1
|
Charissopoulos E, Pontiki E. Sulfonamides a Promising Hit for Cancer Therapy Through VEGFR-2 Inhibition. Biomedicines 2025; 13:772. [PMID: 40299334 PMCID: PMC12025213 DOI: 10.3390/biomedicines13040772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2), a tyrosine kinase receptor (TKR), plays a crucial role in angiogenesis and is overexpressed in most cancers. It is important for tumor angiogenesis, facilitating essential angiogenic cellular processes, such as promoting endothelial cell survival, proliferation, migration, and vascular permeability. Consequently, VEGFR-2 has become one of the main targets for anti-angiogenic therapy, with its inhibition serving as a crucial strategy for developing new drugs to mitigate angiogenesis-dependent cancers. Small-molecule drugs targeting VEGFR-2, approved by the USFDA, are exhibiting the development of drug resistance during chemotherapy, with cardiac-related side effects being consistently reported. In conclusion, it is important to develop novel strategies to enhance the efficacy of VEGFR-2 inhibitors and eliminate their adverse effects. Multifunctional drugs that target multiple pathways present a promising strategy, enhancing efficacy while minimizing side effects. Sulfonamide derivatives are extensively used in medicinal chemistry and modern drug discovery due to their variety of pharmacological activities. The present review focuses on novel compounds endowed with potential VEGFR-2 inhibition, four of which additionally present carbonic anhydrase inhibitory activity.
Collapse
Affiliation(s)
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
2
|
Bahrami N, Abdi M. Knockout of histone deacetylase 8 gene in breast cancer cells may alter the expression pattern of the signaling molecules. Adv Med Sci 2025; 70:27-32. [PMID: 39437892 DOI: 10.1016/j.advms.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/26/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Breast cancer (BC) is the most common cancer diagnosed in the world and it is also the main leading cause of cancer deaths in women. Change in epigenetic mechanisms promotes BC initiation and progression. Histone deacetylase 8 (HDAC8) was found to act as a potential oncogene in different malignancies. For better understanding of the HDAC8 function in BC development, we investigated the effect of HDAC8 deletion on the expression of genes involved in signaling pathways. MATERIALS AND METHODS In this study, CRISPR technology was used to knockout the HDAC8 gene in MDA-MB-468, MDA-MB-231 and MCF-7 cell lines. For this purpose, two gRNAs were designed and cloned into the PX459 vector. The gRNA-containing vectors were transfected into the BC cell lines and then the effect of this deletion on the expression of genes involved in signaling pathway was determined using quantitative real-time PCR (qRT-PCR). RESULTS Analysis of qRT-PCR results showed a reduction in the expression of studied genes in BC cell lines after deletion of the HDAC8 gene compared to untreated controls. Although this decline was not significant for FGF2 and FGFR1 genes, however the mTOR, IGF1R, INSR, VEGFA and VEGFR2 genes showed statistically significant reduction in the studied BC cell lines. In addition, the down-regulation of PDGFC and PDGFRA genes were only significant in the TNBC cell lines. CONCLUSION Overall, our study showed that HDAC8 can exert its oncogenic effects by altering the expression level of molecules involved in some signaling pathways, and inhibiting HDAC8 can revert these effects.
Collapse
Affiliation(s)
- Nahid Bahrami
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
3
|
Gu Y, Tang T, Qiu M, Wang H, Ampofo E, Menger MD, Laschke MW. Clioquinol inhibits angiogenesis by promoting VEGFR2 degradation and synergizes with AKT inhibition to suppress triple-negative breast cancer vascularization. Angiogenesis 2025; 28:13. [PMID: 39899169 PMCID: PMC11790708 DOI: 10.1007/s10456-024-09965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/12/2024] [Indexed: 02/04/2025]
Abstract
Inhibition of angiogenesis, either as monotherapy or in conjunction with other treatments, holds significant promise in cancer treatment. However, the limited efficacy of clinically approved anti-angiogenic agents underscores the urgent need for the development of novel drugs and therapeutic strategies. In this study, we demonstrate the highly selective inhibitory effects of clioquinol, a topical antifungal and antibiotic agent, on the angiogenic activity of endothelial cells (ECs) in a series of in vitro angiogenesis assays. Moreover, clioquinol effectively suppressed blood vessel formation in ex vivo aortic ring and in vivo Matrigel plug assays. Mechanistic studies revealed that clioquinol directly binds to the ATP-binding site of vascular endothelial growth factor receptor 2 (VEGFR2), promoting its degradation through both proteasome and lysosome pathways. This led to the down-regulation of the downstream extracellular signal-regulated kinase (ERK) pathway. In addition, the combination with the AKT inhibitor MK-2206 synergistically boosted the anti-angiogenic efficacy of clioquinol in vitro and in an in vivo dorsal skinfold chamber model of triple-negative breast cancer (TNBC), leading to the suppression of TNBC growth. Accordingly, clioquinol, either alone or in combination with AKT inhibitors, represents a promising therapeutic agent for future anti-angiogenic cancer treatment.
Collapse
Affiliation(s)
- Yuan Gu
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saarland, Germany.
| | - Tianci Tang
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saarland, Germany
| | - Moqin Qiu
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saarland, Germany
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Hongmei Wang
- Shaanxi University of Chinese Medicine, Shaanxi, 712046, China
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saarland, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saarland, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saarland, Germany
| |
Collapse
|
4
|
Toàn NM. Novel Molecular Classification of Breast Cancer with PET Imaging. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2099. [PMID: 39768978 PMCID: PMC11678748 DOI: 10.3390/medicina60122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Breast cancer is a heterogeneous disease characterized by a wide range of biomarker expressions, resulting in varied progression, behavior, and prognosis. While traditional biopsy-based molecular classification is the gold standard, it is invasive and limited in capturing tumor heterogeneity, especially in deep or metastatic lesions. Molecular imaging, particularly positron emission tomography (PET) imaging, offering a non-invasive alternative, potentially plays a crucial role in the classification and management of breast cancer by providing detailed information about tumor location, heterogeneity, and progression. This narrative review, which focuses on both clinical patients and preclinical studies, explores the latest advancements in PET imaging for breast cancer, emphasizing the development of new tracers targeting hormone receptors such as the estrogen alpha receptor, progesterone receptor, androgen receptor, estrogen beta receptor, as well as the ErbB family of receptors, VEGF/VEGFR, PARP1, PD-L1, and markers for indirectly assessing Ki-67. These innovative radiopharmaceuticals have the potential to guide personalized treatment approaches based on the unique tumor profiles of individual patients. Additionally, they may improve the assessment of treatment efficacy, ultimately leading to better outcomes for those diagnosed with breast cancer.
Collapse
Affiliation(s)
- Ngô Minh Toàn
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
- Medical Imaging Clinic, Clinical Centre, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
5
|
Bouribab A, Karim EM, Khedraoui M, Abchir O, Errougui A, Raouf YS, Samadi A, Chtita S. Exploring Moroccan Medicinal Plants for Anticancer Therapy Development Through In Silico Studies. Pharmaceuticals (Basel) 2024; 17:1528. [PMID: 39598438 PMCID: PMC11597486 DOI: 10.3390/ph17111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Angiogenesis is a crucial process in the growth and proliferation of cancer, enabling tumor growth through the formation of new vasculature and the supply of nutrients and oxygen to growing malignant cells. This disease-promoting process can be targeted through the inhibition of tyrosine kinase enzymes. OBJECTIVES The objective of this study is to evaluate the anticancer potential of various Moroccan plants from different regions. While these plants have a rich history of traditional medicinal use, they have not been extensively investigated as anticancer therapies. METHODS This study employed a multifaceted approach to evaluate the anticancer potential of various Moroccan plants. Receptor-ligand docking and virtual screening were used to assess the binding affinity of phytocompounds to the EGFR and VEGFR2 receptors. Additionally, predictive pharmacokinetic analyses were conducted to evaluate the ADMET properties of the selected compounds, followed by molecular dynamics simulations to analyze the stability of the receptor-ligand complexes. RESULTS In our research, we identified three notable active compounds-catechin, 4-O-glucoside ferulic acid, and 3-glucoside resveratrol-in the Moroccan plant Ajuga iva L. These findings suggest that Ajuga iva L. may possess significant potential for cancer inhibition. CONCLUSIONS This research highlights the potential of the Moroccan plant Ajuga iva L. as a source of active compounds with significant anticancer properties. Further investigation is essential to validate these findings and explore new therapeutic avenues based on these traditional resources.
Collapse
Affiliation(s)
- Amal Bouribab
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20600, Morocco; (A.B.); (E.M.K.); (M.K.); (O.A.); (A.E.)
| | - El Mehdi Karim
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20600, Morocco; (A.B.); (E.M.K.); (M.K.); (O.A.); (A.E.)
| | - Meriem Khedraoui
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20600, Morocco; (A.B.); (E.M.K.); (M.K.); (O.A.); (A.E.)
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20600, Morocco; (A.B.); (E.M.K.); (M.K.); (O.A.); (A.E.)
| | - Abdelkbir Errougui
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20600, Morocco; (A.B.); (E.M.K.); (M.K.); (O.A.); (A.E.)
| | - Yasir S. Raouf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20600, Morocco; (A.B.); (E.M.K.); (M.K.); (O.A.); (A.E.)
| |
Collapse
|
6
|
Ochirbat S, Kan TC, Hsu CC, Huang TH, Chuang KH, Chen M, Cheng CC, Chang CC, Rahayu S, Chang J. The angiogenic role of the alpha 9-nicotinic acetylcholine receptor in triple-negative breast cancers. Angiogenesis 2024; 27:827-843. [PMID: 39177676 DOI: 10.1007/s10456-024-09944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Nicotine acts as an angiogenic factor by stimulating endogenous cholinergic pathways. Several subtypes of nicotinic acetylcholine receptors (nAChRs) have been demonstrated to be closely correlated to the formation and progression of different types of cancers. Recently, several studies have found that nicotinic acetylcholine receptors α9 (α9-nAChRs) are highly expressed in breast tumors, especially in tumors derived from patients diagnosed at advanced stages. In vitro studies have demonstrated that activation of α9-nAChRs is associated with increased proliferation and migration of breast cancer. To study the tumor-promoting role of α9-nAChRs in breast cancers, we generated a novel anti-α9-nAChR and methoxy-polyethylene glycol (mPEG) bispecific antibody (α9 BsAb) for dissecting the molecular mechanism on α9-nAChR-mediated tumor progression. Unexpectedly, we discovered the angiogenic role of α9-nAChR in nicotine-induced neovascularization of tumors. It revealed α9 BsAbs reduced nicotine-induced endothelial cell tube formation, blood vessel development in Matrigel plug assay and angiogenesis in microtube array membrane murine model (MTAMs). To unbraid the molecular mechanism of α9-nAChR in nicotine-mediated angiogenesis, the α9 BsAbs were applied and revealed the inhibitory roles in nicotine-induced production of hypoxia-inducible factor-2 alpha (HIF-2α), vascular endothelial growth factor A (VEGF-A), phosphorylated vascular endothelial growth factor receptor 2 (p-VEGFR2), vascular endothelial growth factor receptor 2 (VEGFR2) and matrix metalloproteinase-9 (MMP9) from triple-negative breast cancer cells (MDA-MB-231), suggesting α9-nAChRs played an important role in nicotine-induced angiogenesis. To confirm our results, the shRNA targeting α9-nAChRs was designed and used to silence α9-nAChR expression and then evaluated the angiogenic role of α9-nAChRs. The results showed α9 shRNA also played an inhibitory effect in blocking the nicotine-induced angiogenic signaling. Taken together, α9-nAChR played a critical role in nicotine-induced angiogenesis and this bispecific antibody (α9 BsAb) may serve as a potential therapeutic candidate for treatments of the α9 positive cancers.
