. Melatonin treatment would prevent maternal circadian rhythm misalignment, thereby supporting healthy fetal development. This study opens new avenues for developing targeted prenatal care strategies that align maternal and fetal circadian rhythms, mitigating the long-term health risks associated with chronodisruption during pregnancy.
Collapse
Affiliation(s)
- Natalia Méndez
- Escuela de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Laboratory of Developmental Chronobiology, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Corvalan
- Laboratory of Developmental Chronobiology, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Departamento de Ciencias Basicas, Universidad Santo Tomas, Valdivia, Chile
| | - Diego Halabi
- Instituto de Odontoestomatología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Abigail Vasquez
- Laboratory of Developmental Chronobiology, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Karina Vergara
- Laboratory of Developmental Chronobiology, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Hector Noriega
- Instituto de Ingeniería Mecánica, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Cellular Pathology Laboratory, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile, Chile
| | - Katiushka Sanhueza
- Laboratory of Developmental Chronobiology, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Maria Seron-Ferre
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Guillermo J Valenzuela
- Department of Women's Health, Arrowhead Regional Medical Center, Colton, California, USA
| | - Claudia Torres-Farfan
- Laboratory of Developmental Chronobiology, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
3
|
Mousavi SM, Etemad L, Yari D, Hashemi M, Salmasi Z. Evaluation of Melatonin and its Nanostructures Effects on Skin Disorders Focused on Wound Healing. Mini Rev Med Chem 2024; 24:1856-1881. [PMID: 38685805 DOI: 10.2174/0113895575299255240422055203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
Skin is the largest organ of the human body functioning as a great primitive defensive barrier against different harmful environmental factors. However, it is damaged through varying injuries such as different wounds, burns, and skin cancers that cause disruption in internal organs and essential mechanisms of the body through inflammation, oxidation, coagulation problems, infection, etc. Melatonin is the major hormone of the pineal gland that is also effective in skin disorders due to strong antioxidant and anti-inflammatory features with additional desirable antiapoptotic, anti-cancer, and antibiotic properties. However, melatonin characteristics require improvements due to its limited water solubility, halflife and stability. The application of nanocarrier systems can improve its solubility, permeability, and efficiency, as well as inhibit its degradation and promote photostability. Our main purpose in the current review is to explore the possible role of melatonin and melatonin-containing nanocarriers in skin disorders focused on wounds. Additionally, melatonin's effect in regenerative medicine and its structures as a wound dressing in skin damage has been considered.
Collapse
Affiliation(s)
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davood Yari
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Méndez N, Corvalan F, Halabi D, Ehrenfeld P, Maldonado R, Vergara K, Seron-Ferre M, Torres-Farfan C. From gestational chronodisruption to noncommunicable diseases: Pathophysiological mechanisms of programming of adult diseases, and the potential therapeutic role of melatonin. J Pineal Res 2023; 75:e12908. [PMID: 37650128 DOI: 10.1111/jpi.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
During gestation, the developing fetus relies on precise maternal circadian signals for optimal growth and preparation for extrauterine life. These signals regulate the daily delivery of oxygen, nutrients, hormones, and other biophysical factors while synchronizing fetal rhythms with the external photoperiod. However, modern lifestyle factors such as light pollution and shift work can induce gestational chronodisruption, leading to the desynchronization of maternal and fetal circadian rhythms. Such disruptions have been associated with adverse effects on cardiovascular, neurodevelopmental, metabolic, and endocrine functions in the fetus, increasing the susceptibility to noncommunicable diseases (NCDs) in adult life. This aligns with the Developmental Origins of Health and Disease theory, suggesting that early-life exposures can significantly influence health outcomes later in life. The consequences of gestational chronodisruption also extend into adulthood. Environmental factors like diet and stress can exacerbate the adverse effects of these disruptions, underscoring the importance of maintaining a healthy circadian rhythm across the lifespan to prevent NCDs and mitigate the impact of gestational chronodisruption on aging. Research efforts are currently aimed at identifying potential interventions to prevent or mitigate the effects of gestational chronodisruption. Melatonin supplementation during pregnancy emerges as a promising intervention, although further investigation is required to fully understand the precise mechanisms involved and to develop effective strategies for promoting health and preventing NCDs in individuals affected by gestational chronodisruption.
Collapse
Affiliation(s)
- Natalia Méndez
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Corvalan
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Halabi
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
| | - Pamela Ehrenfeld
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo Maldonado
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Karina Vergara
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Maria Seron-Ferre
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago de Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
5
|
Fonseca PAS, Suárez-Vega A, Esteban-Blanco C, Pelayo R, Marina H, Gutiérrez-Gil B, Arranz JJ. Epigenetic regulation of functional candidate genes for milk production traits in dairy sheep subjected to protein restriction in the prepubertal stage. BMC Genomics 2023; 24:511. [PMID: 37658326 PMCID: PMC10472666 DOI: 10.1186/s12864-023-09611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND As the prepubertal stage is a crucial point for the proper development of the mammary gland and milk production, this study aims to evaluate how protein restriction at this stage can affect methylation marks in milk somatic cells. Here, 28 Assaf ewes were subjected to 42.3% nutritional protein restriction (14 animals, NPR) or fed standard diets (14 animals, C) during the prepubertal stage. During the second lactation, the milk somatic cells of these ewes were sampled, and the extracted DNA was subjected to whole-genome bisulfite sequencing. RESULTS A total of 1154 differentially methylated regions (DMRs) were identified between the NPR and C groups. Indeed, the results of functional enrichment analyses of the genes harboring these DMRs suggested their relevant effects on the development of the mammary gland and lipid metabolism in sheep. The additional analysis of the correlations of the mean methylation levels within these DMRs with fat, protein, and dry extract percentages in the milk and milk somatic cell counts suggested associations between several DMRs and milk production traits. However, there were no phenotypic differences in these traits between the NPR and C groups. CONCLUSION In light of the above, the results obtained in the current study might suggest potential candidate genes for the regulation of milk production traits in the sheep mammary gland. Further studies focusing on elucidating the genetic mechanisms affected by the identified DMRs may help to better understand the biological mechanisms modified in the mammary gland of dairy sheep as a response to nutritional challenges and their potential effects on milk production.
