1
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
2
|
Athonvarangkul D, Wysolmerski JJ. Crosstalk within a brain-breast-bone axis regulates mineral and skeletal metabolism during lactation. Front Physiol 2023; 14:1121579. [PMID: 36875035 PMCID: PMC9979219 DOI: 10.3389/fphys.2023.1121579] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
To support the increased calcium demands for milk production during lactation, a dramatic and reversible physiological response occurs to alter bone and mineral metabolism. This coordinated process involves a brain-breast-bone axis that integrates hormonal signals that allow for adequate calcium delivery to milk yet also protects the maternal skeletal from excessive bone loss or decreases in bone quality or function. Here, we review the current knowledge on the crosstalk between the hypothalamus, mammary gland, and skeleton during lactation. We discuss the rare entity of pregnancy and lactation associated osteoporosis and consider how the physiology of bone turnover in lactation may impact the pathophysiology of postmenopausal osteoporosis. Further understanding of the regulators of bone loss during lactation, particularly in humans, may provide insights into new therapies for osteoporosis and other diseases of excess bone loss.
Collapse
Affiliation(s)
- Diana Athonvarangkul
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
3
|
Audunsdottir K, Quintana DS. Oxytocin's dynamic role across the lifespan. AGING BRAIN 2022; 2:100028. [PMID: 36908876 PMCID: PMC9997153 DOI: 10.1016/j.nbas.2021.100028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/08/2023] Open
Abstract
Older adults have been neglected in biobehavioral oxytocin research. Emerging research indicates that oxytocin signaling activity fluctuates over the lifespan, which suggests that results from studies investigating youth and young adults cannot be easily generalized to older adults. The recruitment of a wider age range of research participants using a variety of research tools is required to uncover the role of the oxytocin signaling system over the lifespan and may reveal novel treatment target candidates in older adults, beyond social cognition and behavior.
Collapse
Affiliation(s)
- Kristin Audunsdottir
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Daniel S. Quintana
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Ferrero S, Amri EZ, Roux CH. Relationship between Oxytocin and Osteoarthritis: Hope or Despair? Int J Mol Sci 2021; 22:ijms222111784. [PMID: 34769215 PMCID: PMC8584067 DOI: 10.3390/ijms222111784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Oxytocin (OT) is involved in breastfeeding and childbirth and appears to play a role in regulating the bone matrix. OT is synthesized in the supraoptic and paraventricular nuclei of the hypothalamus and is released in response to numerous stimuli. It also appears to be produced by osteoblasts in the bone marrow, acting as a paracrine–autocrine regulator of bone formation. Osteoarthritis (OA) is a disease of the whole joint. Different tissues involved in OA express OT receptors (OTRs), such as chondrocytes and osteoblasts. This hormone, which levels are reduced in patients with OA, appears to have a stimulatory effect on chondrogenesis. OT involvement in bone biology could occur at both the osteoblast and chondrocyte levels. The relationships between metabolic syndrome, body weight, and OA are well documented, and the possible effects of OT on different parameters of metabolic syndrome, such as diabetes and body weight, are important. In addition, the effects of OT on adipokines and inflammation are also discussed, especially since recent data have shown that low-grade inflammation is also associated with OA. Furthermore, OT also appears to mediate endogenous analgesia in animal and human studies. These observations provide support for the possible interest of OT in OA and its potential therapeutic treatment.