Collapse
Affiliation(s)
- Sonjid Ochirbat
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tzu-Chun Kan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chun-Chun Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Tzu-Hsuan Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Michael Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chun-Chia Cheng
- Research Center of Radiation Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sri Rahayu
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Jakarta, Jakarta, 13220, Indonesia
| | - Jungshan Chang
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
7
|
Yassen ASA, Abdel-Wahab SM, Darwish KM, Nafie MS, Abdelhameed RFA, El-Sayyad GS, El-Batal AI, Attia KM, Elshihawy HA, Elrayess R. Novel curcumin-based analogues as potential VEGFR2 inhibitors with promising metallic loading nanoparticles: synthesis, biological evaluation, and molecular modelling investigation. RSC Med Chem 2024:d4md00574k. [PMID: 39345715 PMCID: PMC11428034 DOI: 10.1039/d4md00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
VEGFR2 inhibition has been established as a therapeutic approach for managing cancer. A series of curcumin-based analogues were designed, synthesized, and screened for their anticancer activity against MCF-7 and HepG-2 cell lines and WISH normal cells. Compounds 4b, 4d, 4e, and 4f showed potent cytotoxicity against MCF-7 with IC50 values of 0.49, 0.14, 0.01, and 0.32 μM, respectively, compared to curcumin (IC50 = 13.8 μM) and sorafenib (IC50 = 2.13 μM). Interestingly, compound 4e, the most active compound, exhibited potent VEGFR2 inhibition with an IC50 value of 11.6 nM (96.5% inhibition) compared to sorafenib with an IC50 value of 30 nM (94.8% inhibition). Additionally, compound 4e significantly induced apoptotic cell death in MCF-7 cells by 41.1% compared to a control group (0.8%), halting cell division during the G2/M phase by 39.8% compared to the control (21.7%). Molecular docking-coupled dynamics simulations highlighted the bias of the VEGFR2 pocket towards compound 4e compared to other synthesized compounds. Predicting superior binding affinities and relevant interactions with the pocket's key residues recapitulated in vitro findings towards higher inhibition activity for compound 4e. Furthermore, compound 4e with adequate pharmacokinetic and drug-likeness profiles in terms of ADME and safety characteristics can serve as a promising clinical candidate for future lead optimization and development. Notably, 4e-Fe2O3-humic acid NPs exhibited potent cytotoxicity with IC50 values of 2.41 and 13.4 ng mL-1 against MCF-7 and HepG-2 cell lines, respectively. Hence, compound 4e and its Fe2O3-humic acid-NPs could be further developed as promising anti-breast cancer agents.
Collapse
Affiliation(s)
- Asmaa S A Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
| | - Sherief M Abdel-Wahab
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology Giza Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P.O. 27272 Sharjah United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University New Galala City Suez 43713 Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University New Galala City Suez 43713 Egypt
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC) Cairo Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Khadiga M Attia
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology Giza Egypt
| | - Hosam A Elshihawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Ranza Elrayess
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Al-Ayen University, College of Pharmacy Dhi Qar Iraq
| |
Collapse
|
8
|
Mercier AE, Joubert AM, Prudent R, Viallet J, Desroches-Castan A, De Koning L, Mabeta P, Helena J, Pepper MS, Lafanechère L. Sulfamoylated Estradiol Analogs Targeting the Actin and Microtubule Cytoskeletons Demonstrate Anti-Cancer Properties In Vitro and In Ovo. Cancers (Basel) 2024; 16:2941. [PMID: 39272798 PMCID: PMC11394244 DOI: 10.3390/cancers16172941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
The microtubule-disrupting agent 2-methoxyestradiol (2-ME) displays anti-tumor and anti-angiogenic properties, but its clinical development is halted due to poor pharmacokinetics. We therefore designed two 2-ME analogs in silico-an ESE-15-one and an ESE-16 one-with improved pharmacological properties. We investigated the effects of these compounds on the cytoskeleton in vitro, and their anti-angiogenic and anti-metastatic properties in ovo. Time-lapse fluorescent microscopy revealed that sub-lethal doses of the compounds disrupted microtubule dynamics. Phalloidin fluorescent staining of treated cervical (HeLa), metastatic breast (MDA-MB-231) cancer, and human umbilical vein endothelial cells (HUVECs) displayed thickened, stabilized actin stress fibers after 2 h, which rearranged into a peripheral radial pattern by 24 h. Cofilin phosphorylation and phosphorylated ezrin/radixin/moesin complexes appeared to regulate this actin response. These signaling pathways overlap with anti-angiogenic, extra-cellular communication and adhesion pathways. Sub-lethal concentrations of the compounds retarded both cellular migration and invasion. Anti-angiogenic and extra-cellular matrix signaling was evident with TIMP2 and P-VEGF receptor-2 upregulation. ESE-15-one and ESE-16 exhibited anti-tumor and anti-metastatic properties in vivo, using the chick chorioallantoic membrane assay. In conclusion, the sulfamoylated 2-ME analogs displayed promising anti-tumor, anti-metastatic, and anti-angiogenic properties. Future studies will assess the compounds for myeloproliferative effects, as seen in clinical applications of other drugs in this class.
Collapse
Affiliation(s)
- Anne Elisabeth Mercier
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Renaud Prudent
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Jean Viallet
- Inovotion SAS France, Biopolis, 38700 La Tronche, France
| | - Agnes Desroches-Castan
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 38000 Grenoble, France
| | - Leanne De Koning
- Institut Curie Centre de Recherche, PSL Research University, 75248 Paris Cedex 05, France
| | - Peace Mabeta
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Jolene Helena
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Laurence Lafanechère
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Team Cytoskeleton Dynamics and Nuclear Functions, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
9
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Reang J, Sharma V, Yadav V, Tonk RK, Majeed J, Sharma A, Sharma PC. Redefining the significance of quinoline containing compounds as potent VEGFR-2 inhibitors for cancer therapy. Med Chem Res 2024; 33:1079-1099. [DOI: 10.1007/s00044-024-03252-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 01/03/2025]
|
11
|
James N, Owusu E, Rivera G, Bandyopadhyay D. Small Molecule Therapeutics in the Pipeline Targeting for Triple-Negative Breast Cancer: Origin, Challenges, Opportunities, and Mechanisms of Action. Int J Mol Sci 2024; 25:6285. [PMID: 38892472 PMCID: PMC11172743 DOI: 10.3390/ijms25116285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC) cells are devoid of estrogen receptors (ERs), progesterone receptor (PRs), and human epidermal growth factor receptor 2 (HER2), and it (TNBC) counts for about 10-15% of all breast cancers. TNBC is highly invasive, having a faster growth rate and a higher risk of metastasis and recurrence. Still, chemotherapy is one of the widely used options for treating TNBC. This study reviewed the histological and molecular characterization of TNBC subtypes, signaling pathways that are aberrantly expressed, and small molecules targeting these pathways, as either single agents or in combination with other therapeutic agents like chemotherapeutics, immunotherapeutics, and antibody-drug conjugates; their mechanisms of action, challenges, and future perspectives were also reviewed. A detailed analytical review was carried out using the literature collected from the SciFinder, PubMed, ScienceDirect, Google Scholar, ACS, Springer, and Wiley databases. Several small molecule inhibitors were found to be therapeutics for treating TNBC. The mechanism of action and the different signaling pathways through which the small molecules exert their effects were studied, including clinical trials, if reported. These small molecule inhibitors include buparlisib, everolimus, vandetanib, apatinib, olaparib, salidroside, etc. Some of the signaling pathways involved in TNBC, including the VEGF, PARP, STAT3, MAPK, EGFR, P13K, and SRC pathways, were discussed. Due to the absence of these biomarkers, drug development for treating TNBC is challenging, with chemotherapy being the main therapeutic agent. However, chemotherapy is associated with chemoresistance and a high toxicity to healthy cells as side effects. Hence, there is a continuous demand for small-molecule inhibitors that specifically target several signaling pathways that are abnormally expressed in TNBC. We attempted to include all the recent developments in this field. Any omission is truly unintentional.
Collapse
Affiliation(s)
- Nneoma James
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
| | - Esther Owusu
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
12
|
Alshaye NA, Elgohary MK, Elkotamy MS, Abdel-Aziz HA. Design, Synthesis and Biological Assessment of N'-(2-Oxoindolin-3-ylidene)-6-methylimidazo[2,1- b]thiazole-5-carbohydrazides as Potential Anti-Proliferative Agents toward MCF-7 Breast Cancer. Pharmaceuticals (Basel) 2024; 17:216. [PMID: 38399431 PMCID: PMC10892120 DOI: 10.3390/ph17020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Breast cancer is a serious threat to the health and lives of women. Two novel series of N'-(2-oxoindolin-3-ylidene)-6-methylimidazo[2,1-b]thiazole-5-carbohydrazides and 1-(aryl)-3-(6-methylimidazo[2,1-b]thiazol-5-yl)ureas were designed, synthesized and investigated for their anticancer efficacy against the MCF-7 breast cell line. Three compounds of the first series showed potent activity toward MCF-7 with IC50 in the range 8.38-11.67 µM, respectively, as compared to Sorafenib (IC50 = 7.55 µM). N'-(1-butyl-2-oxoindolin-3-ylidene)-6-methylimidazo[2,1-b]thiazole-5-carbohydrazide inhibited VEGFR-2 with IC50 = 0.33 µM when compared with Sorafenib (IC50 = 0.09 µM). Furthermore, this compound was introduced to PCR assessment, where it increased Bax, caspase 8, caspase 9 and cytochrome C levels by 4.337-, 2.727-, 4.947- and 2.420-fold, respectively, while it decreased levels of Bcl-2, as the anti-apoptotic gene, by 0.359-fold when compared to the untreated control MCF-7. This compound was also arrested in the G2/M phase by 27.07%, compared with 11.31% for the control MCF-7. Furthermore, it induced early and late apoptosis in MCF-7. In addition, a molecular docking study in the VEGFR-2 active site was performed to assess the binding profile for the most active compounds. Moreover, ADME parameters of the targeted compounds were also evaluated.
Collapse
Affiliation(s)
- Najla A. Alshaye
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed K. Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Cairo 11829, Egypt;
| | - Mahmoud S. Elkotamy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Cairo 11829, Egypt;
| | - Hatem A. Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt
| |
Collapse
|
13
|
Benedetti A, Turco C, Gallo E, Daralioti T, Sacconi A, Pulito C, Donzelli S, Tito C, Dragonetti M, Perracchio L, Blandino G, Fazi F, Fontemaggi G. ID4-dependent secretion of VEGFA enhances the invasion capability of breast cancer cells and activates YAP/TAZ via integrin β3-VEGFR2 interaction. Cell Death Dis 2024; 15:113. [PMID: 38321003 PMCID: PMC10847507 DOI: 10.1038/s41419-024-06491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Understanding the mechanisms of breast cancer cell communication underlying cell spreading and metastasis formation is fundamental for developing new therapies. ID4 is a proto-oncogene overexpressed in the basal-like subtype of triple-negative breast cancer (TNBC), where it promotes angiogenesis, cancer stem cells, and BRACA1 misfunction. Here, we show that ID4 expression in BC cells correlates with the activation of motility pathways and promotes the production of VEGFA, which stimulates the interaction of VEGFR2 and integrin β3 in a paracrine fashion. This interaction induces the downstream focal adhesion pathway favoring migration, invasion, and stress fiber formation. Furthermore, ID4/ VEGFA/ VEGFR2/ integrin β3 signaling stimulates the nuclear translocation and activation of the Hippo pathway member's YAP and TAZ, two critical executors for cancer initiation and progression. Our study provides new insights into the oncogenic roles of ID4 in tumor cell migration and YAP/TAZ pathway activation, suggesting VEGFA/ VEGFR2/ integrin β3 axis as a potential target for BC treatment.