Collapse
Affiliation(s)
- P. A. S. Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071 León, Spain
| | - A. Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071 León, Spain
| | - C. Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071 León, Spain
| | - R. Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071 León, Spain
| | - H. Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071 León, Spain
| | - B. Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071 León, Spain
| | - J. J. Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071 León, Spain
| |
Collapse
|
6
|
Liu X, Huang C, Jiang T, Sun X, Zhan S, Zhong T, Guo J, Dai D, Wang Y, Li L, Zhang H, Wang L. LncDGAT2 is a novel positive regulator of the goat adipocyte thermogenic gene program. Int J Biol Macromol 2023; 245:125465. [PMID: 37355065 DOI: 10.1016/j.ijbiomac.2023.125465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/29/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Brown and beige adipose thermogenesis are important for newborn mammals to maintain their body temperature. In addition, these thermogenic fats are regulated by multiple molecular interactions. How the long non-coding RNAs (lncRNAs) regulate adipose thermogenesis in newborn mammals upon cold exposure remains unexplored. Here, we identified lncRNAs induced by cold exposure in brown adipose tissue (BAT) of newborn goats and found that lncDGAT2 was enriched in BAT after cold exposure. Functional studies revealed that lncDGAT2 promoted brown and white adipocyte differentiation as well as thermogenic gene expression. Additionally, PRDM4 directly bound the lncDGAT2 promoter to activate the transcription of lncDGAT2 and the PRDM4-lncDGAT2 axis was essential for the brown adipocyte thermogenic gene program. These findings provide evidence for lncRNA and transcription factor regulatory functions in controlling adipose thermogenesis and energy metabolism of newborn goats.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Chunhua Huang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Tingting Jiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Xueliang Sun
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.
| |
Collapse
|
7
|
Lezama-García K, Mota-Rojas D, Martínez-Burnes J, Villanueva-García D, Domínguez-Oliva A, Gómez-Prado J, Mora-Medina P, Casas-Alvarado A, Olmos-Hernández A, Soto P, Muns R. Strategies for Hypothermia Compensation in Altricial and Precocial Newborn Mammals and Their Monitoring by Infrared Thermography. Vet Sci 2022; 9:vetsci9050246. [PMID: 35622774 PMCID: PMC9145389 DOI: 10.3390/vetsci9050246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Thermoregulation in newborn mammals is an essential species-specific mechanism of the nervous system that contributes to their survival during the first hours and days of their life. When exposed to cold weather, which is a risk factor associated with mortality in neonates, pathways such as the hypothalamic–pituitary–adrenal axis (HPA) are activated to achieve temperature control, increasing the circulating levels of catecholamine and cortisol. Consequently, alterations in blood circulation and mechanisms to produce or to retain heat (e.g., vasoconstriction, piloerection, shivering, brown adipocyte tissue activation, and huddling) begin to prevent hypothermia. This study aimed to discuss the mechanisms of thermoregulation in newborn domestic mammals, highlighting the differences between altricial and precocial species. The processes that employ brown adipocyte tissue, shivering, thermoregulatory behaviors, and dermal vasomotor control will be analyzed to understand the physiology and the importance of implementing techniques to promote thermoregulation and survival in the critical post-birth period of mammals. Also, infrared thermography as a helpful method to perform thermal measurements without animal interactions does not affect these parameters.
Collapse
Affiliation(s)
- Karina Lezama-García
- PhD Program in Biological and Health Sciences [Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico;
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.D.-O.); (J.G.-P.); (A.C.-A.); (P.S.)
- Correspondence:
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Tamaulipas, Mexico;
| | - Dina Villanueva-García
- Division of Neonatology, National Institute of Health, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico;
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.D.-O.); (J.G.-P.); (A.C.-A.); (P.S.)
| | - Jocelyn Gómez-Prado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.D.-O.); (J.G.-P.); (A.C.-A.); (P.S.)
| | - Patricia Mora-Medina
- Department of Livestock Science, FESC, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico;
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.D.-O.); (J.G.-P.); (A.C.-A.); (P.S.)
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico;
| | - Paola Soto
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.D.-O.); (J.G.-P.); (A.C.-A.); (P.S.)
| | - Ramon Muns
- Agri-Food and Biosciences Institute, Livestock Production Sciences Unit, Hillsborough BT26 6DR, Northern Ireland, UK;
| |
Collapse
|
8
|
Freitas-de-Melo A, Sales F, Ungerfeld R, Parraguez VH. Melatonin treatment during late gestation of undernourished ewes: lamb body temperature and mother–young behaviours after birth. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ContextIn extensive grazing sheep systems, pregnant ewes undergo periods of undernutrition because gestation coincides with winter when natural pasture is of lowest quantity and poorest quality. The lamb’s weight and thermoregulatory capacity, and the ewe–lamb bond at birth, may be compromised. Maternal melatonin treatment during gestation may reverse these effects.AimThe aim was to determine the effects of melatonin treatment of single-lambing, undernourished ewes during the last third of gestation on lamb birthweights and body temperatures, and on ewe–lamb interactive behaviour after birth.MethodsAt Day 100 of gestation, 39 single-bearing ewes received a subcutaneous melatonin implant, and 54 ewes served as controls with no implant. Throughout gestation, the ewes remained under extensive conditions grazing on natural pasture. Measurements were made of lamb birthweight, body temperatures (surface temperature by infrared thermography and rectal temperature), and ewe–lamb behaviours during a handling test at 6–17h after lambing.Key resultsThere was no effect of melatonin treatment on lamb birthweight or rectal temperature, or on ewe–lamb interaction behaviours. Hip minimum surface temperature was greater in lambs from melatonin-treated ewes than lambs from control ewes (21.2°C±0.9°C vs 18.8°C±0.8°C; P=0.05), and there was a similar trend for hip mean surface temperature (24.6°C±0.9°C vs 22.3°C±0.7°C; P=0.06). Rump surface temperatures were greater in male than female lambs: maximum (27.9°C±1.2°C vs 22.9°C±1.2°C; P=0.01), minimum (22.2°C±1.5°C vs 16.7°C±1.5°C; P=0.02) and mean (25.4°C±1.3°C vs 20.5°C±1.3°C; P=0.02).ConclusionMelatonin treatment during the last third of ewe pregnancy slightly enhanced the surface temperature of lambs at birth but did not influence ewe–lamb interaction behaviour after birth (i.e. after establishment of the ewe–lamb bond).ImplicationsFurther study in more depth is warranted into the possible effects of maternal supplementation with commercial melatonin implants on lamb development, thermoregulatory capacity, behaviour and survival rates in extensive grazing systems, including the effect on ewe–lamb behaviours immediately after birth for both singletons and twins.