Collapse
Affiliation(s)
- Stephanie Ferrero
- Rheumatology Department, Hospital Pasteur 2 CHU, 06000 Nice, France;
| | - Ez-Zoubir Amri
- Inserm, CNRS, iBV, Université Côte d’Azur, 06000 Nice, France;
| | - Christian Hubert Roux
- Rheumatology Department, Hospital Pasteur 2 CHU, 06000 Nice, France;
- Inserm, CNRS, iBV, Université Côte d’Azur, 06000 Nice, France;
- Correspondence:
| |
Collapse
|
5
|
Chong A, Tolomeo S, Xiong Y, Angeles D, Cheung M, Becker B, Lai PS, Lei Z, Malavasi F, Tang Q, Chew SH, Ebstein RP. Blending oxytocin and dopamine with everyday creativity. Sci Rep 2021; 11:16185. [PMID: 34376746 PMCID: PMC8355306 DOI: 10.1038/s41598-021-95724-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
Converging evidence suggests that oxytocin (OT) is associated with creative thinking (CT) and that release of OT depends on ADP ribosyl-cyclases (CD38 and CD157). Neural mechanisms of CT and OT show a strong association with dopaminergic (DA) pathways, yet the link between CT and CD38, CD157, dopamine receptor D2 (DRD2) and catechol-O-methyltransferase (COMT) peripheral gene expression remain inconclusive, thus limiting our understanding of the neurobiology of CT. To address this issue, two principal domains of CT, divergent thinking (AUT), were assessed. In men, both AUT is associated with gene expression of CD38, CD157, and their interaction CD38 × CD157. There were no significant associations for DA expression (DRD2, COMT, DRD2 × COMT) on both CT measures. However, analysis of the interactions of OT and DA systems reveal significant interactions for AUT in men. The full model explained a sizable 39% of the variance in females for the total CT score. The current findings suggest that OT and DA gene expression contributed significantly to cognition and CT phenotype. This provides the first empirical foundation of a more refined understanding of the molecular landscape of CT.
Collapse
Affiliation(s)
- Anne Chong
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Serenella Tolomeo
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Yue Xiong
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Dario Angeles
- Laboratory of Human Genetics, Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Mike Cheung
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Benjamin Becker
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of the Chengdu Brain Science Institute, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Poh San Lai
- Laboratory of Human Genetics, Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Zhen Lei
- CCBEF (China Center for Behavior Economics and Finance), Southwestern University of Finance and Economics (SWUFE), Chengdu, China
| | - Fabio Malavasi
- Department of Medical Science, University of Torino, Turin, Italy
- Fondazione Ricerca Molinette, Turin, Italy
| | - Qianzi Tang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, China
| | - Soo Hong Chew
- CCBEF (China Center for Behavior Economics and Finance), Southwestern University of Finance and Economics (SWUFE), Chengdu, China
- Department of Economics, National University of Singapore, Singapore, Singapore
| | - Richard P Ebstein
- CCBEF (China Center for Behavior Economics and Finance), Southwestern University of Finance and Economics (SWUFE), Chengdu, China.
- College of Economics and Management, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
6
|
Oxytocin and Bone: Review and Perspectives. Int J Mol Sci 2021; 22:ijms22168551. [PMID: 34445256 PMCID: PMC8395200 DOI: 10.3390/ijms22168551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Recent data demonstrate the anabolic effect of oxytocin on bone. Bone cells express oxytocin receptors. Oxytocin promotes osteoblasts differentiation and function, leading to an increased bone formation with no effect on bone resorption and an improvement of bone microarchitecture. Oxytocin is synthetized by osteoblasts, and this synthesis is stimulated by estrogen. Animal studies demonstrate a direct action of oxytocin on bone, as the systemic administration of oxytocin prevents and reverses the bone loss induced by estrogen deficiency. Although oxytocin is involved in bone formation in both sexes during development, oxytocin treatment has no effect on male osteoporosis, underlining the importance of estrogen that amplifies its local autocrine and paracrine secretion. There are few human data showing a decrease in the oxytocin serum level in anorexia nervosa independently of estrogen and in amenorrheic women associated with impaired bone microarchitecture; in post-menopausal women a higher oxytocin serum level is associated with higher bone density, but not in osteoporotic men. Oxytocin displays many effects that may be beneficial in the management of osteoporosis, cardiovascular diseases, cognitive disorders, breast cancer, diabetes and body fat gain, all age-related diseases affecting elderly women, opening exciting therapeutic perspectives, although the issue is to find a single route, dosage and schedule able to reach all these targets.