Collapse
Affiliation(s)
- Anna Benedetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Turco
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Enzo Gallo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Theodora Daralioti
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Biostatistics and Bioinformatics Unit, Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Martina Dragonetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Letizia Perracchio
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.
| | - Giulia Fontemaggi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
14
|
Kumari L, Mishra L, Patel P, Sharma N, Gupta GD, Kurmi BD. Emerging targeted therapeutic strategies for the treatment of triple-negative breast cancer. J Drug Target 2023; 31:889-907. [PMID: 37539789 DOI: 10.1080/1061186x.2023.2245579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Triple-negative breast cancer (TNBC), a subtype of breast cancer that lacks expression of oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2), has clinical features including a high degree of invasiveness, an elevated risk of metastasis, tendency to relapse, and poor prognosis. It constitutes around 10-15% of all breast cancer, and having heredity of BRCA1 mutated breast cancer could be a reason for the occurrence of TNBC in women. Overexpression of cellular and molecular targets, i.e. CD44 receptor, EGFR receptor, Folate receptor, Transferrin receptor, VEGF receptor, and Androgen receptor, have emerged as promising targets for treating TNBC. Signalling pathways such as Notch signalling and PI3K/AKT/mTOR also play a significant role in carrying out and managing crucial pro-survival and pro-growth cellular processes that can be utilised for targeted therapy against triple-negative breast cancer. This review sheds light on various targeting strategies, including cellular and molecular targets, signalling pathways, poly (ADP-ribose) polymerase inhibitors, antibody-drug conjugates, and immune checkpoint inhibitors PARP, immunotherapy, ADCs have all found a place in the current TNBC therapeutic paradigm. The role of photothermal therapy (PTT) and photodynamic therapy (PDT) has also been explored briefly.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | - Lopamudra Mishra
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, Punjab, India
| | - Nitin Sharma
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| |
Collapse
|
15
|
Melo ML, Fonseca R, Pauli F, Zavan B, Hanemann JAC, Miyazawa M, Caixeta ES, Nacif JLM, Aissa AF, Barreiro EJ, Ionta M. N-acylhydrazone derivative modulates cell cycle regulators promoting mitosis arrest and apoptosis in estrogen positive MCF-7 breast cancer cells. Toxicol In Vitro 2023; 93:105686. [PMID: 37652252 DOI: 10.1016/j.tiv.2023.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Breast cancer is the leading cause of cancer death among women worldwide. About 75% of all diagnosed cases are hormone-positive, which are treated with hormone therapy. However, many patients are refractory or become resistant to the drugs used in therapeutic protocols. In this scenario, it is essential to identify new substances with pharmacological potential against breast cancer. VEGFR2 inhibitors are considered promising antitumor agents not only due to their antiangiogenic activity but also by inhibiting the proliferation of tumor cells. Thus, the present study aimed to evaluate the effects of N-acylhydrazone derivative LASSBio-2029 on the proliferative behavior of MCF-7 cells. We observed a promising antitumor potential of this substance due to its ability to modulate critical cell cycle regulators including mitotic kinases (CDK1, AURKA, AURKB, and PLK1) and CDK inhibitor (CDKN1A). Increased frequencies of abnormal mitosis and apoptotic cells were observed in response to treatment. A molecular docking analysis predicts that LASSBio-2029 could bind to the proto-oncoprotein ABL1, which participates in cell cycle control, interacting with other controller proteins and regulating centrosome-associated tubulins. Finally, we created a gene signature with the downregulated genes, whose reduced expression is associated with a higher relapse-free survival probability in breast cancer patients.
Collapse
Affiliation(s)
- Melissa Lúcia Melo
- Institute of Biomedical Sciences, Federal University of Alfenas, MG 37130-001, Brazil
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas, MG 37130-001, Brazil
| | - Fernanda Pauli
- Institute of Chemistry, Fluminense Federal University, Niterói, RJ 24020-140, Brazil
| | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas, MG 37130-001, Brazil
| | - João Adolfo Costa Hanemann
- Department of Clinic and Surgery, School of Dentistry. Federal University of Alfenas, 37130-001, MG, Brazil
| | - Marta Miyazawa
- Department of Clinic and Surgery, School of Dentistry. Federal University of Alfenas, 37130-001, MG, Brazil
| | | | | | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, MG 37130-001, Brazil.
| | - Eliezer J Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, RJ, Brazil.
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, MG 37130-001, Brazil.
| |
Collapse
|
16
|
Caetano S, Garcia AR, Figueira I, Brito MA. MEF2C and miR-194-5p: New Players in Triple Negative Breast Cancer Tumorigenesis. Int J Mol Sci 2023; 24:14297. [PMID: 37762600 PMCID: PMC10531597 DOI: 10.3390/ijms241814297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Among breast cancer (BC) subtypes, the most aggressive is triple negative BC (TNBC), which is prone to metastasis. We previously found that microRNA (miR)-194-5p is downregulated at the early stages of TNBC brain metastasis development. Additionally, the transcription factor myocyte enhancer factor 2 (MEF2)C, a bioinformatically predicted miR-194-5p target, was increasingly expressed throughout TNBC brain metastasis formation and disease severity. However, the contributions of these two players to malignant cells' features remain undetermined. This study aimed at disclosing the role of miR-194-5p and MEF2C in TNBC tumorigenesis. The transfection of 4T1 cells with a silencer for MEF2C or with a pre-miRNA for miR-194-5p was employed to study TNBC cells' phenotypic alterations regarding epithelial and mesenchymal markers, as well as migratory capability alterations. MEF2C-silenced cells presented a decline in both vimentin and cytokeratin expression, whereas the overexpression of miR-194-5p promoted an increase in cytokeratin and a reduction in vimentin, reflecting the acquisition of an epithelial phenotype. Both treatments reduced TNBC cells' migration. These results suggest that MEF2C may determine TNBC cells' invasive properties by partially determining the occurrence of epithelial-mesenchymal transition, while the overexpression of miR-194-5p promotes a decline in TNBC cells' aggressive behavior and reinforces this miRNA's role as a tumor suppressor in TNBC.
Collapse
Affiliation(s)
- Sara Caetano
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Rita Garcia
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Inês Figueira
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Farm-ID—Faculty of Pharmacy Research and Development Association, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Alexandra Brito
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
17
|
Gombos G, Németh N, Pös O, Styk J, Buglyó G, Szemes T, Danihel L, Nagy B, Balogh I, Soltész B. New Possible Ways to Use Exosomes in Diagnostics and Therapy via JAK/STAT Pathways. Pharmaceutics 2023; 15:1904. [PMID: 37514090 PMCID: PMC10386711 DOI: 10.3390/pharmaceutics15071904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomes have the potential to be the future of personalized diagnostics and therapy. They are nano-sized particles between 30 and 100 nm flowing in the extracellular milieu, where they mediate cell-cell communication and participate in immune system regulation. Tumor-derived exosomes (TDEs) secreted from different types of cancer cells are the key regulators of the tumor microenvironment. With their immune suppressive cargo, TDEs prevent the antitumor immune response, leading to reduced effectiveness of cancer treatment by promoting a pro-tumorigenic microenvironment. Involved signaling pathways take part in the regulation of tumor proliferation, differentiation, apoptosis, and angiogenesis. Signal transducers and activators of transcription factors (STATs) and Janus kinase (JAK) signaling pathways are crucial in malignancies and autoimmune diseases alike, and their potential to be manipulated is currently the focus of interest. In this review, we aim to discuss exosomes, TDEs, and the JAK/STAT pathways, along with mediators like interleukins, tripartite motif proteins, and interferons.
Collapse
Affiliation(s)
- Gréta Gombos
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Nikolett Németh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 01 Bratislava, Slovakia
| | - Ludovit Danihel
- 3rd Surgical Clinic, Faculty of Medicine, Comenius University and Merciful Brothers University Hospital, 811 08 Bratislava, Slovakia
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
18
|
Namjoo M, Ghafouri H, Assareh E, Aref AR, Mostafavi E, Hamrahi Mohsen A, Balalaie S, Broussy S, Asghari SM. A VEGFB-Based Peptidomimetic Inhibits VEGFR2-Mediated PI3K/Akt/mTOR and PLCγ/ERK Signaling and Elicits Apoptotic, Antiangiogenic, and Antitumor Activities. Pharmaceuticals (Basel) 2023; 16:906. [PMID: 37375853 DOI: 10.3390/ph16060906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) mediates VEGFA signaling mainly through the PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. Here we unveil a peptidomimetic (VGB3) based on the interaction between VEGFB and VEGFR1 that unexpectedly binds and neutralizes VEGFR2. Investigation of the cyclic and linear structures of VGB3 (named C-VGB3 and L-VGB3, respectively) using receptor binding and cell proliferation assays, molecular docking, and evaluation of antiangiogenic and antitumor activities in the 4T1 mouse mammary carcinoma tumor (MCT) model showed that loop formation is essential for peptide functionality. C-VGB3 inhibited proliferation and tubulogenesis of human umbilical vein endothelial cells (HUVECs), accounting for the abrogation of VEGFR2, p-VEGFR2 and, subsequently, PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. In 4T1 MCT cells, C-VGB3 inhibited cell proliferation, VEGFR2 expression and phosphorylation, the PI3K/AKT/mTOR pathway, FAK/Paxillin, and the epithelial-to-mesenchymal transition cascade. The apoptotic effects of C-VGB3 on HUVE and 4T1 MCT cells were inferred from annexin-PI and TUNEL staining and activation of P53, caspase-3, caspase-7, and PARP1, which mechanistically occurred through the intrinsic pathway mediated by Bcl2 family members, cytochrome c, Apaf-1 and caspase-9, and extrinsic pathway via death receptors and caspase-8. These data indicate that binding regions shared by VEGF family members may be important in developing novel pan-VEGFR inhibitors that are highly relevant in the pathogenesis of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Mohadeseh Namjoo
- Department of Biology, University Campus II, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Elham Assareh
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ali Hamrahi Mohsen
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran P.O. Box 1841, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran P.O. Box 1841, Iran
| | - Sylvain Broussy
- CiTCoM, UMR CNRS 8038, U1268 INSERM, UFR de Pharmacie, Faculté de Santé, Université Paris Cité, 75006 Paris, France
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran P.O. Box 1841, Iran
| |
Collapse
|
19
|
Chaudhuri A, Kumar DN, Dehari D, Patil R, Singh S, Kumar D, Agrawal AK. Endorsement of TNBC Biomarkers in Precision Therapy by Nanotechnology. Cancers (Basel) 2023; 15:cancers15092661. [PMID: 37174125 PMCID: PMC10177107 DOI: 10.3390/cancers15092661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is a heterogeneous disease which accounts globally for approximately 1 million new cases annually, wherein more than 200,000 of these cases turn out to be cases of triple-negative breast cancer (TNBC). TNBC is an aggressive and rare breast cancer subtype that accounts for 10-15% of all breast cancer cases. Chemotherapy remains the only therapy regimen against TNBC. However, the emergence of innate or acquired chemoresistance has hindered the chemotherapy used to treat TNBC. The data obtained from molecular technologies have recognized TNBC with various gene profiling and mutation settings that have helped establish and develop targeted therapies. New therapeutic strategies based on the targeted delivery of therapeutics have relied on the application of biomarkers derived from the molecular profiling of TNBC patients. Several biomarkers have been found that are targets for the precision therapy in TNBC, such as EGFR, VGFR, TP53, interleukins, insulin-like growth factor binding proteins, c-MET, androgen receptor, BRCA1, glucocorticoid, PTEN, ALDH1, etc. This review discusses the various candidate biomarkers identified in the treatment of TNBC along with the evidence supporting their use. It was established that nanoparticles had been considered a multifunctional system for delivering therapeutics to target sites with increased precision. Here, we also discuss the role of biomarkers in nanotechnology translation in TNBC therapy and management.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohit Patil
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
- Department of Pharmaceutics, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
20
|
Pradhan R, Dey A, Taliyan R, Puri A, Kharavtekar S, Dubey SK. Recent Advances in Targeted Nanocarriers for the Management of Triple Negative Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15010246. [PMID: 36678877 PMCID: PMC9866847 DOI: 10.3390/pharmaceutics15010246] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a life-threatening form of breast cancer which has been found to account for 15% of all the subtypes of breast cancer. Currently available treatments are significantly less effective in TNBC management because of several factors such as poor bioavailability, low specificity, multidrug resistance, poor cellular uptake, and unwanted side effects being the major ones. As a rapidly growing field, nano-therapeutics offers promising alternatives for breast cancer treatment. This platform provides a suitable pathway for crossing biological barriers and allowing sustained systemic circulation time and an improved pharmacokinetic profile of the drug. Apart from this, it also provides an optimized target-specific drug delivery system and improves drug accumulation in tumor cells. This review provides insights into the molecular mechanisms associated with the pathogenesis of TNBC, along with summarizing the conventional therapy and recent advances of different nano-carriers for the management of TNBC.
