1
|
Comparative transcriptome analysis of Apis mellifera antennae of workers performing different tasks. Mol Genet Genomics 2017; 293:237-248. [DOI: 10.1007/s00438-017-1382-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023]
|
2
|
Guidi A, Lalli C, Gimmelli R, Nizi E, Andreini M, Gennari N, Saccoccia F, Harper S, Bresciani A, Ruberti G. Discovery by organism based high-throughput screening of new multi-stage compounds affecting Schistosoma mansoni viability, egg formation and production. PLoS Negl Trop Dis 2017; 11:e0005994. [PMID: 28985236 PMCID: PMC5646872 DOI: 10.1371/journal.pntd.0005994] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/18/2017] [Accepted: 09/26/2017] [Indexed: 11/22/2022] Open
Abstract
Schistosomiasis, one of the most prevalent neglected parasitic diseases affecting humans and animals, is caused by the Platyhelminthes of the genus Schistosoma. Schistosomes are the only trematodes to have evolved sexual dimorphism and the constant pairing with a male is essential for the sexual maturation of the female. Pairing is required for the full development of the two major female organs, ovary and vitellarium that are involved in the production of different cell types such as oocytes and vitellocytes, which represent the core elements of the whole egg machinery. Sexually mature females can produce a large number of eggs each day. Due to the importance of egg production for both life cycle and pathogenesis, there is significant interest in the search for new strategies and compounds not only affecting parasite viability but also egg production. Here we use a recently developed high-throughput organism-based approach, based on ATP quantitation in the schistosomula larval stage of Schistosoma mansoni for the screening of a large compound library, and describe a pharmacophore-based drug selection approach and phenotypic analyses to identify novel multi-stage schistosomicidal compounds. Interestingly, worm pairs treated with seven of the eight compounds identified show a phenotype characterized by defects in eggshell assemblage within the ootype and egg formation with degenerated oocytes and vitelline cells engulfment in the uterus and/or oviduct. We describe promising new molecules that not only impair the schistosomula larval stage but also impact juvenile and adult worm viability and egg formation and production in vitro. Schistosomiasis is a neglected disease caused by parasitic flatworms called schistosomes. The disease affects hundreds of millions of people in developing countries in the poorest tropical and subtropical regions of the world and it represents a major public health and socio-economical problem in several countries. In humans, these blood flukes reside in the mesenteric and vesicle venules. They have a life span of many years and produce hundreds of eggs daily, which are able to pass through the gut lumen or the bladder to be finally excreted into the environment for maintaining the life cycle. Part of the eggs can be trapped in host tissues inducing immunologically mediated granulomatous inflammation and fibrosis leading eventually to severe sequelae such as hepatosplenomegaly and even death. Importantly, schistosome infections increase susceptibility to other parasitic, bacterial and viral diseases. To date, essentially a single drug, praziquantel, is available to treat this parasitic disease. Despite its high tolerability and efficacy against adult parasites it has an incomplete efficacy across all stages of the S. mansoni life cycle and it does not prevent reinfection. Moreover the potential risk of drug resistance is an increasing concern. In search of novel schistosomicidal molecules we screened a large compound collection using the schistosomula, larval stage of the parasite. We identified eight novel molecules able to impair viability of schistosomula, juvenile and adult worms and also egg formation and production, two important features required for both disease transmission and progression.
Collapse
Affiliation(s)
- Alessandra Guidi
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | - Cristiana Lalli
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | - Roberto Gimmelli
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | - Emanuela Nizi
- IRBM Science Park SpA Chemistry Department, Pomezia, Italy
| | | | - Nadia Gennari
- IRBM Science Park SpA, Biology Department, Pomezia, Italy
| | - Fulvio Saccoccia
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | - Steven Harper
- IRBM Science Park SpA Chemistry Department, Pomezia, Italy
| | | | - Giovina Ruberti
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
- * E-mail:
| |
Collapse
|
3
|
Role of the venus kinase receptor in the female reproductive physiology of the desert locust, Schistocerca gregaria. Sci Rep 2017; 7:11730. [PMID: 28916758 PMCID: PMC5601475 DOI: 10.1038/s41598-017-11434-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022] Open
Abstract
Venus kinase receptors (VKR) are a subfamily of invertebrate receptor tyrosine kinases, which have only recently been discovered. They contain an intracellular tyrosine kinase domain and an extracellular Venus FlyTrap domain. VKRs have been functionally and pharmacologically characterized in only two invertebrate species, namely the human parasite Schistosoma mansoni and the mosquito Aedes aegypti, where they play a crucial role in oogenesis. Here, we report the characterization of a VKR in the desert locust, Schistocerca gregaria. We performed an in-depth profiling study of the SgVKR transcript levels in different tissues throughout the female adult stage. Using the RNA interference technique, the possible role of SgVKR was investigated. SgVKR knockdown had significant effects on ovarian ecdysteroid levels and on the size of oocytes during the vitellogenic stage. SgVKR is probably involved in the complex cross-talk between several important pathways regulating female reproductive physiology. Contrary to A. aegypti and S. mansoni, we cannot conclude that this receptor is essential for reproduction, since silencing SgVKR did not affect fecundity or fertility. Considering the evolutionary distance between A. aegypti and S. gregaria, as well as the differences in regulation of their female reproductive physiology, this article constitutes a valuable asset in better understanding VKRs.