Collapse
|
7
|
Kato Y, Yokose S. Oxytocin Facilitates Dentinogenesis of Rat Dental Pulp Cells. J Endod 2021; 47:592-599. [PMID: 33422572 DOI: 10.1016/j.joen.2020.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Oxytocin (OT) is a neurohypophysial hormone that plays a role in lactation and parturition and exerts diverse biological actions via the OT receptor. Recently, several studies have reported that OT stimulates bone formation by osteoblasts in osteoporosis. We focused on OT and hypothesized that OT can stimulate the differentiation of odontoblasts as well as osteoblasts. The aim of this study was to verify whether OT is an essential factor in dentinogenesis; we examined the effects of OT on dentinogenesis using a long-term culture system of rat dental pulp cells. METHODS Using a culture system of rat dental pulp cells with Otr knocked out by CRISPR-Cas9 genome editing, we examined the effects of OT on odontoblastlike cell differentiation as reflected by dentin formation. RESULTS We confirmed that OT stimulated mineralized nodule formation and the expression of both dentin sialoprotein and bone Gla protein messenger RNAs (mRNAs) in the culture system. Interestingly, the cultured cells treated with OT also exhibited an increase of both Wnt10a and Lef-1 mRNA. The Otr knockout cells showed inhibition of nodule formation and mRNA expression, and these phenomena remained despite OT treatment. These results indicate the following: OT regulates odontoblastlike cell differentiation via the OT receptor, it stimulates dentin formation, and the Wnt canonical pathway is closely related to these effects. CONCLUSIONS The present results suggest that OT can promote odontoblastlike cell differentiation, resulting in increased dentin formation, and that OT could be an important factor for dentinogenesis.
Collapse
Affiliation(s)
- Yuka Kato
- Division of Endodontics and Operative Dentistry, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry, Sakado, Saitama, Japan.
| | - Satoshi Yokose
- Division of Endodontics and Operative Dentistry, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry, Sakado, Saitama, Japan
| |
Collapse
|
8
|
Feng X, Xia K, Ke Q, Deng R, Zhuang J, Wan Z, Luo P, Wang F, Zang Z, Sun X, Xiang AP, Tu X, Gao Y, Deng C. Transplantation of encapsulated human Leydig-like cells: A novel option for the treatment of testosterone deficiency. Mol Cell Endocrinol 2021; 519:111039. [PMID: 32980418 DOI: 10.1016/j.mce.2020.111039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Previous studies have demonstrated that the transplantation of alginate-poly-ʟ-lysine-alginate (APA)-encapsulated rat Leydig cells (LCs) provides a promising approach for treating testosterone deficiency (TD). Nevertheless, LCs have a limited capacity to proliferate, limiting the efficacy of LC transplantation therapy. Here, we established an efficient differentiation system to obtain functional Leydig-like cells (LLCs) from human stem Leydig cells (hSLCs). Then we injected APA-encapsulated LLCs into the abdominal cavities of castrated mice without an immunosuppressor. The APA-encapsulated cells survived and partially restored testosterone production for 90 days in vivo. More importantly, the transplantation of encapsulated LLCs ameliorated the symptoms of TD, such as fat accumulation, muscle atrophy and adipocyte accumulation in bone marrow. Overall, these results suggest that the transplantation of encapsulated LLCs is a promising new method for testosterone supplementation with potential clinical applications in TD.
Collapse
Affiliation(s)
- Xin Feng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Kai Xia
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Rongda Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; KingMed Center for Clinical Laboratory CO., LTD, Guangzhou, China
| | - Jintao Zhuang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi Wan
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Luo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fulin Wang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Zang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang'an Tu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Mohan S, McCloskey AG, McKillop AM, Flatt PR, Irwin N, Moffett RC. Development and characterisation of novel, enzymatically stable oxytocin analogues with beneficial antidiabetic effects in high fat fed mice. Biochim Biophys Acta Gen Subj 2020; 1865:129811. [PMID: 33309687 DOI: 10.1016/j.bbagen.2020.129811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is growing evidence to support beneficial effects of the hypothalamic synthesised hormone, oxytocin, on metabolism. However, the biological half-life of oxytocin is short and receptor activation profile unspecific. METHODS We have characterised peptide-based oxytocin analogues with structural modifications aimed at improving half-life and receptor specificity. Following extensive in vitro and in vivo characterisation, antidiabetic efficacy of lead peptides was examined in high fat fed (HFF) mice. RESULTS Following assessment of stability against enzymatic degradation, insulin secretory activity, receptor activation profile and in vivo bioactivity, analogues 2 N (Ac-C ˂YIQNC >PLG-NH2) and D7R ((d-C)YIQNCYLG-NH2) were selected as lead peptides. Twice daily injection of either peptide for 22 days reduced body weight, energy intake, plasma glucose and insulin and pancreatic glucagon content in HFF mice. In addition, both peptides reduced total- and LDL-cholesterol, with concomitant elevations of HDL-cholesterol, and D7R also decreased triglyceride levels. The two oxytocin analogues improved glucose tolerance and insulin responses to intraperitoneal, and particularly oral, glucose challenge on day 22. Both oxytocin analogues enhanced insulin sensitivity, reduced HOMA-IR and increased bone mineral density. In terms of pancreatic islet histology, D7R reversed high fat feeding induced elevations of islet and beta cell areas, which was associated with reductions in beta cell apoptosis. Islet insulin secretory responsiveness was improved by 2 N, and especially D7R, treatment. CONCLUSION Novel, enzymatically stable oxytocin analogues exert beneficial antidiabetic effects in HFF mice. GENERAL SIGNIFICANCE These observations emphasise the, yet untapped, therapeutic potential of long-acting oxytocin-based agents for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Shruti Mohan
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Andrew G McCloskey
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Aine M McKillop
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK.