Collapse
Affiliation(s)
- Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Anuradha Dey
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute—Frederick, Frederick, MD 21702, USA
| | - Sanskruti Kharavtekar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| |
Collapse
|
21
|
Zalpoor H, Aziziyan F, Liaghat M, Bakhtiyari M, Akbari A, Nabi-Afjadi M, Forghaniesfidvajani R, Rezaei N. The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors. Cell Commun Signal 2022; 20:186. [PMID: 36419156 PMCID: PMC9684800 DOI: 10.1186/s12964-022-00951-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022] Open
Abstract
Innate and adaptive immune cells patrol and survey throughout the human body and sometimes reside in the tumor microenvironment (TME) with a variety of cell types and nutrients that may differ from those in which they developed. The metabolic pathways and metabolites of immune cells are rooted in cell physiology, and not only provide nutrients and energy for cell growth and survival but also influencing cell differentiation and effector functions. Nowadays, there is a growing awareness that metabolic processes occurring in cancer cells can affect immune cell function and lead to tumor immune evasion and angiogenesis. In order to safely treat cancer patients and prevent immune checkpoint blockade-induced toxicities and autoimmunity, we suggest using anti-angiogenic drugs solely or combined with Immune checkpoint blockers (ICBs) to boost the safety and effectiveness of cancer therapy. As a consequence, there is significant and escalating attention to discovering techniques that target metabolism as a new method of cancer therapy. In this review, a summary of immune-metabolic processes and their potential role in the stimulation of intracellular signaling in TME cells that lead to tumor angiogenesis, and therapeutic applications is provided. Video abstract.
Collapse
Affiliation(s)
- Hamidreza Zalpoor
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Fatemeh Aziziyan
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Liaghat
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Maryam Bakhtiyari
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.412606.70000 0004 0405 433XDepartment of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abdullatif Akbari
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Razieh Forghaniesfidvajani
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.411705.60000 0001 0166 0922Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Zhou T, Li Y, Zhang H, Pan L, Pang J, Yuan Q, Li G, Jie L, Wang Y, Zhang Y. 4-(2-Butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl) oxobutyric acid inhibits angiogenesis via modulation of vascular endothelial growth factor receptor 2 signaling pathway. Front Cardiovasc Med 2022; 9:969616. [PMID: 36211567 PMCID: PMC9537693 DOI: 10.3389/fcvm.2022.969616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
4-(2-Butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl) oxobutyric acid (DCPIB), was discovered to be a potent and specific antagonist of volume-regulated anion channel that is closely linked to angiogenesis. However, the effect of DCPIB on angiogenesis remains unclear. Here, we found that DCPIB inhibited angiogenesis in the corneal suture and myocardial infarction in vivo model. In addition, DCPIB inhibited human umbilical vein endothelial cell migration, tube formation and proliferation in vitro. Moreover, DCPIB repressed the activation and expression of vascular endothelial growth factor receptor 2 (VEGFR2) and its downstream signaling pathway. Computer modeling further confirmed that DCPIB binds with high affinity to VEGFR2. Collectively, we present evidence supporting an antiangiogenic role of DCPIB by targeting VEGFR2 signaling pathway, which suggests that DCPIB is a valuable lead compound for the treatment of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Tianli Zhou
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yunda Li
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Heqiang Zhang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lei Pan
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinglong Pang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qian Yuan
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guiyang Li
- Department of Cardiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingjun Jie
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Cardiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Lingjun Jie
| | - Yan Wang
- Department of Cardiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Yan Wang
| | - Yanhui Zhang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Yanhui Zhang
| |
Collapse
|
23
|
Manjunath M, Swaroop S, Pradhan SS, Rao K R, Mahadeva R, Sivaramakrishnan V, Choudhary B. Integrated Transcriptome and Metabolomic Analysis Reveal Anti-Angiogenic Properties of Disarib, a Novel Bcl2-Specific Inhibitor. Genes (Basel) 2022; 13:genes13071208. [PMID: 35885991 PMCID: PMC9316176 DOI: 10.3390/genes13071208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Transcriptomic profiling of several drugs in cancer cell lines has been utilised to obtain drug-specific signatures and guided combination therapy to combat drug resistance and toxicity. Global metabolomics reflects changes due to altered activity of enzymes, environmental factors, etc. Integrating transcriptomics and metabolomics can provide genotype-phenotype correlation, providing meaningful insights into alterations in gene expression and its outcome to understand differential metabolism and guide therapy. This study uses a multi-omics approach to understand the global gene expression and metabolite changes induced by Disarib, a novel Bcl2-specific inhibitor in the Ehrlich adenocarcinoma (EAC) breast cancer mouse model. RNAseq analysis was performed on EAC mouse tumours treated with Disarib and compared to the controls. The expression of 6 oncogenes and 101 tumour suppressor genes interacting with Bcl2 and Bak were modulated upon Disarib treatment. Cancer hallmark pathways like DNA repair, Cell cycle, angiogenesis, and mitochondrial metabolism were downregulated, and programmed cell death platelet-related pathways were upregulated. Global metabolomic profiling using LC-MS revealed that Oncometabolites like carnitine, oleic acid, glycine, and arginine were elevated in tumour mice compared to normal and were downregulated upon Disarib treatment. Integrated transcriptomic and metabolomic profiles identified arginine metabolism, histidine, and purine metabolism to be altered upon Disarib treatment. Pro-angiogenic metabolites, arginine, palmitic acid, oleic acid, and myristoleic acid were downregulated in Disarib-treated mice. We further validated the effect of Disarib on angiogenesis by qRT-PCR analysis of genes in the VEGF pathway. Disarib treatment led to the downregulation of pro-angiogenic markers. Furthermore, the chorioallantoic membrane assay displayed a reduction in the formation of the number of secondary blood vessels upon Disarib treatment. Disarib reduces tumours by reducing oncometabolite and activating apoptosis and downregulating angiogenesis.
Collapse
Affiliation(s)
- Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sai Swaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Raksha Rao K
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
| | - Raghunandan Mahadeva
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
- Correspondence:
| |
Collapse
|
24
|
Hsu MJ, Chen HK, Lien JC, Huang YH, Huang SW. Suppressing VEGF-A/VEGFR-2 Signaling Contributes to the Anti-Angiogenic Effects of PPE8, a Novel Naphthoquinone-Based Compound. Cells 2022; 11:cells11132114. [PMID: 35805198 PMCID: PMC9266117 DOI: 10.3390/cells11132114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Natural naphthoquinones and their derivatives exhibit a broad spectrum of pharmacological activities and have thus attracted much attention in modern drug discovery. However, it remains unclear whether naphthoquinones are potential drug candidates for anti-angiogenic agents. The aim of this study was to evaluate the anti-angiogenic properties of a novel naphthoquinone derivative, PPE8, and explore its underlying mechanisms. Determined by various assays including BrdU, migration, invasion, and tube formation analyses, PPE8 treatment resulted in the reduction of VEGF-A-induced proliferation, migration, and invasion, as well as tube formation in human umbilical vein endothelial cells (HUVECs). We also used an aorta ring sprouting assay, Matrigel plug assay, and immunoblotting analysis to examine PPE8’s ex vivo and in vivo anti-angiogenic activities and its actions on VEGF-A signaling. It has been revealed that PPE8 inhibited VEGF-A-induced micro vessel sprouting and was capable of suppressing angiogenesis in in vivo models. In addition, PPE8 inhibited VEGF receptor (VEGFR)-2, Src, FAK, ERK1/2, or AKT phosphorylation in HUVECs exposed to VEGF-A, and it also showed significant decline in xenograft tumor growth in vivo. Taken together, these observations indicated that PPE8 may target VEGF-A–VEGFR-2 signaling to reduce angiogenesis. It also supports the role of PPE8 as a potential drug candidate for the development of therapeutic agents in the treatment of angiogenesis-related diseases including cancer.
Collapse
Affiliation(s)
- Ming-Jen Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Kun Chen
- Department of General Surgery, Chi Mei Medical Center, Tainan 71067, Taiwan;
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan;
- Department of Medical Research, Hospital of China Medical University, Taichung 40402, Taiwan
| | - Yu-Han Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Shiu-Wen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Research Center of Thoracic Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 3198)
| |
Collapse
|
25
|
Hung YH, Chen LT, Hung WC. The Trinity: Interplay among Cancer Cells, Fibroblasts, and Immune Cells in Pancreatic Cancer and Implication of CD8 + T Cell-Orientated Therapy. Biomedicines 2022; 10:biomedicines10040926. [PMID: 35453676 PMCID: PMC9026398 DOI: 10.3390/biomedicines10040926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
The microenvironment in tumors is complicated and is constituted by different cell types and stromal proteins. Among the cell types, the abundance of cancer cells, fibroblasts, and immune cells is high and these cells work as the “Trinity” in promoting tumorigenesis. Although unidirectional or bidirectional crosstalk between two independent cell types has been well characterized, the multi-directional interplays between cancer cells, fibroblasts, and immune cells in vitro and in vivo are still unclear. We summarize recent studies in addressing the interaction of the “Trinity” members in the tumor microenvironment and propose a functional network for how these members communicate with each other. In addition, we discuss the underlying mechanisms mediating the interplay. Moreover, correlations of the alterations in the distribution and functionality of cancer cells, fibroblasts, and immune cells under different circumstances are reviewed. Finally, we point out the future application of CD8+ T cell-oriented therapy in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (L.-T.C.); (W.-C.H.)