Collapse
|
9
|
Gao XY, Deng BH, Li XR, Wang Y, Zhang JX, Hao XY, Zhao JX. Melatonin Regulates Differentiation of Sheep Brown Adipocyte Precursor Cells Via AMP-Activated Protein Kinase. Front Vet Sci 2021; 8:661773. [PMID: 34235199 PMCID: PMC8255384 DOI: 10.3389/fvets.2021.661773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 01/10/2023] Open
Abstract
In sheep industry, hypothermia caused by insufficient brown adipose tissue (BAT) deposits is one of the major causes of lamb deaths. Enhancing the formation and function of BAT in neonatal lamb increases thermogenesis and hence reduces economic losses. The aim of the present study was to explore the effect and mechanism of melatonin on sheep brown adipocyte formation and function. Sheep brown adipocyte precursor cells (SBACs) isolated from perirenal BAT were treated with melatonin (1 and 10 nM). The SBACs subjected to melatonin exhibited a decreased proliferation ability, accompanied by down-regulated proliferating cell nuclear antigen, cyclin D1, and CDK4 protein contents in a melatonin dose-dependent manner. Melatonin promoted brown adipocyte formation and induced the expression of brown adipogenic markers, including uncoupling protein 1 and PR domain-containing 16 during differentiation of SBAC. Moreover, the AMP-activated protein kinase α1 (AMPKα1) activity was positively correlated with brown adipocyte formation potential. Importantly, melatonin effectively activated AMPKα1. Furthermore, promotional effects of melatonin were abolished by AMPKα1 knockout, suggesting the involvement of AMPKα1 in this process. Collectively, these results suggested that melatonin enhanced brown adipocyte formation in SBACs in vitro through activation of AMPKα1.
Collapse
Affiliation(s)
- Xu-Yang Gao
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Bu-Hao Deng
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Xin-Rui Li
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Yu Wang
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Jian-Xin Zhang
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Xiao-Yan Hao
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Jun-Xing Zhao
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| |
Collapse
|
10
|
Implanting melatonin at lambing enhances lamb growth and maintains high fat content in milk. Vet Res Commun 2021; 45:181-188. [PMID: 34075527 DOI: 10.1007/s11259-021-09799-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
Three experiments were designed to study the effects of melatonin implantation of ewes and lambs after lambing on the growth of lambs and milk quality throughout lactation. In experiment 1, 53 lambs either did (n = 28) or did not (n = 25) receive a subcutaneous 18-mg melatonin implant at the base of the left ear. In experiment 2, 55 lambs and their mothers either did (lambs: n = 28; ewes: n = 15) or did not (lambs: n = 27; ewes: n = 16) receive a melatonin implant. Milk samples were collected at 15, 30, and 45 d after lambing. In experiment 3, 16 lambs were separated from their mothers 24 h after birth, moved to an artificial rearing unit, and either did (n = 9) or did not (n = 7) receive a melatonin implant. In the three experiments, implants were inserted 24 h after lambing, and lambs were weighed (LW) weekly until weaning (for each experiment, 7, 6, and 5 wk., respectively). Average daily gains (ADG) from birth to weaning were calculated. Melatonin treatment of lambs did not have a significant effect on LW at weaning or ADG, but lambs reared by implanted ewes in experiment 2 presented higher (P < 0.05) LW (±S.E.M.) at weaning (implanted: 13.61 ± 0.51; non-implanted: 12.09 ± 0.57 kg) and ADG (implanted: 221.00 ± 10.45; non-implanted: 189.92 ± 12.44 g/d) than did lambs reared by control ewes. At day 45 of lactation, milk fat and total solid content were higher (P < 0.05) in implanted ewes than they were in control ewes. Groups did not differ significantly in the protein and lactose content of their milk. In conclusion, melatonin treatment of ewes at lambing induced a high growth rate of their lambs and increased the fat content of the milk; however, the direct treatment with melatonin of the lambs at birth did not have an effect in their growth rate.
Collapse
|
11
|
The Circadian Physiology: Implications in Livestock Health. Int J Mol Sci 2021; 22:ijms22042111. [PMID: 33672703 PMCID: PMC7924354 DOI: 10.3390/ijms22042111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
Circadian rhythms exist in almost all types of cells in mammals. Thousands of genes exhibit approximately 24 h oscillations in their expression levels, making the circadian clock a crucial regulator of their normal functioning. In this regard, environmental factors to which internal physiological processes are synchronized (e.g., nutrition, feeding/eating patterns, timing and light exposure), become critical to optimize animal physiology, both by managing energy use and by realigning the incompatible processes. Once the circadian clock is disrupted, animals will face the increased risks of diseases, especially metabolic phenotypes. However, little is known about the molecular components of these clocks in domestic species and by which they respond to external stimuli. Here we review evidence for rhythmic control of livestock production and summarize the associated physiological functions, and the molecular mechanisms of the circadian regulation in pig, sheep and cattle. Identification of environmental and physiological inputs that affect circadian gene expressions will help development of novel targets and the corresponding approaches to optimize production efficiency in farm animals.
Collapse
|
12
|
|
13
|
Flinn T, Gunn JR, Kind KL, Swinbourne AM, Weaver AC, Kelly JM, Walker SK, Gatford KL, van Wettere WHEJ, Kleemann DO. Maternal melatonin implants improve twin Merino lamb survival. J Anim Sci 2021; 98:5935828. [PMID: 33091925 DOI: 10.1093/jas/skaa344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
High preweaning mortality rates cost the Australian sheep industry an estimated $540 million annually in lost production, with losses significantly greater in twin (≥30%) compared with singleton lambs (≥10%). Previous intensive studies demonstrated that supplementing pregnant ewes with melatonin reduces adverse effects of fetal growth restriction and perinatal hypoxia on the neonatal brain via increased umbilical blood flow, placental efficiency, and antioxidant actions. The current study examined the effects of supplementing ewes with melatonin on the survival of twin Merino lambs under extensive grazing conditions. Pregnant mixed age ewes were implanted with 1 (M1, n = 50) or 2 (M2, n = 53) slow-release melatonin implants (18 mg, Regulin) at gestational days 70 to 90. Control ewes received no supplementation (CTL, n = 54). Ewes were monitored twice daily throughout the lambing period. Lamb survival, weight, and rectal temperature were recorded on the day of birth. Lamb blood samples were taken the following day for serum immunoglobulin G (IgG) analysis. Lamb survival and weight were recorded again at marking (30.6 ± 0.6 d postpartum) and weaning (70.7 ± 0.6 d postpartum). Lamb survival was increased in both melatonin treatments to 3 d postpartum (M1 = 98.0%; M2 = 95.3%; CTL = 83.3%; each P < 0.01), and this improvement was maintained to weaning (M1 = 94.0%; M2 = 92.5%; CTL = 79.6%; each P < 0.01). Melatonin did not affect lamb birthweight, rectal temperature, or growth rate. However, the rates of parturition-related death (dystocia, stillbirth, and birth injury) were greater in CTL lambs than M1 (P = 0.009) and M2 (P = 0.035). This suggests that improved survival is primarily due to melatonin-induced neuroprotection, although further studies are required to clarify the underlying mechanisms. These data provide evidence that supplementing pregnant twin-bearing Merino ewes with melatonin may be a practical strategy to reduce neonatal mortality and improve weaning rates in extensively managed sheep flocks. Although the present data are promising, this study is limited by small sample size and requires further replication.