| | | |
Collapse
|
10
|
Moghazy H, Abdeen Mahmoud A, Elbadre H, Abdel Aziz HO. Protective Effect of Oxytocin Against Bone Loss in a Female Rat Model of Osteoporosis. Rep Biochem Mol Biol 2020; 9:147-155. [PMID: 33178863 DOI: 10.29252/rbmb.9.2.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Introduction: Oxytocin (OT) has been proposed to assist in the regulation of bone remodeling and to exert an antiosteoporotic effect. We evaluated the possible protective effect of OT against bone degeneration in ovariectomized (OVX) rats. Methods The study was performed on three groups of adult female rats; group I was subjected to sham operation, group II was subjected to ovariectomy, and group III was subjected to ovariectomy and intraperitoneal injection with OT for eight successive weeks. At the end of the study, bone mass density (BMD) was measured; then the rats were euthanized and their blood and bone tissues were examined. Results The group II rats had significantly less BMD and greater serum bone-specific alkaline phosphatase (bALP), osteocalcin (OC), and tartrate-resistant acid phosphatase (TRAP) levels than the group I rats. Furthermore, group II rats had fewer osteocytes and osteoblasts, and less OPG/RANKL mRNA expression than group I rats. The groups I and III and rats showed no significant differences in BMD, bALP, OC, TRAP, OPG/RANKL mRNA expression, or osteocyte and osteoblast numbers. Conclusion Oxytocin may have an antiosteoporotic effect in OVX rats.
Collapse
Affiliation(s)
- Hoda Moghazy
- Medical Physiology Department, Faculty of Medicine, Sohag University, Egypt
| | - Aida Abdeen Mahmoud
- Medical Biochemistry Department, Faculty of Medicine, Sohag University, Egypt
| | - Hala Elbadre
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Egypt
| | | |
Collapse
|
11
|
Roux CH, Pisani DF, Gillet P, Fontas E, Yahia HB, Djedaini M, Ambrosetti D, Michiels JF, Panaia-Ferrari P, Breuil V, Pinzano A, Amri EZ. Oxytocin Controls Chondrogenesis and Correlates with Osteoarthritis. Int J Mol Sci 2020; 21:ijms21113966. [PMID: 32486506 PMCID: PMC7312425 DOI: 10.3390/ijms21113966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
This study investigated the relationship of oxytocin (OT) to chondrogenesis and osteoarthritis (OA). Human bone marrow and multipotent adipose-derived stem cells were cultured in vitro in the absence or presence of OT and assayed for mRNA transcript expression along with histological and immunohistochemical analyses. To study the effects of OT in OA in vivo, a rat model and a human cohort of 63 men and 19 women with hand OA and healthy controls, respectively, were used. The baseline circulating OT, interleukin-6, leptin, and oestradiol levels were measured, and hand X-ray examinations were performed for each subject. OT induced increased aggrecan, collagen (Col) X, and cartilage oligomeric matrix protein mRNA transcript levels in vitro, and the immunolabelling experiments revealed a normalization of Sox9 and Col II protein expression levels. No histological differences in lesion severity were observed between rat OA groups. In the clinical study, a multivariate analysis adjusted for age, body mass index, and leptin levels revealed a significant association between OA and lower levels of OT (odds ratio = 0.77; p = 0.012). Serum OT levels are reduced in patients with hand OA, and OT showed a stimulatory effect on chondrogenesis. Thus, OT may contribute to the pathophysiology of OA.