Collapse
|
4
|
Gelmedin V, Morel M, Hahnel S, Cailliau K, Dissous C, Grevelding CG. Evidence for Integrin - Venus Kinase Receptor 1 Alliance in the Ovary of Schistosoma mansoni Females Controlling Cell Survival. PLoS Pathog 2017; 13:e1006147. [PMID: 28114363 PMCID: PMC5289644 DOI: 10.1371/journal.ppat.1006147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/02/2017] [Accepted: 12/21/2016] [Indexed: 12/21/2022] Open
Abstract
In metazoan integrin signaling is an important process of mediating extracellular and intracellular communication processes. This can be achieved by cooperation of integrins with growth factor receptors (GFRs). Schistosoma mansoni is a helminth parasite inducing schistosomiasis, an infectious disease of worldwide significance for humans and animals. First studies on schistosome integrins revealed their role in reproductive processes, being involved in spermatogenesis and oogenesis. With respect to the roles of eggs for maintaining the parasite´s life cycle and for inducing the pathology of schistosomiasis, elucidating reproductive processes is of high importance. Here we studied the interaction of the integrin receptor Smβ-Int1 with the venus kinase receptor SmVKR1 in S. mansoni. To this end we cloned and characterized SmILK, SmPINCH, and SmNck2, three putative bridging molecules for their role in mediating Smβ-Int1/SmVKR1 cooperation. Phylogenetic analyses showed that these molecules form clusters that are specific for parasitic platyhelminths as it was shown for integrins before. Transcripts of all genes colocalized in the ovary. In Xenopus oocytes germinal vesicle breakdown (GVBD) was only induced if all members were simultaneously expressed. Coimmunoprecipitation results suggest that a Smβ-Int1-SmILK-SmPINCH-SmNck2-SmVKR1 complex can be formed leading to the phosphorylation and activation of SmVKR1. These results indicate that SmVKR1 can be activated in a ligand-independent manner by receptor-complex interaction. RNAi and inhibitor studies to knock-down SmILK as a representative complex member concurrently revealed effects on the extracellular matrix surrounding the ovary and oocyte localization within the ovary, oocyte survival, and egg production. By TUNEL assays, confocal laser scanning microscopy (CLSM), Caspase-3 assay, and transcript profiling of the pro-apoptotic BCL-2 family members BAK/BAX we obtained first evidence for roles of this signaling complex in mediating cell death in immature and primary oocytes. These results suggest that the Smβ-Int1/SmVKR1 signaling complex is important for differentiation and survival in oocytes of paired schistosomes. Parasites of the genus Schistosoma cause schistosomiasis, a life-threatening infectious disease for humans and animals worldwide. Among the remarkable biological features of schistosomes is the differentiation of the female gonads which is controlled by pairing with the male and a prerequisite for egg production. Eggs, however, are not only important for the maintenance of the life-cycle; they also cause the pathological consequences of schistosomiasis. Part of the eggs gets trapped in host tissues such as liver and spleen and trigger inflammatory processes, finally leading to liver cirrhosis. Research activities of the last decade have indicated that different families of cellular and receptor-type kinases but also integrins contribute to the control of mitogenic activity and differentiation the female goands. In this context an unusual class of receptor tyrosine kinases (RTKs) has been identified, the venus kinase receptors (SmVKRs). By biochemical and molecular approaches we demonstrate that SmVKR1 activation can be achieved by cooperation with a signaling complex consisting of the beta integrin receptor Smβ-Int1 and the bridging molecules SmILK, SmPINCH, SmNck2. Besides unravelling a novel way of SmVKR1 activation, we provide evidence that this complex controls the differentiation status of oocytes by regulating cell death-associated processes.