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Correspondence: (L.-T.C.); (W.-C.H.)
| |
Collapse
|
26
|
Subhan A, Attia SA, P Torchilin V. Targeted siRNA nanotherapeutics against breast and ovarian metastatic cancer: a comprehensive review of the literature. Nanomedicine (Lond) 2021; 17:41-64. [PMID: 34930021 DOI: 10.2217/nnm-2021-0207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metastasis is considered the major cause of unsuccessful cancer therapy. The metastatic development requires tumor cells to leave their initial site, circulate in the blood stream, acclimate to new cellular environments at a remote secondary site and endure there. There are several steps in metastasis, including invasion, intravasation, circulation, extravasation, premetastatic niche formation, micrometastasis and metastatic colonization. siRNA therapeutics are appreciated for their usefulness in treatment of cancer metastasis. However, siRNA therapy as a single therapy may not be a sufficient option for control of metastasis. By combining siRNA with targeting, functional agents or small-molecule drugs have shown potential effects that enhance therapeutic effectiveness. This review addresses multidrug resistance and metastasis in breast and ovarian cancers and highlights drug-delivery strategies using siRNA therapeutics.
Collapse
Affiliation(s)
- Abdus Subhan
- Department of Chemistry, ShahJalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Sara Aly Attia
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.,Department of Oncology, Radiotherapy & Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| |
Collapse
|
27
|
Shiau JP, Wu CC, Chang SJ, Pan MR, Liu W, Ou-Yang F, Chen FM, Hou MF, Shih SL, Luo CW. FAK Regulates VEGFR2 Expression and Promotes Angiogenesis in Triple-Negative Breast Cancer. Biomedicines 2021; 9:biomedicines9121789. [PMID: 34944605 PMCID: PMC8698860 DOI: 10.3390/biomedicines9121789] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) remains a significant clinical challenge because of its high vascularity and metastatic and recurrent rates. Tumor angiogenesis is considered an important mediator in the regulation of tumor cell survival and metastasis in TNBC. Angiogenesis is induced by the binding of vascular endothelial growth factor to vascular endothelial growth factor receptor 2 (VEGFR2). Focal adhesion kinase (FAK) plays an important role in regulating various cell functions in normal and cancer cells. Previous studies have focused on investigating the function of endothelial FAK in tumor cell angiogenesis. However, the association between tumor FAK and VEGFR2 in tumor angiogenesis and the possible mechanisms of this remain unclear. In this study, we used a public database and human specimens to examine the association between FAK and VEGFR2. At the same time, we verified the association between FAK and VEGFR2 through several experimental methods, such as quantitative real-time polymerase chain reaction, Western blotting, and next-generation sequencing. In addition, we used the endothelial cell model, zebrafish, and xenograft animal models to investigate the role of FAK in TNBC angiogenesis. We found that FAK and VEGFR2 were positively correlated in patients with TNBC. VEGFR2 and several other angiogenesis-related genes were regulated by FAK. In addition, FAK regulated VEGFR2 and VEGF protein expression in TNBC cells. Functional assays showed that FAK knockdown inhibited endothelial tube formation and zebrafish angiogenesis. An animal model showed that FAK inhibitors could suppress tumor growth and tumor vascular formation. FAK promotes angiogenesis in TNBC cells by regulating VEGFR2 expression. Therefore, targeting FAK could be another antiangiogenic strategy for TNBC treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Cheng-Che Wu
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
| | - Shu-Jyuan Chang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Fu Ou-Yang
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
| | - Fang-Ming Chen
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shen-Liang Shih
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
| | - Chi-Wen Luo
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2260); Fax: +886-7-3165011
| |
Collapse
|
28
|
Qin L, Cao X, Kaneko T, Voss C, Liu X, Wang G, Li SSC. Dynamic interplay of two molecular switches enabled by the MEK1/2-ERK1/2 and IL-6-STAT3 signaling axes controls epithelial cell migration in response to growth factors. J Biol Chem 2021; 297:101161. [PMID: 34480897 PMCID: PMC8477194 DOI: 10.1016/j.jbc.2021.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Cell migration is an essential physiological process, and aberrant migration of epithelial cells underlies many pathological conditions. However, the molecular mechanisms governing cell migration are not fully understood. We report here that growth factor–induced epithelial cell migration is critically dependent on the crosstalk of two molecular switches, namely phosphorylation switch (P-switch) and transcriptional switch (T-switch). P-switch refers to dynamic interactions of deleted in liver cancer 1 (DLC1) and PI3K with tensin-3 (TNS3), phosphatase and tensin homolog (PTEN), C-terminal tension, and vav guanine nucleotide exchange factor 2 (VAV2) that are dictated by mitogen-activated protein kinase kinase 1/2–extracellular signal–regulated protein kinase 1/2–dependent phosphorylation of TNS3, PTEN, and VAV2. Phosphorylation of TNS3 and PTEN on specific Thr residues led to the switch of DLC1–TNS3 and PI3K–PTEN complexes to DLC1–PTEN and PI3K–TNS3 complexes, whereas Ser phosphorylation of VAV2 promotes the transition of the PI3K–TNS3/PTEN complexes to PI3K–VAV2 complex. T-switch denotes an increase in C-terminal tension transcription/expression regulated by both extracellular signal–regulated protein kinase 1/2 and signal transducer and activator of transcription 3 (STAT3) via interleukin-6–Janus kinase–STAT3 signaling pathway. We have found that, the P-switch is indispensable for both the initiation and continuation of cell migration induced by growth factors, whereas the T-switch is only required to sustain cell migration. The interplay of the two switches facilitated by the interleukin-6–Janus kinase–STAT3 pathway governs a sequence of dynamic protein–protein interactions for sustained cell migration. That a similar mechanism is employed by both normal and tumorigenic epithelial cells to drive their respective migration suggests that the P-switch and T-switch are general regulators of epithelial cell migration and potential therapeutic targets.
Collapse
Affiliation(s)
- Lyugao Qin
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Xuan Cao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tomonori Kaneko
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Courtney Voss
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Xuguang Liu
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Guoping Wang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shawn S-C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
29
|
Jiang W, Han Y, Liang T, Zhang C, Gao F, Hou G. Down-Regulation of Toll-Like Receptor 5 (TLR5) Increased VEGFR Expression in Triple Negative Breast Cancer (TNBC) Based on Radionuclide Imaging. Front Oncol 2021; 11:708047. [PMID: 34336694 PMCID: PMC8320659 DOI: 10.3389/fonc.2021.708047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
In this study, GFP-tagged TNBC 4T1 cells with down-regulated TLR5 expression (TLR5- 4T1) and normal TLR5 expression (TLR5+ 4T1) were constructed, respectively. RT-PCR and Western blot studies showed that down-regulation of TLR5 obviously increased the expression of VEGFR in 4T1 cells. Highly stable radio-probes 125I-anti-TLR5 mAb/125I-VEGF/125I-IgG were obtained with labeling rates over 85% and radiochemical purities above 90%. Among these three probes, 125I-anti-TLR5 mAb and 125I-VEGF were used for specifically imaging TNBC, while 125I-IgG was used for comparison. Whole-body phosphorus autoradiography showed clear imaging at 48 h after injection of 125I-anti-TLR5 mAb and 125I-VEGF also provided clear imaging at 24 h. Biodistribution study demonstrated a higher tumor uptake of 125I-anti-TLR5 mAb in TLR5+ group compared with that in TLR5- group (P < 0.05), whereas tumor uptake of 125I-VEGF in TLR5+ group was lower than that in the TLR5- group (P < 0.05). Immunohistochemical staining suggested that the expression of TLR5 was lower, whereas the expression of VEGFR, CD31, and MVD (microvessel density) was higher in TLR5- tumor-bearing mice. In summary, the down-regulation of TLR5 in TNBC promoted the VEGFR expression and angiogenesis, resulting in the proliferation of TNBC cells. TLR5/VEGF might be a better indicator for monitoring the development of TNBC.
Collapse
Affiliation(s)
- Wen Jiang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yeming Han
- Radiology Department, Qilu Hospital of Shandong University, Jinan, China
| | - Ting Liang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Chao Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
30
|
Kim JS, Yoo JM, Park JSE, Kim J, Kim SG, Seok YJM, Son JH, Kim HJ. Anti‑angiogenic effect of mountain ginseng in vitro and in vivo: Comparison with farm‑cultivated ginseng. Mol Med Rep 2021; 24:615. [PMID: 34225442 DOI: 10.3892/mmr.2021.12254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/11/2021] [Indexed: 11/05/2022] Open
Abstract
Mountain ginseng (Panax ginseng) has been used for cancer patient therapy in Northeast Asia. Although it is well known that cancer cells are able to induce angiogenesis, the effect of mountain ginseng on angiogenesis is still unknown. In the present study, we investigated whether ethanolic extract of mountain ginseng (MGE) could inhibit angiogenesis in in vitro and in vivo models. In comparison with farm‑cultivated ginseng extract (FGE), MGE more strongly inhibited cell migration and formation of capillary‑like network within non‑cytotoxic ranges in SVEC4‑10 cells. In addition, MGE dose‑dependently suppressed Transwell cell migration of the cells. Moreover, MGE reduced the phosphorylation and expression of VEGF‑R2 as well as the phosphorylation of FAK, Src, Akt and ERK, the intermediate proteins in the VEGF‑R2 signaling cascade, in the cells. As expected, MGE dramatically decreased hemoglobin content in Matrigel plugs in mice. In conclusion, MGE possesses stronger anti‑angiogenic properties than FGE in vascular endothelial cells. Such effect of MGE is correlated with inhibition of activation of the VEGF‑R2 signaling pathway. Therefore, the novel features of MGE may be helpful for understanding its anticancer mechanism for the treatment of cancer patients.
Collapse
Affiliation(s)
- Jin Soo Kim
- Korean Medicine R&D Team 1, National Institute for Korean Medicine Development (NIKOM), Gyeongsan 38540, Republic of Korea
| | - Jae-Myung Yoo
- Korean Medicine R&D Team 1, National Institute for Korean Medicine Development (NIKOM), Gyeongsan 38540, Republic of Korea
| | | | - Jungeun Kim
- Korean Medicine R&D Team 1, National Institute for Korean Medicine Development (NIKOM), Gyeongsan 38540, Republic of Korea
| | - Sun-Gun Kim
- Korean Medicine R&D Team 1, National Institute for Korean Medicine Development (NIKOM), Gyeongsan 38540, Republic of Korea
| | - Young-Ju Mi Seok
- Korean Medicine R&D Team 1, National Institute for Korean Medicine Development (NIKOM), Gyeongsan 38540, Republic of Korea
| | - Jun-Ho Son
- Korean Medicine R&D Team 1, National Institute for Korean Medicine Development (NIKOM), Gyeongsan 38540, Republic of Korea
| | - Hyo Jung Kim
- Korean Medicine R&D Team 1, National Institute for Korean Medicine Development (NIKOM), Gyeongsan 38540, Republic of Korea
| |
Collapse
|
31
|
Buachan P, Namsa-Aid M, Sung HK, Peng C, Sweeney G, Tanechpongtamb W. Inhibitory effects of terrein on lung cancer cell metastasis and angiogenesis. Oncol Rep 2021; 45:94. [PMID: 33846818 PMCID: PMC8047749 DOI: 10.3892/or.2021.8045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Cancer metastasis is the leading cause of mortality in cancer patients. Over 70% of lung cancer patients are diagnosed at advanced or metastatic stages, and this results in an increased incidence of mortality. Terrein is a secondary bioactive fungal metabolite isolated from Aspergillus terreus. Numerous studies have demonstrated that terrein has anticancer properties, but in the present study, the cellular mechanisms underlying the inhibition of lung cancer cell metastasis by terrein was investigated for the first time. Using MTT assays, the cytotoxic effects of terrein were first examined in human lung cancer cells (A549 cells) and then compared with its cytotoxic effects in three noncancer control cell lines (Vero kidney, L6 skeletal muscle and H9C2 cardiomyoblast cells). The results indicated that terrein significantly reduced the viability of all these cells but exhibited a different level of toxicity in each cell type; these results revealed a specific concentration range in which the effect of terrein was specific to A549 cells. This significant cytotoxic effect of terrein in A549 cells was verified using LDH assays. It was then demonstrated that terrein attenuated the proliferation of A549 cells using IncuCyte image analysis. Regarding its antimetastatic effects, terrein significantly inhibited A549 cell adhesion, migration and invasion. In addition, terrein suppressed the angiogenic processes of A549 cells, including vascular endothelial growth factor (VEGF) secretion, capillary-like tube formation and VEGF/VEGFR2 interaction. These phenomena were accompanied by reduced protein levels of integrins, FAK, and their downstream mediators (e.g., PI3K, AKT, mTORC1 and P70S6K). All these data indicated that terrein was able to inhibit all the major metastatic processes in human lung cancer cells, which is crucial for cancer treatment.