Collapse
Affiliation(s)
- Christian H. Roux
- Université Côte d’Azur, French National Centre for Scientific Research (CNRS), Inserm, iBV, 06107 Nice, France; (H.B.Y.); (M.D.)
- Department of Rheumatology, Nice University Hospital, Pasteur Hospital, 06003 Nice, France;
- Correspondence: (C.H.R.); (E.-Z.A.); Tel.: +33-492-03-54-99 (C.H.R.); +33-493-37-7082 (E.-Z.A.)
| | | | - Pierre Gillet
- UMR 7365 French National Centre for Scientific Research (CNRS)–Université de Lorraine, ‘Ingénierie Moléculaire et Physiopathologie Articulaire’ (IMoPA), F54505 Vandoeuvre-lès-Nancy, France; (P.G.); (A.P.)
| | - Eric Fontas
- Department of Clinical Research, Nice University Hospital, Cimiez Hospital, F-06003 Nice, France;
| | - Hédi Ben Yahia
- Université Côte d’Azur, French National Centre for Scientific Research (CNRS), Inserm, iBV, 06107 Nice, France; (H.B.Y.); (M.D.)
| | - Mansour Djedaini
- Université Côte d’Azur, French National Centre for Scientific Research (CNRS), Inserm, iBV, 06107 Nice, France; (H.B.Y.); (M.D.)
| | - Damien Ambrosetti
- Université Côte d’Azur, UFR Médecine, F-06107 Nice, France; (D.A.); (J.-F.M.)
- Anatomopathology Service, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, F-06003 Nice, France
| | - Jean-François Michiels
- Université Côte d’Azur, UFR Médecine, F-06107 Nice, France; (D.A.); (J.-F.M.)
- Anatomopathology Service, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, F-06003 Nice, France
| | | | - Véronique Breuil
- Department of Rheumatology, Nice University Hospital, Pasteur Hospital, 06003 Nice, France;
| | - Astrid Pinzano
- UMR 7365 French National Centre for Scientific Research (CNRS)–Université de Lorraine, ‘Ingénierie Moléculaire et Physiopathologie Articulaire’ (IMoPA), F54505 Vandoeuvre-lès-Nancy, France; (P.G.); (A.P.)
| | - Ez-Zoubir Amri
- Université Côte d’Azur, French National Centre for Scientific Research (CNRS), Inserm, iBV, 06107 Nice, France; (H.B.Y.); (M.D.)
- Correspondence: (C.H.R.); (E.-Z.A.); Tel.: +33-492-03-54-99 (C.H.R.); +33-493-37-7082 (E.-Z.A.)
| |
Collapse
|
12
|
McCormack SE, Blevins JE, Lawson EA. Metabolic Effects of Oxytocin. Endocr Rev 2020; 41:5658523. [PMID: 31803919 PMCID: PMC7012298 DOI: 10.1210/endrev/bnz012] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
There is growing evidence that oxytocin (OXT), a hypothalamic hormone well recognized for its effects in inducing parturition and lactation, has important metabolic effects in both sexes. The purpose of this review is to summarize the physiologic effects of OXT on metabolism and to explore its therapeutic potential for metabolic disorders. In model systems, OXT promotes weight loss by decreasing energy intake. Pair-feeding studies suggest that OXT-induced weight loss may also be partly due to increased energy expenditure and/or lipolysis. In humans, OXT appears to modulate both homeostatic and reward-driven food intake, although the observed response depends on nutrient milieu (eg, obese vs. nonobese), clinical characteristics (eg, sex), and experimental paradigm. In animal models, OXT is anabolic to muscle and bone, which is consistent with OXT-induced weight loss occurring primarily via fat loss. In some human observational studies, circulating OXT concentrations are also positively associated with lean mass and bone mineral density. The impact of exogenous OXT on human obesity is the focus of ongoing investigation. Future randomized, placebo-controlled clinical trials in humans should include rigorous, standardized, and detailed assessments of adherence, adverse effects, pharmacokinetics/pharmacodynamics, and efficacy in the diverse populations that may benefit from OXT, in particular those in whom hypothalamic OXT signaling may be abnormal or impaired (eg, individuals with Sim1 deficiency, Prader-Willi syndrome, or craniopharyngioma). Future studies will also have the opportunity to investigate the characteristics of new OXT mimetic peptides and the obligation to consider long-term effects, especially when OXT is given to children and adolescents. (Endocrine Reviews XX: XX - XX, 2020).