Collapse
Affiliation(s)
- Tom Flinn
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Jessica R Gunn
- Minnipa Agricultural Centre, South Australian Research and Development Institute, Minnipa, South Australia, Australia
| | - Karen L Kind
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alyce M Swinbourne
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Alice C Weaver
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia, Australia
| | - Jennifer M Kelly
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia, Australia
| | - Simon K Walker
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - William H E J van Wettere
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - David O Kleemann
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia, Australia
| |
Collapse
|
14
|
Flinn T, McCarthy NL, Swinbourne AM, Gatford KL, Weaver AC, McGrice HA, Kelly JM, Walker SK, Kind KL, Kleemann DO, van Wettere WHEJ. Supplementing Merino ewes with melatonin during the last half of pregnancy improves tolerance of prolonged parturition and survival of second-born twin lambs. J Anim Sci 2021; 98:5986736. [PMID: 33205209 DOI: 10.1093/jas/skaa372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/10/2020] [Indexed: 11/14/2022] Open
Abstract
High preweaning mortality rates continue to limit sheep production globally, constituting a major economic and welfare concern. Greater losses in twin lambs (≥30%) compared with singletons (≥10%) are attributed primarily to lower birth weight and increased risk of intrapartum hypoxia, leading to impairment of thermoregulation, neuromotor activity, and maternal bonding behavior. Previous intensive studies demonstrated that supplementing pregnant ewes with melatonin reduced the adverse effects of fetal growth restriction and perinatal hypoxia on the neonatal brain via increased umbilical blood flow, placental efficiency, and antioxidant actions. The current study examined the effects of supplementing pregnant ewes with melatonin on lamb survival, birth weight, and behavior under intensive conditions. From gestational day (gD) 80 until parturition, pregnant singleton and twin-bearing ewes were supplemented with melatonin via a 2-mg capsule fed daily (Mel-FED, n = 61) or 18 mg subcutaneous implant (Regulin), with one implant administered at gD80 and another at gD125 (Mel-IMP, n = 60). Control ewes received no supplementation (CTL, n = 60). Ewes and lambs were monitored via video throughout parturition. Postpartum measures were taken from lambs at 4 and 24 h (live weight [LW], rectal temperature, serum immunoglobulin G, and latency to stand and suck after birth) and LW at 72 h, 7 d, marking (49.7 ± 0.2 d), and weaning (124.2 ± 0.8 d). Chi-square analysis was used to compare lamb survival between treatment groups. There were no treatment effects on singleton lamb survival. Melatonin supplementation tended to increase the proportion of twin lambs surviving from birth to weaning (Mel-FED = 85.5%; Mel-IMP = 85.9%; CTL = 72.9%; each P < 0.1). Survival of first-born twins did not differ between treatment (each ~90%, P = 0.745) but within second-born twins, survival of Mel-FED was greater than CTL (81.6 vs. 57.1%, P = 0.023), and Mel-IMP (78.1%) tended to be greater than CTL (P = 0.068). Similarly, in second-born twins exposed to prolonged parturition (≥ 90 min), survival of lambs from Mel-FED ewes was greater than CTL (86.7% vs. 42.9%, P = 0.032), while Mel-IMP was intermediate (66.7%). These data suggest that the neuroprotective actions of melatonin may improve twin lamb survival by increasing tolerance of prolonged parturition and provide a sound basis for continued testing in extensively managed sheep flocks.
Collapse
Affiliation(s)
- Tom Flinn
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Niki L McCarthy
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Alyce M Swinbourne
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Alice C Weaver
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, SA, Australia
| | - Hayley A McGrice
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Jennifer M Kelly
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, SA, Australia
| | - Simon K Walker
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, SA, Australia
| | - Karen L Kind
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - David O Kleemann
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, SA, Australia
| | - William H E J van Wettere
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
15
|
Halabi D, Richter HG, Mendez N, Kähne T, Spichiger C, Salazar E, Torres F, Vergara K, Seron-Ferre M, Torres-Farfan C. Maternal Chronodisruption Throughout Pregnancy Impairs Glucose Homeostasis and Adipose Tissue Physiology in the Male Rat Offspring. Front Endocrinol (Lausanne) 2021; 12:678468. [PMID: 34484111 PMCID: PMC8415792 DOI: 10.3389/fendo.2021.678468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Compelling evidence in rats support the idea that gestational chronodisruption induces major changes in maternal circadian rhythms and fetal development and that these changes impact adult life at many physiological levels. Using a model of chronic photoperiod shifting throughout gestation (CPS), in which pregnant female rats (Sprague-Dawley strain; n = 16 per group) were exposed to lighting schedule manipulation every 3-4 days reversing the photoperiod completely or light/dark photoperiod (12/12; LD), we explored in the adult rat male offspring body weight gain, glucose homeostasis, adipose tissue content, adipose tissue response to norepinephrine (NE), and adipose tissue proteomic in the basal condition with standard diet (SD) and in response to high-fat diet (HFD). In adult CPS male (100-200 days old; n = 8 per group), we found increasing body weight, under SD and adiposity. Also, we found an increased response to intraperitoneal glucose (IGTT). After 12 weeks of HFD, white adipose tissue depots in CPS offspring were increased further, and higher IGTT and lower intraperitoneal insulin tolerance response were found, despite the lack of changes in food intake. In in vitro experiments, we observed that adipose tissue (WAT and BAT) glycerol response to NE from CPS offspring was decreased, and it was completely abolished by HFD. At the proteomic level, in CPS adipose tissue, 275 proteins displayed differential expression, compared with LD animals fed with a standard diet. Interestingly, CPS offspring and LD fed with HFD showed 20 proteins in common (2 upregulated and 18 downregulated). Based on these common proteins, the IPA analysis found that two functional pathways were significantly altered by CPS: network 1 (AKT/ERK) and network 2 (TNF/IL4; data are available via ProteomeXchange with identifier PXD026315). The present data show that gestational chronodisruption induced deleterious effects in adipose tissue recruitment and function, supporting the idea that adipose tissue function was programmed in utero by gestational chronodisruption, inducing deficient metabolic responses that persist into adulthood.