Collapse
Affiliation(s)
- Paiwan Buachan
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Maneekarn Namsa-Aid
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Hye Kyoung Sung
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Wanlaya Tanechpongtamb
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
32
|
Zhong Y, Yin B, Ye Y, Dekhel OYAT, Xiong X, Jian Z, Gu L. The bidirectional role of the JAK2/STAT3 signaling pathway and related mechanisms in cerebral ischemia-reperfusion injury. Exp Neurol 2021; 341:113690. [PMID: 33798563 DOI: 10.1016/j.expneurol.2021.113690] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/12/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway, a well-conserved and basic intracellular signaling cascade, is mostly inactivated under basal conditions, although it can be phosphorylated under extracellular stimulation; in addition, it can influence the transcription and expression of multiple genes involved in biological processes such as cellular growth, metabolism, differentiation, degradation and angiogenesis. The inflammatory response, apoptosis, oxidative stress and angiogenesis are the main factors involved in the pathogenesis of ischemic stroke. Numerous studies have confirmed that the JAK2/STAT3 axis can be activated rapidly by ischemic stress, which is closely related to the regulation of these important pathological processes. However, different opinions on the specific role of this signaling pathway remain. In this paper, we review and summarize previous studies on the JAK2/STAT3 pathway in ischemic stroke.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Bo Yin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Omar Y A T Dekhel
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
33
|
Huang Y, Yang Z, Li F, Zhao H, Li C, Yu N, Hamilton DJ, Li Z. 64Cu/ 177Lu-DOTA-diZD, a Small-Molecule-Based Theranostic Pair for Triple-Negative Breast Cancer. J Med Chem 2021; 64:2705-2713. [PMID: 33646782 DOI: 10.1021/acs.jmedchem.0c01957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite advances in targeted therapies, the prognosis for patients with triple-negative breast cancer (TNBC) is poor because there are few actionable molecular targets. The dependence of solid tumor growth on angiogenesis prompted our development of angiogenic-receptor-targeted radionuclide therapy (TRT) to treat TNBC by targeted delivery of therapeutic doses of ionizing radiation to tumors. A high-affinity vascular endothelial growth factor receptor (VEGFR)-targeted agent, diZD, was synthesized and labeled with 177Lu and 64Cu by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator giving the TRT agent, 177Lu-DOTA-diZD, and PET imaging agent, 64Cu-DOTA-diZD. We showed that "64Cu/177Lu"-DOTA-diZD radiotracers are a promising theranostic pair for TNBC. 4T1-bearing mice treated with 177Lu-DOTA-diZD-based TRT survived with a median of 28 days, which was significantly longer than that of control mice as 18 days. Anti-PD1 immunotherapy resulted in a shorter median survival of 16 days. This work presents for the first time that small-molecule VEGFR-oriented TRT is a promising therapeutic option to treat "immunogenic cold" TNBC.
Collapse
Affiliation(s)
- Yuqian Huang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhen Yang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Feng Li
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Hong Zhao
- Cancer Center, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Chun Li
- Departments of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Nam Yu
- Houston Radiology Associates and Department of Radiology, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Zheng Li
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
| |
Collapse
|
34
|
Heinen H, Seyler L, Popp V, Hellwig K, Bozec A, Uder M, Ellmann S, Bäuerle T. Morphological, functional, and molecular assessment of breast cancer bone metastases by experimental ultrasound techniques compared with magnetic resonance imaging and histological analysis. Bone 2021; 144:115821. [PMID: 33348127 DOI: 10.1016/j.bone.2020.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND The imaging of bone metastases, which is regularly performed by cross-sectional modalities, is clinically vital when characterizing and staging osseous lesions. In this paper, we aimed to establish a novel methodology using experimental ultrasound (US) techniques to assess the morphological, functional, and molecular features of breast cancer bone metastases in an animal model, compared with magnetic resonance imaging (MRI) and histological analysis. MATERIALS AND METHODS Nude rats were implanted intra-arterially with MDA-MB-231 breast cancer cells to induce osteolytic metastasis in their right hind legs. Once tumors had developed, an experimental US technique using automatic 3D scanning and MRI were performed. For assessment of perfusion, functional imaging techniques included contrast-enhanced US (CEUS) and dynamic contrast-enhanced MRI (DCE-MRI). For molecular ultrasound, anti-VEGFR2 conjugated microbubbles were applied and correlated with immunostaining for VEGFR2 expression. RESULTS 3D US enabled the automatic assessment of osteolytic lesions, including the largest tumor diameters along the x-, y- and z-axes as well as the segmented tumor volumes, without significant differences between US and MRI (p > 0.18). The CEUS and DCE-MRI of osseous lesions showed corresponding results for the parameters peak enhancement, wash-in area under the curve (both, r > 0.5) and wash-in perfusion index (r > 0.3) when differentiating between tumor, necrotic tissue and healthy muscle tissue (all, p < 0.01). Finally, molecular US allowed the non-invasive assessment of increased VEGFR2 expression in skeletal lesions compared with surrounding muscle tissue (p = 0.03), while a control antibody could not discriminate between these tissues (p = 0.44)-a factor which was confirmed by histological analysis. CONCLUSION To the best of our knowledge, this is the first report on an imaging protocol for breast cancer bone metastasis using an experimental US scanner. Therefore, we present a novel methodology to characterize these osseous lesions on the morphological, functional, and molecular level in correlation with MRI and histological analysis.
Collapse
Affiliation(s)
- Henrik Heinen
- Institute of Radiology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Radiology, University Hospital, Paracelsus University, Prof.-Ernst-Nathan-Str. 1, 90419 Nuremberg, Germany
| | - Lisa Seyler
- Institute of Radiology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany
| | - Vanessa Popp
- Institute of Radiology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany
| | - Konstantin Hellwig
- Institute of Radiology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany
| | - Aline Bozec
- Medical Clinic 3 - Rheumatology and Immunology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany
| | - Stephan Ellmann
- Institute of Radiology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany.
| |
Collapse
|
35
|
Modi SJ, Kulkarni VM. Discovery of VEGFR-2 inhibitors exerting significant anticancer activity against CD44+ and CD133+ cancer stem cells (CSCs): Reversal of TGF-β induced epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma. Eur J Med Chem 2020; 207:112851. [PMID: 33002846 DOI: 10.1016/j.ejmech.2020.112851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/02/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignancy characterized by neoangiogenesis, which is an augmented production of proangiogenic factors by the tumor and its adjacent infected cells. These dysregulated angiogenic factors are the therapeutic targets in anti-angiogenic drug development. The signaling pathway of vascular endothelial growth factor (VEGF)/VEGFR-2 is crucial for controlling the angiogenic responses in endothelial cells (ECs). In this study, we carried out a rational drug design approach wherein we have identified the novel orally bioavailable compound VS 8 as a potent VEGFR-2 inhibitor, which remarkably suppresses hVEGF and hVEGFR-2 expression in HUVECs and exhibits significant anti-angiogenic effects in CAM assay. Besides, VS 8 significantly induces apoptosis in HCC cell line (Hep G2). Later we examined its effectiveness against CD44+ and CD133+ CSCs. Here, VS 8 was found to be active against CSCs, and adequate for the cessation of the cell cycle at 'G0/G1' and 'S' phase in CD44+ and CD133+ CSCs respectively. Factually, transforming growth factor-β (TGF-β) stimulated epithelial-mesenchymal transition (EMT) induces invasion and migration of HCC cells, which results in the metastasis. Therefore, we studied the effect of VS 8 on EMT markers using flow cytometry, which suggested that VS 8 significantly upregulates E-cadherin (epithelial biomarker) and downregulates vimentin (mesenchymal biomarker). Further, VS 8 downregulates the expression of EMT-inducing transcription factors (EMT-TFs), i.e., SNAIL. Altogether, our findings indicate that VS 8 could be a promising drug candidate for cancer therapy.
Collapse
Affiliation(s)
- Siddharth J Modi
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, Maharashtra, India
| | - Vithal M Kulkarni
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, Maharashtra, India.
| |
Collapse
|
36
|
Inhibitory Effects of Tangeretin, A Citrus Peel-Derived Flavonoid, on Breast Cancer Stem Cell Formation through Suppression of Stat3 Signaling. Molecules 2020; 25:molecules25112599. [PMID: 32503228 PMCID: PMC7321155 DOI: 10.3390/molecules25112599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer stem cells (BCSCs) are responsible for tumor chemoresistance and recurrence. Targeting CSCs using natural compounds is a novel approach for cancer therapy. A CSC-inhibiting compound was purified from citrus extracts using silica gel, gel filtration and high-pressure liquid chromatography. The purified compound was identified as tangeretin by using nuclear magnetic resonance (NMR). Tangeretin inhibited cell proliferation, CSC formation and tumor growth, and modestly induced apoptosis in CSCs. The frequency of a subpopulation with a CSC phenotype (CD44+/CD24-) was reduced by tangeretin. Tangeretin reduced the total level and phosphorylated nuclear level of signal transducer and activator of transcription 3 (Stat3). Our results in this study show that tangeretin inhibits the Stat3 signaling pathway and induces CSC death, indicating that tangeretin may be a potential natural compound that targets breast cancer cells and CSCs.
Collapse
|
37
|
Ma Y, Wang J, Li Q, Cao B. The Effect of Omega-3 Polyunsaturated Fatty Acid Supplementations on anti-Tumor Drugs in Triple Negative Breast Cancer. Nutr Cancer 2020; 73:196-205. [PMID: 32223441 DOI: 10.1080/01635581.2020.1743873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) comprises about 10-20% of all diagnosed breast cancers. Increasing evidence shows that the omega-3 polyunsaturated fatty acids (ω-3PUFAs), docosahexaenoic acid and eicosapentaenoic acid, can influence the development, progression, and prognosis of TNBC In Vivo and In Vitro; however, clinical evidence supporting the effect of ω-3PUFAs on TNBC is lacking. Research has demonstrated that ω-3PUFAs can induce apoptosis in breast cancer cells by inhibiting the PI3K/AKT signal transduction pathway, and that ω-3PUFAs can improve the effectiveness of chemotherapy drugs. Using ω-3PUFA supplementation in addition to pharmacotherapy in the treatment of breast cancer may result in enhanced anti-tumor effects that will be particularly applicable to difficult to treat phenotypes such as TNBC. The aim of the current review was to summarize the evidence-base supporting the antitumor effects of omega-3 PUFAs in TNBC.