Collapse
Affiliation(s)
- Shana E McCormack
- Neuroendocrine Center, Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington.,Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Improvement in viability and mineralization of osteoporotic bone marrow mesenchymal stem cell through combined application of photobiomodulation therapy and oxytocin. Lasers Med Sci 2019; 35:557-566. [DOI: 10.1007/s10103-019-02848-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
|
14
|
Cho SY, Kim AY, Kim J, Choi DH, Son ED, Shin DW. Oxytocin alleviates cellular senescence through oxytocin receptor-mediated extracellular signal-regulated kinase/Nrf2 signalling. Br J Dermatol 2019; 181:1216-1225. [PMID: 30801661 DOI: 10.1111/bjd.17824] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Oxytocin (OT) is a neuropeptide hormone that has many beneficial biological effects, including protection against age-related disorders. However, less is known about its role in intrinsic skin ageing, which is accelerated by an increase in senescent cell fraction in skin tissue. OBJECTIVES To investigate the novel function and the underlying mechanism of OT in preventing cellular senescence in normal human dermal fibroblasts (NHDFs) isolated from the skin of female donors of different ages. METHODS NHDFs from young and old donors were exposed to conditioned medium from senescent or control NHDFs in the presence or absence of 10 nmol L-1 OT for 3 days, and were continuously subcultured for 12 days. Subsequently, various age-associated signs of senescence including decreased proliferation rate, elevated p16 and p21 levels, and positivity for senescence-associated β-galactosidase expression were examined. RESULTS We found that OT suppressed senescence-associated secretory phenotype-induced senescence in NHDFs, and its effect depended on the age of the donor's NHDFs. The inhibitory effects of OT required signalling by OT receptor-mediated extracellular signal-regulated kinase/Nrf2 (nuclear factor erythroid 2-related factor 2). The age-dependent antisenescence effects of OT are closely related to hypermethylation of the OT receptor gene (OXTR). CONCLUSIONS Our findings bring to light the role of OT in the prevention of skin ageing, which might allow development of new clinical strategies. What's already known about this topic? Senescent keratinocytes and fibroblasts accumulate with age in the skin and contribute to the loss of skin function and integrity during ageing. Senescent cells secrete senescence-associated secretory phenotype (SASP), which includes the release of proinflammatory cytokines such as interleukin (IL)-6 and IL-1, chemokines, extracellular matrix-remodelling proteases and growth factors. The neuropeptide oxytocin (OT) and its receptor (OXTR) have protective effects against various age-related disorders. What does this study add? OT suppressed SASP-induced cellular senescence in normal human dermal fibroblasts (NHDFs), depending on the age of the NHDFs' donor. The inhibitory effects of OT on cellular senescence required OXTR-mediated phosphorylation of extracellular signal-regulated kinase, which enhanced nuclear localization of Nrf2, a vital factor in the antioxidant defence system. The age-specific antisenescent effects of OT were closely related to hypermethylation of OXTR. What is the translational message? Our results suggest that OT and OXTR agonists could be clinically promising agents for the improvement of age-associated skin ageing, especially in women.