Collapse
Affiliation(s)
- Diego Halabi
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Institute of Dentistry, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Hans G. Richter
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Natalia Mendez
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Thilo Kähne
- Mass Spectrometry for Massive Proteomics, Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Carlos Spichiger
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Esteban Salazar
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Fabiola Torres
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Karina Vergara
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Maria Seron-Ferre
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia Torres-Farfan
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Claudia Torres-Farfan,
| |
Collapse
|
16
|
Flinn T, Kleemann DO, Swinbourne AM, Kelly JM, Weaver AC, Walker SK, Gatford KL, Kind KL, van Wettere WHEJ. Neonatal lamb mortality: major risk factors and the potential ameliorative role of melatonin. J Anim Sci Biotechnol 2020; 11:107. [PMID: 33292527 PMCID: PMC7643391 DOI: 10.1186/s40104-020-00510-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
High incidences of pre-weaning mortality continue to limit global sheep production, constituting a major economic and welfare concern. Despite significant advances in genetics, nutrition, and management, the proportion of lamb deaths has remained stable at 15–20% over the past four decades. There is mounting evidence that melatonin can improve outcomes in compromised ovine pregnancies via enhanced uterine bloodflow and neonatal neuroprotection. This review provides an overview of the major risk factors and underlying mechanisms involved in perinatal lamb mortality and discusses the potential of melatonin treatment as a remedial strategy. Supplementing pregnant ewes with melatonin enhances uterine bloodflow and fetal oxygenation, and potentially birthweight and neonatal thermogenic capacity. Melatonin freely crosses the ovine placenta and blood-brain barrier and provides neuroprotection to the fetal lamb during periods of chronic and acute hypoxia throughout gestation, with improved behavioural outcomes in hypoxic neonates. The current literature provides strong evidence that maternal melatonin treatment improves outcomes for lambs which experience compromised in utero development or prolonged parturition, though to date this has not been investigated in livestock production systems. As such there is a clear basis for continued research into the effects of maternal melatonin supplementation during gestation on pre-weaning survival under extensive production conditions.
Collapse
Affiliation(s)
- Tom Flinn
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.
| | - David O Kleemann
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, SA, Australia
| | - Alyce M Swinbourne
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Jennifer M Kelly
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, SA, Australia
| | - Alice C Weaver
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, SA, Australia
| | - Simon K Walker
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, SA, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Karen L Kind
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - William H E J van Wettere
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
17
|
Genario R, Cipolla-Neto J, Bueno AA, Santos HO. Melatonin supplementation in the management of obesity and obesity-associated disorders: A review of physiological mechanisms and clinical applications. Pharmacol Res 2020; 163:105254. [PMID: 33080320 DOI: 10.1016/j.phrs.2020.105254] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 02/08/2023]
Abstract
Despite the evolving advances in clinical approaches to obesity and its inherent comorbidities, the therapeutic challenge persists. Among several pharmacological tools already investigated, recent studies suggest that melatonin supplementation could be an efficient therapeutic approach in the context of obesity. In the present review, we have amalgamated the evidence so far available on physiological effects of melatonin supplementation in obesity therapies, addressing its effects upon neuroendocrine systems, cardiometabolic biomarkers and body composition. Most studies herein appraised employed melatonin supplementation at dosages ranging from 1 to 20 mg/day, and most studies followed up participants for periods from 3 weeks to 12 months. Overall, it was observed that melatonin plays an important role in glycaemic homeostasis, in addition to modulation of white adipose tissue activity and lipid metabolism, and mitochondrial activity. Additionally, melatonin increases brown adipose tissue volume and activity, and its antioxidant and anti-inflammatory properties have also been demonstrated. There appears to be a role for melatonin in adiposity reduction; however, several questions remain unanswered, for example melatonin baseline levels in obesity, and whether any seeming hypomelatonaemia or melatonin irresponsiveness could be clarifying factors. Supplementation dosage studies and more thorough clinical trials are needed to ascertain not only the relevance of such findings but also the efficacy of melatonin supplementation.
Collapse
Affiliation(s)
- Rafael Genario
- School of Medicine, University of Sao Paulo (USP), São Paulo, Brazil.
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Allain A Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester, United Kingdom
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| |
Collapse
|
18
|
Abecia JA, Garrido C, Gave M, García AI, López D, Luis S, Valares JA, Mata L. Exogenous melatonin and male foetuses improve the quality of sheep colostrum. J Anim Physiol Anim Nutr (Berl) 2020; 104:1305-1309. [PMID: 32277563 DOI: 10.1111/jpn.13362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 11/27/2022]
Abstract
Colostrum is the first product secreted by the mammary gland to transfer immunity to the newborn, especially through immunoglobulins (Ig) G. Melatonin is an immunomodulatory factor and there is evidence that it has a direct effect on IgG production. To evaluate the effects of melatonin treatment during pregnancy, litter size and offspring sex on colostrum quality, sixty pregnant Rasa Aragonesa ewes were divided into three groups: one group received a melatonin implant at the third month of pregnancy (3M, n = 13), another group at the fourth month (4M, n = 18) and the remaining ewes were not implanted (Control, C, n = 29). Immediately after lambing, a sample of colostrum was collected and IgG, crude protein and fat content analysed. Timing of melatonin implantation (p < .001), and offspring sex (p < .01) had a significant effect on IgG concentration. Colostrum of treated ewes had a higher mean (±SEM) IgG concentration than that of the control ewes (55.54 ± 3.09 and 49.50 ± 4.36 mg/ml, respectively; p < .05), mainly because the concentration in the 4M group was significantly (p < .001) higher than it was in the other groups. The relationship between lamb sex and IgG (p < .01) and %CP (p < .05) was evident in singletons (ewes with a male lamb: 54.57 ± 5.37 mg IgG/ml, 15.42 ± 0.82%CP; ewes with a female lamb: 34.66 ± 4.30 mg/ml, 13.18 ± 0.73%CP). The presence of a female in the litter was associated with significantly (p < .01) lower colostrum IgG levels (litters with at least one female: 49.33 ± 3.42 mg/ml; litters with no females: 58.24 ± 4.00 mg/ml). Among 4M ewes, female foetuses had significantly (p < .01) lower IgG levels whether they carried singletons or multiple lambs. In conclusion, treatment with melatonin implants at the fourth month of pregnancy resulted in a higher colostrum quality based on IgG concentration.
Collapse
Affiliation(s)
- José-Alfonso Abecia
- Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Claudia Garrido
- Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Marianne Gave
- Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Ana-Isabel García
- Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - David López
- Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Luis
- Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
19
|
Xu Z, You W, Liu J, Wang Y, Shan T. Elucidating the Regulatory Role of Melatonin in Brown, White, and Beige Adipocytes. Adv Nutr 2020; 11:447-460. [PMID: 31355852 PMCID: PMC7442421 DOI: 10.1093/advances/nmz070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/28/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
The high prevalence of obesity and its associated metabolic diseases has heightened the importance of understanding control of adipose tissue development and energy metabolism. In mammals, 3 types of adipocytes with different characteristics and origins have been identified: white, brown, and beige. Beige and brown adipocytes contain numerous mitochondria and have the capability to burn energy and counteract obesity, while white adipocytes store energy and are closely associated with metabolic disorders and obesity. Thus, regulation of the development and function of different adipocytes is important for controlling energy balance and combating obesity and related metabolic disorders. Melatonin is a neurohormone, which plays multiple roles in regulating inflammation, blood pressure, insulin actions, and energy metabolism. This article summarizes and discusses the role of melatonin in white, beige, and brown adipocytes, especially in affecting adipogenesis, inducing beige formation or white adipose tissue browning, enhancing brown adipose tissue mass and activities, improving anti-inflammatory and antioxidative effects, regulating adipokine secretion, and preventing body weight gain. Based on the current findings, melatonin is a potential therapeutic agent to control energy metabolism, adipogenesis, fat deposition, adiposity, and related metabolic diseases.