Collapse
Affiliation(s)
- Yingjie Ma
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Jing Wang
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Qin Li
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Bangwei Cao
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
38
|
Farzaneh Behelgardi M, Zahri S, Gholami Shahvir Z, Mashayekhi F, Mirzanejad L, Asghari SM. Targeting signaling pathways of VEGFR1 and VEGFR2 as a potential target in the treatment of breast cancer. Mol Biol Rep 2020; 47:2061-2071. [PMID: 32072404 DOI: 10.1007/s11033-020-05306-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/05/2020] [Indexed: 12/28/2022]
Abstract
Tumor angiogenesis allows tumor cells to grow and migrate toward the bloodstream and initiate metastasis. The interactions of vascular endothelial growth factors (VEGF) A and B, as the important regulating factors for blood vessel growth, with VEGFR1 and VEGFR2 trigger angiogenesis process. Thus, preventing these interactions led to the effective blockade of VEGF/VEGFRs signaling pathways. In this study, the inhibitory effect of a 23-mer linear peptide (VGB4), which binds to both VEGFR1 and VEGFR2, on VEGF-stimulated Human Umbilical Vein Endothelial Cells (HUVECs) and highly metastatic human breast cancer cell MDA-MB-231 proliferation was examined using MTT assay. To assess the anti-migratory potential of VGB4, HUVECs and also MDA-MB-231 cells wound healing assay was carried out at 48 and 72 h. In addition, downstream signaling pathways of VEGF associated with cell migration and invasion were investigated by quantification of mRNA and protein expression using real-time quantitative PCR and western blot in 4T1 tumor tissues and MDA-MB-231 cells. The results revealed that VGB4 significantly impeded proliferation of HUVECs and MDA-MB-231 cells, in a dose- and time-dependent manner, and migration of HUVECs and MDA-MB-231 cells for a prolonged time. We also observed statistically significant reduction of the transcripts and protein levels of focal adhesion kinase (FAK), Paxillin, matrix metalloproteinase-2 (MMP-2), RAS-related C3 botulinum substrate 1 (Rac1), P21-activated kinase-2 (PAK-2) and Cofilin-1 in VGB4-treated 4T1 tumor tissues compared to controls. The protein levels of phospho-VEGFR1, phospho-VEGFR2, Vimentin, β-catenin and Snail were markedly decreased in both VGB4-treated MDA-MB-231 cells and VGB4-treated 4T1 tumor tissues compared to controls as evidenced by western blotting. These results, in addition to our previous studies, confirm that dual blockage of VEGFR1 and VEGFR2, due to the inactivation of diverse signaling mediators, effectively suppresses tumor growth and metastasis.
Collapse
Affiliation(s)
| | - Saber Zahri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Farhad Mashayekhi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Laleh Mirzanejad
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - S Mohsen Asghari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran. .,Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
39
|
Srivastava S, Zahra FT, Gupta N, Tullar PE, Srivastava SK, Mikelis CM. Low Dose of Penfluridol Inhibits VEGF-Induced Angiogenesis. Int J Mol Sci 2020; 21:755. [PMID: 31979394 PMCID: PMC7036977 DOI: 10.3390/ijms21030755] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
: Metastasis is considered a major burden in cancer, being responsible for more than 90% of cancer-related deaths. Tumor angiogenesis is one of the main processes that lead to tumor metastasis. Penfluridol is a classic and commonly used antipsychotic drug, which has a great ability to cross the blood-brain barrier. Recent studies have revealed that penfluridol has significant anti-cancer activity in diverse tumors, such as metastatic breast cancer and glioblastoma. Here, we aim to identify the effect of low doses of penfluridol on tumor microenvironment and compare it with its effect on tumor cells. Although low concentration of penfluridol was not toxic for endothelial cells, it blocked angiogenesis in vitro and in vivo. In vitro, penfluridol inhibited VEGF-induced primary endothelial cell migration and tube formation, and in vivo, it blocked VEGF- and FGF-induced angiogenesis in the matrigel plug assay. VEGF-induced VEGFR2 phosphorylation and the downstream p38 and ERK signaling pathways were not affected in endothelial cells, although VEGF-induced Src and Akt activation were abrogated by penfluridol treatment. When cancer cells were treated with the same low concentration of penfluridol, basal Src activation levels were mildly impaired, thus impacting their cell migration and wound healing efficiency. The potential of cancer-induced paracrine effect on endothelial cells was explored, although that did not seem to be a player for angiogenesis. Overall, our data demonstrates that low penfluridol levels, similar to the ones clinically used for anti-psychotic conditions, suppress angiogenic efficiency in the tumor microenvironment.
Collapse
Affiliation(s)
- Suyash Srivastava
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (F.T.Z.); (N.G.)
| | - Fatema Tuz Zahra
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (F.T.Z.); (N.G.)
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Nehal Gupta
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (F.T.Z.); (N.G.)
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Paul E. Tullar
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
| | - Sanjay K. Srivastava
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (F.T.Z.); (N.G.)
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Constantinos M. Mikelis
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (F.T.Z.); (N.G.)
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
40
|
Kourti M, Cai J, Jiang W, Westwell AD. Structural Modifications on CORM-3 Lead to Enhanced Anti-angiogenic Properties Against Triple-negative Breast Cancer Cells. Med Chem 2019; 17:40-59. [PMID: 31808392 DOI: 10.2174/1573406415666191206102452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/21/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE Carbon monoxide-releasing molecules (CORMs) are a special class of organometallic complexes that have been reported to offer beneficial effects against different conditions including several subtypes of cancer. Especially for the aggressive and poorly treated triplenegative breast cancer (TNBC), early CORMs have been shown to diminish malignant angiogenesis and may be considered as an alternative approach. So, this study aimed at testing novel CORM molecules against angiogenesis in TNBC seeking potent drug candidates for new therapies. METHODS Based on previous studies, CORM-3 was chosen as the lead compound and a group of 15 new ruthenium-based CORMs was synthesized and subsequently evaluated in vitro for potential anti-angiogenic properties. RESULTS A similar anti-angiogenic behaviour to the lead complex was observed and a new CORM, complex 4, emerged as a promising agent from this study. Specifically, this complex offered better inhibition of the activation of VEGFR2 and other downstream proteins of vascular endothelial cells. Complex 4 also retained the ability of the parent molecule to reduce the upregulated VEGF expression from TNBC cells and inhibit endothelial cell migration and new vessel formation. The lack of significant cytotoxicity and the downregulating activity over the cytoprotective enzyme haem oxygenase-1 (HO-1) in cancer cells may also favour CORMs against this poorly treated subtype of breast cancer. CONCLUSION Since the anti-angiogenic approach is one of the few available targeted strategies against TNBC, both CORM-3 and the new complex 4 should be considered for further research as combination agents with existing anti-angiogenic drugs for more effective treatment of malignant angiogenesis in TNBC.
Collapse
Affiliation(s)
- Malamati Kourti
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Jun Cai
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Wen Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, United Kingdom
| |
Collapse
|
41
|
Lien J, Chung C, Huang T, Chang T, Chen K, Gao G, Hsu M, Huang S. A novel 2-aminobenzimidazole-based compound Jzu 17 exhibits anti-angiogenesis effects by targeting VEGFR-2 signalling. Br J Pharmacol 2019; 176:4034-4049. [PMID: 31368127 PMCID: PMC6811776 DOI: 10.1111/bph.14813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent development in drug discovery have shown benzimidazole to be an important pharmacophore,. Benzimidazole derivatives exhibit broad-spectrum pharmacological properties including anti-microbial, anti-diabetic and anti-tumour activity. However, whether benzimidazole derivatives are effective in suppressing angiogenesis and its underlying mechanisms remain incompletely understood. In this study, we aim to characterize the anti-angiogenic mechanisms of a novel 2-aminobenzimidazole-based compound, Jzu 17, in an effort to develop novel angiogenesis inhibitor. EXPERIMENTAL APPROACH Effects of Jzu 17 on endothelial cell proliferation, migration, invasion, and activation of signalling molecules induced by VEGF-A, were analysed by immunoblotting, MTT, BrdU, migration, and invasion assays. We performed tube formation assay, aorta ring sprouting assay, matrigel plug assay, and a mouse model of metastasis to evaluate ex vivo and in vivo anti-angiogenic effects of Jzu 17. KEY RESULTS Jzu 17 inhibited VEGF-A-induced cell proliferation, migration, invasion, and endothelial tube formation of HUVECs. Jzu 17 suppressed VEGF-A-induced microvessel sprouting ex vivo and attenuated VEGF-A- or tumour cell-induced neovascularization in vivo. Jzu 17 also reduced B16F10 melanoma lung metastasis. In addition, Jzu 17 inhibited the phosphorylation of VEGFR-2 and its downstream signalling molecules in VEGF-A-stimulated HUVECs. Results from computer modelling further showed that Jzu 17 binds to VEGFR-2 with high affinity. CONCLUSIONS AND IMPLICATIONS Jzu 17 may inhibit endothelial remodelling and suppress angiogenesis through targeting VEGF-A-VEGFR-2 signalling. These results also suggest Jzu 17 as a potential lead compound and warrant the clinical development of similar agents in the treatment of cancer and angiogenesis-related diseases.
Collapse
Affiliation(s)
- Jin‐Cherng Lien
- School of PharmacyChina Medical UniversityTaichungTaiwan
- Department of Medical ResearchHospital of China Medical UniversityTaichungTaiwan
| | - Chi‐Li Chung
- Division of Pulmonary Medicine, Department of Internal MedicineTaipei Medical University HospitalTaipeiTaiwan
- Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine and School of Respiratory Therapy, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Tur‐Fu Huang
- Graduate Institute of Pharmacology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | | | | | - Ging‐Yan Gao
- School of PharmacyChina Medical UniversityTaichungTaiwan
| | - Ming‐Jen Hsu
- Department of Pharmacology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| | - Shiu‐Wen Huang
- Department of Pharmacology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Department of Medical ResearchTaipei Medical University HospitalTaipeiTaiwan
| |
Collapse
|
42
|
Nedeljković M, Damjanović A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge. Cells 2019; 8:E957. [PMID: 31443516 PMCID: PMC6770896 DOI: 10.3390/cells8090957] [Citation(s) in RCA: 509] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Triple-negative (TNBC) is the most lethal subtype of breast cancer owing to high heterogeneity, aggressive nature, and lack of treatment options. Chemotherapy remains the standard of care for TNBC treatment, but unfortunately, patients frequently develop resistance. Accordingly, in recent years, tremendous effort has been made into elucidating the mechanisms of TNBC chemoresistance with the goal of identifying new molecular targets. It has become evident that the development of TNBC chemoresistance is multifaceted and based on the elaborate interplay of the tumor microenvironment, drug efflux, cancer stem cells, and bulk tumor cells. Alterations of multiple signaling pathways govern these interactions. Moreover, TNBC's high heterogeneity, highlighted in the existence of several molecular signatures, presents a significant obstacle to successful treatment. In the present, in-depth review, we explore the contribution of key mechanisms to TNBC chemoresistance as well as emerging strategies to overcome them. We discuss novel anti-tumor agents that target the components of these mechanisms and pay special attention to their current clinical development while emphasizing the challenges still ahead of successful TNBC management. The evidence presented in this review outlines the role of crucial pathways in TNBC survival following chemotherapy treatment and highlights the importance of using combinatorial drug strategies and incorporating biomarkers in clinical studies.