Collapse
Affiliation(s)
- S-Y Cho
- R&D Unit, Amorepacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - A Y Kim
- R&D Unit, Amorepacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - J Kim
- R&D Unit, Amorepacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - D-H Choi
- Bio Center, Gyeonggido Business & Science Accelerator, Suwon, 16229, Republic of Korea
| | - E D Son
- R&D Unit, Amorepacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - D W Shin
- College of Biomedical & Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| |
Collapse
|
15
|
Idelevich A, Baron R. Brain to bone: What is the contribution of the brain to skeletal homeostasis? Bone 2018; 115:31-42. [PMID: 29777919 PMCID: PMC6110971 DOI: 10.1016/j.bone.2018.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
The brain, which governs most, if not all, physiological functions in the body, from the complexities of cognition, learning and memory, to the regulation of basal body temperature, heart rate and breathing, has long been known to affect skeletal health. In particular, the hypothalamus - located at the base of the brain in close proximity to the medial eminence, where the blood-brain-barrier is not as tight as in other regions of the brain but rather "leaky", due to fenestrated capillaries - is exposed to a variety of circulating body cues, such as nutrients (glucose, fatty acids, amino acids), and hormones (insulin, glucagon, leptin, adiponectin) [1-3].Information collected from the body via these peripheral cues is integrated by hypothalamic sensing neurons and glial cells [4-7], which express receptors for these nutrients and hormones, transforming these cues into physiological outputs. Interestingly, many of the same molecules, including leptin, adiponectin and insulin, regulate both energy and skeletal homeostasis. Moreover, they act on a common set of hypothalamic nuclei and their residing neurons, activating endocrine and neuronal systems, which ultimately fine-tune the body to new physiological states. This review will focus exclusively on the brain-to-bone pathway, highlighting the most important anatomical sites within the brain, which are known to affect bone, but not covering the input pathways and molecules informing the brain of the energy and bone metabolic status, covered elsewhere [8-10]. The discussion in each section will present side by side the metabolic and bone-related functions of hypothalamic nuclei, in an attempt to answer some of the long-standing questions of whether energy is affected by bone remodeling and homeostasis and vice versa.
Collapse
Affiliation(s)
- Anna Idelevich
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Zaidi M, New MI, Blair HC, Zallone A, Baliram R, Davies TF, Cardozo C, Iqbal J, Sun L, Rosen CJ, Yuen T. Actions of pituitary hormones beyond traditional targets. J Endocrinol 2018; 237:R83-R98. [PMID: 29555849 PMCID: PMC5924585 DOI: 10.1530/joe-17-0680] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 01/14/2023]
Abstract
Studies over the past decade have challenged the long-held belief that pituitary hormones have singular functions in regulating specific target tissues, including master hormone secretion. Our discovery of the action of thyroid-stimulating hormone (TSH) on bone provided the first glimpse into the non-traditional functions of pituitary hormones. Here we discuss evolving experimental and clinical evidence that growth hormone (GH), follicle-stimulating hormone (FSH), adrenocorticotrophic hormone (ACTH), prolactin, oxytocin and arginine vasopressin (AVP) regulate bone and other target tissues, such as fat. Notably, genetic and pharmacologic FSH suppression increases bone mass and reduces body fat, laying the framework for targeting the FSH axis for treating obesity and osteoporosis simultaneously with a single agent. Certain 'pituitary' hormones, such as TSH and oxytocin, are also expressed in bone cells, providing local paracrine and autocrine networks for the regulation of bone mass. Overall, the continuing identification of new roles for pituitary hormones in biology provides an entirely new layer of physiologic circuitry, while unmasking new therapeutic targets.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: Mone Zaidi, MD, PhD, The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1055, New York, NY 10029;
| | - Maria I. New
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harry C. Blair
- The Pittsburgh VA Medical Center and Departments of Pathology and of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alberta Zallone
- Department of Histology, University of Bari, 70121 Bari, Italy
| | - Ramkumarie Baliram
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Terry F. Davies
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher Cardozo
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James Iqbal
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Sun
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
17
|
Fallahnezhad S, Piryaei A, Darbandi H, Amini A, Ghoreishi SK, Jalalifirouzkouhi R, Bayat M. Effect of low‐level laser therapy and oxytocin on osteoporotic bone marrow‐derived mesenchymal stem cells. J Cell Biochem 2017; 119:983-997. [DOI: 10.1002/jcb.26265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Somaye Fallahnezhad
- Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Abbas Piryaei
- Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hasan Darbandi
- Department of ImmunologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Abdollah Amini
- Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | | | | - Mohammad Bayat
- Cellular and Molecular Biology Research Center, and Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
18
|
Xu MH, Li X, Yuan FL. Is it necessary to investigate rapamycin-modulated autophagy during the development of experimental osteoporosis in female rat? Osteoporos Int 2016; 27:3665-3666. [PMID: 27678282 DOI: 10.1007/s00198-016-3734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/03/2016] [Indexed: 10/20/2022]
Affiliation(s)
- M-H Xu
- Department of Orthopaedics and Central Laboratory, Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China
| | - X Li
- Department of Orthopaedics and Central Laboratory, Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China
| | - F-L Yuan
- Department of Orthopaedics and Central Laboratory, Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China.