Collapse
Affiliation(s)
- Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jiaqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China,Address correspondence to TS (E-mail: )
| |
Collapse
|
20
|
|
21
|
Maugars G, Nourizadeh-Lillabadi R, Weltzien FA. New Insights Into the Evolutionary History of Melatonin Receptors in Vertebrates, With Particular Focus on Teleosts. Front Endocrinol (Lausanne) 2020; 11:538196. [PMID: 33071966 PMCID: PMC7541902 DOI: 10.3389/fendo.2020.538196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
In order to improve our understanding of melatonin signaling, we have reviewed and revised the evolutionary history of melatonin receptor genes (mtnr) in vertebrates. All gnathostome mtnr genes have a conserved gene organization with two exons, except for mtnr1b paralogs of some teleosts that show intron gains. Phylogeny and synteny analyses demonstrate the presence of four mtnr subtypes, MTNR1A, MTNR1B, MTNR1C, MTNR1D that arose from duplication of an ancestral mtnr during the vertebrate tetraploidizations (1R and 2R). In tetrapods, mtnr1d was lost, independently, in mammals, in archosaurs and in caecilian amphibians. All four mtnr subtypes were found in two non-teleost actinopterygian species, the spotted gar and the reedfish. As a result of teleost tetraploidization (3R), up to seven functional mtnr genes could be identified in teleosts. Conservation of the mtnr 3R-duplicated paralogs differs among the teleost lineages. Synteny analysis showed that the mtnr1d was conserved as a singleton in all teleosts resulting from an early loss after tetraploidization of one of the teleost 3R and salmonid 4R paralogs. Several teleosts including the eels and the piranha have conserved both 3R-paralogs of mtnr1a, mtnr1b, and mtnr1c. Loss of one of the 3R-paralogs depends on the lineage: mtnr1ca was lost in euteleosts whereas mtnr1cb was lost in osteoglossomorphs and several ostariophysians including the zebrafish. We investigated the tissue distribution of mtnr expression in a large range of tissues in medaka. The medaka has conserved the four vertebrate paralogs, and these are expressed in brain and retina, and, differentially, in peripheral tissues. Photoperiod affects mtnr expression levels in a gene-specific and tissue-specific manner. This study provides new insights into the repertoire diversification and functional evolution of the mtnr gene family in vertebrates.
Collapse
|
22
|
Liu K, Yu W, Wei W, Zhang X, Tian Y, Sherif M, Liu X, Dong C, Wu W, Zhang L, Chen J. Melatonin reduces intramuscular fat deposition by promoting lipolysis and increasing mitochondrial function. J Lipid Res 2019; 60:767-782. [PMID: 30552289 PMCID: PMC6446696 DOI: 10.1194/jlr.m087619] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/14/2018] [Indexed: 01/06/2023] Open
Abstract
In obesity and diabetes, intramuscular fat (IMF) content correlates markedly with insulin sensitivity, which makes IMF manipulation an area of therapeutic interest. Melatonin, an important circadian rhythm-regulating hormone, reportedly regulates fat deposition, but its effects on different types of adipose vary. Little is known about the role of melatonin in IMF deposition. Here, using intramuscular preadipocytes in pigs, we investigated to determine whether melatonin affects or regulates IMF deposition. We found that melatonin greatly inhibited porcine intramuscular preadipocyte proliferation. Although melatonin administration significantly upregulated the expression of adipogenic genes, smaller lipid droplets were formed in intramuscular adipocytes. Additional investigation demonstrated that melatonin promoted lipolysis of IMF by activating protein kinase A and the signaling of ERK1/2. Moreover, melatonin increased thermogenesis in intramuscular adipocytes by enhancing mitochondrial biogenesis and mitochondrial respiration. A mouse model, in which untreated controls were compared with mice that received 3 weeks of melatonin treatment, verified the effect of melatonin on IMF deposition. In conclusion, melatonin reduces IMF deposition by upregulating lipolysis and mitochondrial bioactivities. These data establish a link between melatonin signaling and lipid metabolism in mammalian models and suggest the potential for melatonin administration to treat or prevent obesity and related diseases.
Collapse
Affiliation(s)
- Kaiqing Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wensai Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinbao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Melak Sherif
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Dong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Gatford KL, Kennaway DJ, Liu H, Kleemann DO, Kuchel TR, Varcoe TJ. Simulated shift work disrupts maternal circadian rhythms and metabolism, and increases gestation length in sheep. J Physiol 2019; 597:1889-1904. [PMID: 30671970 DOI: 10.1113/jp277186] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Shift work impairs metabolic health, although its effects during pregnancy are not well understood We evaluated the effects of a simulated shift work protocol for one-third, two-thirds or all of pregnancy on maternal and pregnancy outcomes in sheep. Simulated shift work changed the timing of activity, disrupted hormonal and cellular rhythms, and impaired maternal glucose tolerance during early pregnancy. Gestation length was increased in twin pregnancies, whereas singleton lambs were lighter at a given gestational age if mothers were subjected to shift work conditions in the first one-third of pregnancy. Exposure to rotating night and day shifts, even if only in early pregnancy, may adversely affect maternal metabolic and pregnancy outcomes. ABSTRACT Shift workers are at increased risk of developing type 2 diabetes and obesity; however, the impact during pregnancy on maternal metabolism is unknown. Using a large animal model, we assessed the impact of simulated shift work (SSW) exposure during pregnancy on maternal circadian rhythms, glucose tolerance and pregnancy outcomes. Following mating, ewes were randomly allocated to a control photoperiod (CON 12 h light, 12 h dark) or to SSW, where the timing of light exposure and food presentation was reversed twice each week for one-third, two-thirds or all of pregnancy. Maternal behaviour followed SSW cycles with increased activity during light exposure and feeding. Melatonin rhythms resynchronized within 2 days of the photoperiod shift, whereas peripheral circadian rhythms were arrhythmic. SSW impaired glucose tolerance (+29%, P = 0.019) and increased glucose-stimulated insulin secretion (+32%, P = 0.018) in ewes with a singleton fetus in early but not late gestation. SSW exposure did not alter rates of miscarriage or stillbirth, although it extended gestation length in twin pregnancies (+2.4 days, P = 0.032). Relative to gestational age, birth weight was lower in singleton progeny of SSW than CON ewes (-476 g, P = 0.016). These results have implications for the large number of women currently engaged in shift work, and further studies are required to determine progeny health impacts.