Collapse
Affiliation(s)
- Verena Gelmedin
- Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Marion Morel
- CIIL – Center for Infection and Immunity of Lille Inserm U1019 - CNRS UMR 8204, University Lille, Lille, France
| | - Steffen Hahnel
- Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Katia Cailliau
- UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, University Lille, Lille, France
| | - Colette Dissous
- CIIL – Center for Infection and Immunity of Lille Inserm U1019 - CNRS UMR 8204, University Lille, Lille, France
| | | |
Collapse
|
5
|
Morel M, Vanderstraete M, Cailliau K, Hahnel S, Grevelding CG, Dissous C. SmShb, the SH2-Containing Adaptor Protein B of Schistosoma mansoni Regulates Venus Kinase Receptor Signaling Pathways. PLoS One 2016; 11:e0163283. [PMID: 27636711 PMCID: PMC5026347 DOI: 10.1371/journal.pone.0163283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/05/2016] [Indexed: 12/02/2022] Open
Abstract
Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (RTKs) formed by an extracellular Venus Fly Trap (VFT) ligand binding domain associated via a transmembrane domain with an intracellular tyrosine kinase (TK) domain. Schistosoma mansoni VKRs, SmVKR1 and SmVKR2, are both implicated in reproductive activities of the parasite. In this work, we show that the SH2 domain-containing protein SmShb is a partner of the phosphorylated form of SmVKR1. Expression of these proteins in Xenopus oocytes allowed us to demonstrate that the SH2 domain of SmShb interacts with the phosphotyrosine residue (pY979) located in the juxtamembrane region of SmVKR1. This interaction leads to phosphorylation of SmShb on tyrosines and promotes SmVKR1 signaling towards the JNK pathway. SmShb transcripts are expressed in all parasite stages and they were found in ovary and testes of adult worms, suggesting a possible colocalization of SmShb and SmVKR1 proteins. Silencing of SmShb in adult S. mansoni resulted in an accumulation of mature sperm in testes, indicating a possible role of SmShb in gametogenesis.
Collapse
Affiliation(s)
- Marion Morel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 –UMR 8204—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Mathieu Vanderstraete
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 –UMR 8204—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Steffen Hahnel
- BFS, Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | | | - Colette Dissous
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 –UMR 8204—CIIL—Center for Infection and Immunity of Lille, Lille, France
- * E-mail:
| |
Collapse
|
6
|
Veenstra JA. Similarities between decapod and insect neuropeptidomes. PeerJ 2016; 4:e2043. [PMID: 27257538 PMCID: PMC4888303 DOI: 10.7717/peerj.2043] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Background. Neuropeptides are important regulators of physiological processes and behavior. Although they tend to be generally well conserved, recent results using trancriptome sequencing on decapod crustaceans give the impression of significant differences between species, raising the question whether such differences are real or artefacts. Methods. The BLAST+ program was used to find short reads coding neuropeptides and neurohormons in publicly available short read archives. Such reads were then used to find similar reads in the same archives, and the DNA assembly program Trinity was employed to construct contigs encoding the neuropeptide precursors as completely as possible. Results. The seven decapod species analyzed in this fashion, the crabs Eriocheir sinensis, Carcinus maenas and Scylla paramamosain, the shrimp Litopenaeus vannamei, the lobster Homarus americanus, the fresh water prawn Macrobrachium rosenbergii and the crayfish Procambarus clarkii had remarkably similar neuropeptidomes. Although some neuropeptide precursors could not be assembled, in many cases individual reads pertaining to the missing precursors show unambiguously that these neuropeptides are present in these species. In other cases, the tissues that express those neuropeptides were not used in the construction of the cDNA libraries. One novel neuropeptide was identified: elongated PDH (pigment dispersing hormone), a variation on PDH that has a two-amino-acid insertion in its core sequence. Hyrg is another peptide that is ubiquitously present in decapods and is likely a novel neuropeptide precursor. Discussion. Many insect species have lost one or more neuropeptide genes, but apart from elongated PDH and hyrg all other decapod neuropeptides are present in at least some insect species, and allatotropin is the only insect neuropeptide missing from decapods. This strong similarity between insect and decapod neuropeptidomes makes it possible to predict the receptors for decapod neuropeptides that have been deorphanized in insects. This includes the androgenic insulin-like peptide that seems to be homologous to drosophila insulin-like peptide 8.