| |
Collapse
|
19
|
A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun 2016; 7:13363. [PMID: 27874859 PMCID: PMC5121415 DOI: 10.1038/ncomms13363] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
Heterochronic parabiosis rejuvenates the performance of old tissue stem cells at some expense to the young, but whether this is through shared circulation or shared organs is unclear. Here we show that heterochronic blood exchange between young and old mice without sharing other organs, affects tissues within a few days, and leads to different outcomes than heterochronic parabiosis. Investigating muscle, liver and brain hippocampus, in the presence or absence of muscle injury, we find that, in many cases, the inhibitory effects of old blood are more pronounced than the benefits of young, and that peripheral tissue injury compounds the negative effects. We also explore mechanistic explanations, including the role of B2M and TGF-beta. We conclude that, compared with heterochronic parabiosis, heterochronic blood exchange in small animals is less invasive and enables better-controlled studies with more immediate translation to therapies for humans. Joining the circulatory system of an old with a young animal has been shown to rejuvenate old tissues. Here the authors describe a comparatively simple blood infusion system that allows for the controlled exchange of blood between two animals, and study the effects of a single exchange on various tissues.
Collapse
|
20
|
Śliwiński L, Cegieła U, Pytlik M, Folwarczna J, Janas A, Zbrojkiewicz M. Effects of fenoterol on the skeletal system depend on the androgen level. Pharmacol Rep 2016; 69:260-267. [PMID: 28126642 DOI: 10.1016/j.pharep.2016.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The role of sympathetic nervous system in the osseous tissue remodeling is not clear enough. METHODS The effects of fenoterol, a selective β2-adrenomimetic drug, on the skeletal system of normal and androgen deficient (orchidectomized) rats were studied in vivo. Osteoclastogenesis and mRNA expression in osteoblasts were investigated in vitro in mouse cell cultures. RESULTS Fenoterol administered to animals with physiological androgen level unfavorably affected the skeletal system, damaging the bone microarchitecture. Androgen deficiency induced osteoporotic changes, and fenoterol protected the osseous tissue from consequences of androgen deficiency. The results of in vitro studies correlated with the in vivo observations. A significantly increased number of osteoclasts in bone marrow cell cultures to which testosterone and fenoterol were added simultaneously was demonstrated. In cultures without the addition of testosterone, fenoterol significantly inhibited osteoclastogenesis in comparison with control cultures. CONCLUSIONS The results indicate the favorable action of fenoterol in conditions of testosterone deficiency, and its destructive influence upon the skeleton in the presence of androgens. The results confirm the key role of sympathetic nervous system in the regulation of bone remodeling.
Collapse
Affiliation(s)
- Leszek Śliwiński
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland.
| | - Urszula Cegieła
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Maria Pytlik
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Joanna Folwarczna
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Janas
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Zbrojkiewicz
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
21
|
Abstract
This review provides balanced analysis of the advances in systemic regulation of young and old tissue stem cells and suggests strategies for accelerating development of therapies to broadly combat age-related tissue degenerative pathologies. Many highlighted recent reports on systemic tissue rejuvenation combine parabiosis with a “silver bullet” putatively responsible for the positive effects. Attempts to unify these papers reflect the excitement about this experimental approach and add value in reproducing previous work. At the same time, defined molecular approaches, which are “beyond parabiosis” for the rejuvenation of multiple old organs represent progress toward attenuating or even reversing human tissue aging.
Collapse
|