Collapse
Affiliation(s)
- Kathryn L Gatford
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - David J Kennaway
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Hong Liu
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - David O Kleemann
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, SA, Australia
| | - Timothy R Kuchel
- Preclinical Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Gilles Plains, SA, Australia
| | - Tamara J Varcoe
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
24
|
Beñaldo FA, Llanos AJ, Araya-Quijada C, Rojas A, Gonzalez-Candia A, Herrera EA, Ebensperger G, Cabello G, Valenzuela GJ, Serón-Ferré M. Effects of Melatonin on the Defense to Acute Hypoxia in Newborn Lambs. Front Endocrinol (Lausanne) 2019; 10:433. [PMID: 31354619 PMCID: PMC6640618 DOI: 10.3389/fendo.2019.00433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
Neonatal lambs, as other neonates, have physiologically a very low plasma melatonin concentration throughout 24 h. Previously, we found that melatonin given to neonates daily for 5 days decreased heart weight and changed plasma cortisol and gene expression in the adrenal and heart. Whether these changes could compromise the responses to life challenges is unknown. Therefore, firstly, we studied acute effects of melatonin on the defense mechanisms to acute hypoxia in the neonate. Eleven lambs, 2 weeks old, were instrumented and subjected to an episode of acute isocapnic hypoxia, consisting of four 30 min periods: normoxia (room air), normoxia after an i.v. bolus of melatonin (0.27 mg kg-1, n = 6) or vehicle (ethanol 1:10 NaCl 0.9%, n = 5), hypoxia (PaO2: 30 ± 2 mmHg), and recovery (room air). Mean pulmonary and systemic blood pressures, heart rate, and cardiac output were measured, and systemic and pulmonary vascular resistance and stroke volume were calculated. Blood samples were taken every 30 min to measure plasma norepinephrine, cortisol, glucose, triglycerides, and redox markers (8-isoprostane and FRAP). Melatonin blunted the increase of pulmonary vascular resistance triggered by hypoxia, markedly exacerbated the heart rate response, decreased heart stroke volume, and lessened the magnitude of the increase of plasmatic norepinephrine and cortisol levels induced by hypoxia. No changes were observed in pulmonary blood pressure, systemic blood pressures and resistance, cardiac output, glucose, triglyceride plasma concentrations, or redox markers. Melatonin had no effect on cardiovascular, endocrine, or metabolic variables, under normoxia. Secondly, we examined whether acute melatonin administration under normoxia could have an effect in gene expression on the adrenal, lung, and heart. Lambs received a bolus of vehicle or melatonin and were euthanized 30 min later to collect tissues. We found that melatonin affected expression of the immediate early genes egr1 in adrenal, ctgf in lung, and nr3c1, the glucocorticoid receptor, in adrenal and heart. We speculate that these early gene responses may contribute to the observed alterations of the newborn defense mechanisms to hypoxia. This could be particularly important since the use of melatonin is proposed for several diseases in the neonatal period in humans.
Collapse
Affiliation(s)
- Felipe A. Beñaldo
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aníbal J. Llanos
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Claudio Araya-Quijada
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Auristela Rojas
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Emilio A. Herrera
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gertrudis Cabello
- Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Guillermo J. Valenzuela
- Department of Women's Health, Arrowhead Regional Medical Center, San Bernardino, CA, United States
| | - María Serón-Ferré
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- *Correspondence: María Serón-Ferré
| |
Collapse
|
25
|
Valenzuela-Melgarejo FJ, Caro-Díaz C, Cabello-Guzmán G. Potential Crosstalk between Fructose and Melatonin: A New Role of Melatonin-Inhibiting the Metabolic Effects of Fructose. Int J Endocrinol 2018; 2018:7515767. [PMID: 30154843 PMCID: PMC6092995 DOI: 10.1155/2018/7515767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
Increased consumption of energy-dense foods such as fructose-rich syrups represents one of the significant, growing concerns related to the alarming trend of overweight, obesity, and metabolic disorders worldwide. Metabolic pathways affected by fructose involve genes related to lipogenesis/lipolysis, beta-oxidation, mitochondrial biogenesis, gluconeogenesis, oxidative phosphorylation pathways, or altering of circadian production of insulin and leptin. Moreover, fructose can be a risk factor during pregnancy elevating the risk of preterm delivery, hypertension, and metabolic impairment of the mother and fetus. Melatonin is a chronobiotic and homeostatic hormone that can modulate the harmful effects of fructose via clock gene expression and metabolic pathways, modulating the expression of PPARγ, SREBF-1 (SREBP-1), hormone-sensitive lipase, C/EBP-α genes, NRF-1, PGC1α, and uncoupling protein-1. Moreover, this hormone has the capacity in the rat of reverting the harmful effects of fructose, increasing the body weight and weight ratio of the liver, and increasing the body weight and restoring the glycemia from mothers exposed to fructose. The aim of this review is to show the potential crosstalk between fructose and melatonin and their potential role during pregnancy.
Collapse
Affiliation(s)
| | - Claudia Caro-Díaz
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Gerardo Cabello-Guzmán
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| |
Collapse
|
26
|
Varcoe TJ, Gatford KL, Kennaway DJ. Maternal circadian rhythms and the programming of adult health and disease. Am J Physiol Regul Integr Comp Physiol 2017; 314:R231-R241. [PMID: 29141950 DOI: 10.1152/ajpregu.00248.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The in utero environment is inherently rhythmic, with the fetus subjected to circadian changes in temperature, substrates, and various maternal hormones. Meanwhile, the fetus is developing an endogenous circadian timing system, preparing for life in an external environment where light, food availability, and other environmental factors change predictably and repeatedly every 24 h. In humans, there are many situations that can disrupt circadian rhythms, including shift work, international travel, insomnias, and circadian rhythm disorders (e.g., advanced/delayed sleep phase disorder), with a growing consensus that this chronodisruption can have deleterious consequences for an individual's health and well-being. However, the impact of chronodisruption during pregnancy on the health of both the mother and fetus is not well understood. In this review, we outline circadian timing system ontogeny in mammals and examine emerging research from animal models demonstrating long-term negative implications for progeny health following maternal chronodisruption during pregnancy.