Collapse
Affiliation(s)
- Jan A Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (CNRS UMR5287), University of Bordeaux , Pessac , France
| |
Collapse
|
7
|
Blohm AS, Mäder P, Quack T, Lu Z, Hahnel S, Schlitzer M, Grevelding CG. Derivatives of biarylalkyl carboxylic acid induce pleiotropic phenotypes in adult Schistosoma mansoni in vitro. Parasitol Res 2016; 115:3831-42. [PMID: 27230017 DOI: 10.1007/s00436-016-5146-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022]
Abstract
Schistosomes and other parasitic platyhelminths cause infectious diseases of worldwide significance for humans and animals. Despite their medical and economic importance, vaccines are not available and the number of drugs is alarmingly limited. For most platyhelminths including schistosomes, Praziquantel (PZQ) is the commonly used drug. With respect to its regular application in mass treatment programs, however, there is increasing concern about resistance development.Previous studies demonstrated that inhibitors used to treat non-parasitic human diseases may be useful to be tested for their effects on parasites. To this end, we focused on biarylalkyl carboxylic acids (BACAs) as basis, which had been shown before to be interesting candidates in the context of finding alternative approaches to treat diabetes mellitus. We tested 32 chemically modified derivatives of these substances (biarylalkyl carboxylic acid derivatives (BACADs)) for their effects on adult Schistosoma mansoni in vitro. Treatment with 18 BACADs resulted in egg production-associated phenotypes and reduced pairing stability. In addition, 12 of these derivatives affected vitality and/or caused severe tegument damage, gut dilatation, or other forms of tissue disintegration which led to the death of worms. In most cases (10/12), one derivative caused more than one phenotype at a time. In vitro experiments in the presence of serum albumin (SA) and alpha-acidic glycoprotein (AGP) indicated a varying influence of these blood components on the effects of two selected derivatives. The variety of observed phenotypes suggested that different targets were hit. The results demonstrated that BACADs are interesting substances with respect to their anti-schistosomal effects.
Collapse
Affiliation(s)
- Ariane S Blohm
- BFS, Institut for Parasitology, Justus-Liebig-University Gießen, Gießen, 35392, Germany
| | - Patrick Mäder
- Institute for Pharmaceutic Chemistry, Philipps-University Marburg, Marburg, 35032, Germany
| | - Thomas Quack
- BFS, Institut for Parasitology, Justus-Liebig-University Gießen, Gießen, 35392, Germany
| | - Zhigang Lu
- BFS, Institut for Parasitology, Justus-Liebig-University Gießen, Gießen, 35392, Germany
| | - Steffen Hahnel
- BFS, Institut for Parasitology, Justus-Liebig-University Gießen, Gießen, 35392, Germany
| | - Martin Schlitzer
- Institute for Pharmaceutic Chemistry, Philipps-University Marburg, Marburg, 35032, Germany
| | - Christoph G Grevelding
- BFS, Institut for Parasitology, Justus-Liebig-University Gießen, Gießen, 35392, Germany.
| |
Collapse
|
8
|
Nässel DR, Vanden Broeck J. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cell Mol Life Sci 2016; 73:271-90. [PMID: 26472340 PMCID: PMC11108470 DOI: 10.1007/s00018-015-2063-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/02/2023]
Abstract
Insulin, insulin-like growth factors (IGFs) and insulin-like peptides (ILPs) are important regulators of metabolism, growth, reproduction and lifespan, and mechanisms of insulin/IGF signaling (IIS) have been well conserved over evolution. In insects, between one and 38 ILPs have been identified in each species. Relatively few insect species have been investigated in depth with respect to ILP functions, and therefore we focus mainly on the well-studied fruitfly Drosophila melanogaster. In Drosophila eight ILPs (DILP1-8), but only two receptors (dInR and Lgr3) are known. DILP2, 3 and 5 are produced by a set of neurosecretory cells (IPCs) in the brain and their biosynthesis and release are controlled by a number of mechanisms differing between larvae and adults. Adult IPCs display cell-autonomous sensing of circulating glucose, coupled to evolutionarily conserved mechanisms for DILP release. The glucose-mediated DILP secretion is modulated by neurotransmitters and neuropeptides, as well as by factors released from the intestine and adipocytes. Larval IPCs, however, are indirectly regulated by glucose-sensing endocrine cells producing adipokinetic hormone, or by circulating factors from the intestine and fat body. Furthermore, IIS is situated within a complex physiological regulatory network that also encompasses the lipophilic hormones, 20-hydroxyecdysone and juvenile hormone. After release from IPCs, the ILP action can be modulated by circulating proteins that act either as protective carriers (binding proteins), or competitive inhibitors. Some of these proteins appear to have additional functions that are independent of ILPs. Taken together, the signaling with multiple ILPs is under complex control, ensuring tightly regulated IIS in the organism.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, Zoological Institute, K.U. Leuven, Louvain, Belgium
| |
Collapse
|