Collapse
Affiliation(s)
- Tamara J Varcoe
- Robinson Research Institute, Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Kathryn L Gatford
- Robinson Research Institute, Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - David J Kennaway
- Robinson Research Institute, Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| |
Collapse
|
27
|
Seron-Ferre M, Torres-Farfan C, Valenzuela FJ, Castillo-Galan S, Rojas A, Mendez N, Reynolds H, Valenzuela GJ, Llanos AJ. Deciphering the Function of the Blunt Circadian Rhythm of Melatonin in the Newborn Lamb: Impact on Adrenal and Heart. Endocrinology 2017; 158:2895-2905. [PMID: 28911179 DOI: 10.1210/en.2017-00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022]
Abstract
Neonatal lambs, as with human and other neonates, have low arrhythmic endogenous levels of melatonin for several weeks until they start their own pineal rhythm of melatonin production at approximately 2 weeks of life. During pregnancy, daily rhythmic transfer of maternal melatonin to the fetus has important physiological roles in sheep, nonhuman primates, and rats. This melatonin rhythm provides a circadian signal and also participates in adjusting the physiology of several organs in preparation for extrauterine life. We propose that the ensuing absence of a melatonin rhythm plays a role in neonatal adaptation. To test this hypothesis, we studied the effects of imposing a high-amplitude melatonin rhythm in the newborn lamb on (1) clock time-related changes in cortisol and plasma variables and (2) clock time-related changes of gene expression of clock genes and selected functional genes in the adrenal gland and heart. We treated newborn lambs with a daily oral dose of melatonin (0.25 mg/kg) from birth to 5 days of age, recreating a high-amplitude melatonin rhythm. This treatment suppressed clock time-related changes of plasma adrenocorticotropic hormone, cortisol, clock gene expression, and functional genes in the newborn adrenal gland. In the heart, it decreased heart/body weight ratio, increased expression of Anp and Bnp, and resulted in different heart gene expression from control newborns. The interference of this postnatal melatonin treatment with the normal postnatal pattern of adrenocortical function and heart development support a physiological role for the window of flat postnatal melatonin levels during the neonatal transition.
Collapse
Affiliation(s)
- Maria Seron-Ferre
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Universidad Austral de Chile, Valdivia 7500922, Chile
| | - Francisco J Valenzuela
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Sebastian Castillo-Galan
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Auristela Rojas
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Natalia Mendez
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Universidad Austral de Chile, Valdivia 7500922, Chile
| | - Henry Reynolds
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Guillermo J Valenzuela
- Department of Women's Health, Arrowhead Regional Medical Center, San Bernardino, California 92324
| | - Anibal J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
- International Center for Andean Studies, Universidad de Chile, Santiago 16038, Chile
| |
Collapse
|
28
|
Peripheral Skin Temperature and Circadian Biological Clock in Shift Nurses after a Day off. Int J Mol Sci 2016; 17:ijms17050623. [PMID: 27128899 PMCID: PMC4881449 DOI: 10.3390/ijms17050623] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 02/05/2023] Open
Abstract
The circadian biological clock is essentially based on the light/dark cycle. Some people working with shift schedules cannot adjust their sleep/wake cycle to the light/dark cycle, and this may result in alterations of the circadian biological clock. This study explored the circadian biological clock of shift and daytime nurses using non-invasive methods. Peripheral skin temperature, cortisol and melatonin levels in saliva, and Per2 expression in pubic hair follicle cells were investigated for 24 h after a day off. Significant differences were observed in peripheral skin temperature and cortisol levels between shift and daytime nurses. No differences in melatonin levels were obtained. Per2 maximum values were significantly different between the two groups. Shift nurses exhibited lower circadian variations compared to daytime nurses, and this may indicate an adjustment of the circadian biological clock to continuous shift schedules. Non-invasive procedures, such as peripheral skin temperature measurement, determination of cortisol and melatonin in saliva, and analysis of clock genes in hair follicle cells, may be effective approaches to extensively study the circadian clock in shift workers.
Collapse
|
29
|
McMillan AC, White MD. Induction of thermogenesis in brown and beige adipose tissues: molecular markers, mild cold exposure and novel therapies. Curr Opin Endocrinol Diabetes Obes 2015; 22:347-52. [PMID: 26313896 DOI: 10.1097/med.0000000000000191] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The purpose of this short review paper is to summarize recent developments in the understanding of the activation, growth and function of brown adipose tissue (BAT). RECENT FINDINGS Transcriptional markers for increased BAT activity and differentiation of white adipocytes to 'beige' or 'brite' adipocytes include amongst others peroxisome proliferator-activated receptor γ, cytosine-enhancer-binding protein, positive regulatory domain 16 and bone morphogenetic proteins. These markers induce uncoupling protein 1 expression in brown and 'beige' or 'brite' adipocytes which allows energy from macronutrients to be expended as heat. Acute and repeated mild cold exposures of 17-19 °C in adult humans increase BAT volume and activity and this is a novel method for increasing their energy expenditure. Emerging evidence suggests that irisin and melatonin hormones may be involved in BAT activation. Additionally, brown adipocyte stem cell therapy transplantation is a means to stimulate this increased thermogenesis from brown and 'beige' or 'brite' adipocytes. SUMMARY Markers for increased BAT activation and for white adipocyte differentiation into beige/brite adipocytes have been identified, and these lead to an uncoupling protein 1-mediated increase in metabolic rate. Mild cold exposure and brown adipocyte stem cell transplantation are two potential strategies for inducing activation and growth of BAT for the treatment of human obesity.
Collapse
Affiliation(s)
- Andrew C McMillan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|
30
|
Thakor AS, Allison BJ, Niu Y, Botting KJ, Serón-Ferré M, Herrera EA, Giussani DA. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia. J Pineal Res 2015; 59:80-90. [PMID: 25908097 PMCID: PMC4528231 DOI: 10.1111/jpi.12242] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022]
Abstract
Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability.
Collapse
Affiliation(s)
- Avnesh S Thakor
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Beth J Allison
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Kimberley J Botting
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Maria Serón-Ferré
- Facultad de Medicina, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Facultad de Medicina, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Dino A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Johnston JD, Skene DJ. 60 YEARS OF NEUROENDOCRINOLOGY: Regulation of mammalian neuroendocrine physiology and rhythms by melatonin. J Endocrinol 2015; 226:T187-98. [PMID: 26101375 DOI: 10.1530/joe-15-0119] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2015] [Indexed: 12/15/2022]
Abstract
The isolation of melatonin was first reported in 1958. Since the demonstration that pineal melatonin synthesis reflects both daily and seasonal time, melatonin has become a key element of chronobiology research. In mammals, pineal melatonin is essential for transducing day-length information into seasonal physiological responses. Due to its lipophilic nature, melatonin is able to cross the placenta and is believed to regulate multiple aspects of perinatal physiology. The endogenous daily melatonin rhythm is also likely to play a role in the maintenance of synchrony between circadian clocks throughout the adult body. Pharmacological doses of melatonin are effective in resetting circadian rhythms if taken at an appropriate time of day, and can acutely regulate factors such as body temperature and alertness, especially when taken during the day. Despite the extensive literature on melatonin physiology, some key questions remain unanswered. In particular, the amplitude of melatonin rhythms has been recently associated with diseases such as type 2 diabetes mellitus but understanding of the physiological significance of melatonin rhythm amplitude remains poorly understood.
Collapse
Affiliation(s)
- Jonathan D Johnston
- Faculty of Health and Medical SciencesUniversity of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Debra J Skene
- Faculty of Health and Medical SciencesUniversity of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|