Collapse
Affiliation(s)
- Milica Nedeljković
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia.
| | - Ana Damjanović
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| |
Collapse
|
43
|
Jyotsana N, Zhang Z, Himmel LE, Yu F, King MR. Minimal dosing of leukocyte targeting TRAIL decreases triple-negative breast cancer metastasis following tumor resection. SCIENCE ADVANCES 2019; 5:eaaw4197. [PMID: 31355333 PMCID: PMC6656540 DOI: 10.1126/sciadv.aaw4197] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/17/2019] [Indexed: 05/19/2023]
Abstract
Surgical removal of the primary tumor is a common practice in breast cancer treatment. However, postsurgical metastasis poses an immense setback in cancer therapy. Considering that 90% of cancer-related deaths are due to metastasis, antimetastatic therapeutic strategies that can target disseminating tumor cells in the circulation before they can form secondary tumors hold preclinical and clinical potential for cancer patients. Our current work uses a liposomal formulation functionalized with the adhesion receptor E-selectin and the apoptosis-inducing ligand TNF (tumor necrosis factor)-related apoptosis-inducing ligand (TRAIL) to reduce metastasis following tumor resection in an aggressive triple-negative breast cancer (TNBC) mouse model. We demonstrate that minimal administration of E-selectin-TRAIL liposomes can target metastasis in a TNBC model, with primary tumor resection to mimic clinical settings. Our study indicates that TRAIL liposomes, alone or in combination with existing clinically approved therapies, may neutralize distant metastasis of a broad range of tumor types systemically.
Collapse
Affiliation(s)
- Nidhi Jyotsana
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Zhenjiang Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lauren E. Himmel
- Department of Pathology, Microbiology and Immunology, Translational Pathology Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37232-258, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
44
|
Kourti M, Westwell A, Jiang W, Cai J. Repurposing old carbon monoxide-releasing molecules towards the anti-angiogenic therapy of triple-negative breast cancer. Oncotarget 2019; 10:1132-1148. [PMID: 30800223 PMCID: PMC6383690 DOI: 10.18632/oncotarget.26638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is defined by the lack of expression of the oestrogen and progesterone receptors and HER-2. Recently, carbon monoxide (CO) was found to behave as an important endogenous signalling molecule and to suppress VEGF receptor-2 (VEGFR-2) and protein kinase B phosphorylation. Given that anti-angiogenic drugs exist as one of the few available targeted therapies against TNBC, the aim of this project was to study the effects of CO-releasing molecules (CORMs) on TNBC cell lines and the associated endothelial cells and characterise their anti-angiogenic properties that can be used for the reduction of cancer-driven angiogenesis. Four commercially available CORMs were screened for their cytotoxicity, their effects on cell metabolism, migration, VEGF expression, tube formation and VEGFR-2 activation. The most important result was the reduction in VEGF levels expressed by CORM-treated TNBC cells, along with the inhibition of phosphorylation of VEGFR2 and downstream proteins. The migration and tube formation ability of endothelial cells was also decreased by CORMs, justifying a potential re-purposing of old CORMs towards the anti-angiogenic therapy of TNBC. The additional favourable low cytotoxicity, reduction in the glycolysis levels and downregulation of haem oxygenase-1 in TNBC cells enhance the potential of CORMs against TNBC. In this study, CORM-2 remained the most effective CORM and we propose that CORM-2 may be pursued further as an additional agent in combination with existing anti-angiogenic therapies for a more successful targeting of malignant angiogenesis in TNBC.
Collapse
Affiliation(s)
- Malamati Kourti
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.,School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Andrew Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Wen Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Jun Cai
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
45
|
FAK is Required for Tumor Metastasis-Related Fluid Microenvironment in Triple-Negative Breast Cancer. J Clin Med 2019; 8:jcm8010038. [PMID: 30609732 PMCID: PMC6352244 DOI: 10.3390/jcm8010038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 01/08/2023] Open
Abstract
Cancer cell metastasis is the main cause of death in patients with cancer. Many studies have investigated the biochemical factors that affect metastasis; however, the role of physical factors such as fluid shear stress (FSS) in tumorigenesis and metastasis have been less investigated. Triple-negative breast cancer (TNBC) has a higher incidence of lymph node invasion and distant metastasis than other subtypes of breast cancer. In this study, we investigated the influence of FSS in regulating the malignant behavior of TNBC cells. Our data demonstrate that low FSS promotes cell migration, invasion, and drug resistance, while high FSS has the opposite results; additionally, we found that these phenomena were regulated through focal adhesion kinase (FAK). Using immunohistochemistry staining, we show that FAK levels correlate with the nodal stage and that FAK is a significant independent predictor of overall survival in patients. Altogether, these data implicate FAK as a fluid mechano-sensor that regulates the cell motility induced by FSS and provide a strong rationale for cancer treatments that combine the use of anti-cancer drugs and strategies to modulate tumor interstitial fluid flow.
Collapse
|
46
|
Bousoik E, Montazeri Aliabadi H. "Do We Know Jack" About JAK? A Closer Look at JAK/STAT Signaling Pathway. Front Oncol 2018; 8:287. [PMID: 30109213 PMCID: PMC6079274 DOI: 10.3389/fonc.2018.00287] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Janus tyrosine kinase (JAK) family of proteins have been identified as crucial proteins in signal transduction initiated by a wide range of membrane receptors. Among the proteins in this family JAK2 has been associated with important downstream proteins, including signal transducers and activators of transcription (STATs), which in turn regulate the expression of a variety of proteins involved in induction or prevention of apoptosis. Therefore, the JAK/STAT signaling axis plays a major role in the proliferation and survival of different cancer cells, and may even be involved in resistance mechanisms against molecularly targeted drugs. Despite extensive research focused on the protein structure and mechanisms of activation of JAKs, and signal transduction through these proteins, their importance in cancer initiation and progression seem to be underestimated. This manuscript is an attempt to highlight the role of JAK proteins in cancer biology, the most recent developments in targeting JAKs, and the central role they play in intracellular cross-talks with other signaling cascades.
Collapse
Affiliation(s)
- Emira Bousoik
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States.,School of Pharmacy, Omar Al-Mukhtar University, Dèrna, Libya
| | - Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States
| |
Collapse
|
47
|
Wang B, Shen J, Wang Z, Liu J, Ning Z, Hu M. Isomangiferin, a Novel Potent Vascular Endothelial Growth Factor Receptor 2 Kinase Inhibitor, Suppresses Breast Cancer Growth, Metastasis and Angiogenesis. J Breast Cancer 2018; 21:11-20. [PMID: 29628979 PMCID: PMC5880961 DOI: 10.4048/jbc.2018.21.1.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/20/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose Vascular endothelial growth factor (VEGF) signal transduction mainly depends on its binding to VEGF receptor 2 (VEGFR-2). VEGF downstream signaling proteins mediate several of its effects in cancer progression, including those on tumor growth, metastasis, and blood vessel formation. The activation of VEGFR-2 signaling is a hallmark of and is considered a therapeutic target for breast cancer. Here, we report a study of the regulation of the VEGFR-2 signaling pathway by a small molecule, isomangiferin. Methods A human breast cancer xenograft mouse model was used to investigate the efficacy of isomangiferin in vivo. The inhibitory effect of isomangiferin on breast cancer cells and the underlying mechanism were examined in vitro. Results Isomangiferin suppressed tumor growth in xenografts. In vitro, isomangiferin treatment inhibited cancer cell proliferation, migration, invasion, and adhesion. The effect of isomangiferin on breast cancer growth was well coordinated with its suppression of angiogenesis. A rat aortic ring assay revealed that isomangiferin significantly inhibited blood vessel formation during VEGF-induced microvessel sprouting. Furthermore, isomangiferin treatment inhibited VEGF-induced proliferation of human umbilical vein endothelial cells and the formation of capillary-like structures. Mechanistically, isomangiferin induced caspase-dependent apoptosis of breast cancer cells. Furthermore, VEGF-induced activation of the VEGFR-2 kinase pathway was down-regulated by isomangiferin. Conclusion Our findings demonstrate that isomangiferin exerts anti-breast cancer effects via the functional inhibition of VEGFR-2. Pharmaceutically targeting VEGFR-2 by isomangiferin could be an effective therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Banghua Wang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Jia Shen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Zexia Wang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Jianxia Liu
- Department of Optoelectronic Engineering, School of Electrical and Information Engineering, Hubei University of Science and Technology, Xianning, China
| | - Zhifeng Ning
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
48
|
Zhao K, Yuan Y, Lin B, Miao Z, Li Z, Guo Q, Lu N. LW-215, a newly synthesized flavonoid, exhibits potent anti-angiogenic activity in vitro and in vivo. Gene 2017; 642:533-541. [PMID: 29196258 DOI: 10.1016/j.gene.2017.11.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/25/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
LW-215 is a newly synthesized flavonoid, which is the derivative of wogonin. Our group has previously confirmed that wogonin has an anti-angiogenic activity, while the anti-angiogenic effect of LW-215 is unclear. In this study, we explored whether LW-215 can inhibit angiogenesis and further probed the potential molecular mechanisms. We found that LW-215 inhibited migration and tube formation in human umbilical vein endothelial cells (HUVECs) and immortalized endothelial EA.hy926 cells without a significant decrease in cell viability. Microvessels sprouting from rat aortic ring and chicken chorioallantoic membrane (CAM) model also revealed that LW-215 could suppress angiogenesis in vivo. Western blot and ELISA analysis indicated that LW-215 could prevent VEGFR2 activation though reducing VEGF autocrine other than VEGFR1. Thus, its downstream kinases, such as Akt, ERK and p38 signaling, were inhibited. Taken together, these results fully showed that LW-215 might be a promising anti-angiogenesis agent.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yang Yuan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Binyan Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Zhaorui Miao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
49
|
Pan LH, Pang ST, Fang PY, Chuang CK, Yang HW. Label-Free Biochips for Accurate Detection of Prostate Cancer in the Clinic: Dual Biomarkers and Circulating Tumor Cells. Am J Cancer Res 2017; 7:4289-4300. [PMID: 29158826 PMCID: PMC5695013 DOI: 10.7150/thno.21092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/10/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose: Early diagnosis of prostate cancer (PCa) is essential for the prevention of metastasis and for early treatment; therefore, we aimed to develop a simple, accurate, and multi-analyte assay system for early PCa diagnosis in this study. Experimental design: We fabricated three kinds of biochips then integrated into microfluidic device for simultaneous detection of vascularendothelial growth factor (VEGF), prostate-specific antigen (PSA), and PCa circulating tumor cells (CTC) in human serum for accurate diagnosis of PCa. Then the integrated device can be put in the ELISA reader for signal analysis after sample incubation, no necessary of further fluorescence staining or microscopy counting. Result: The integrated device has wide liner detection ranges (0.05-25 ng/mL for both PSA and VEGF, and 5-300 cells/mL for PCa CTC), as well as high levels of sensitivity and selectivity, and demonstrated a high correlation with an enzyme-linked immunosorbent assay for sample detection in patients. Also, the presented biochips could maintain their stability when stored at 37°C for 49 days without significant differences in the red-shift (<5%). Conclusions: We have successfully developed a multi-analyte sensing system for rapid and easy detection of PSA, VEGF, and PC3 cells in PCa samples using label-free glass-based chips. This method presents the advantages of a broad working range, high specificity, label-free, high-speed, stability, and low cost detection method for point-of-care testing of PCa.
Collapse
|
50
|
Gao P, Niu N, Wei T, Tozawa H, Chen X, Zhang C, Zhang J, Wada Y, Kapron CM, Liu J. The roles of signal transducer and activator of transcription factor 3 in tumor angiogenesis. Oncotarget 2017; 8:69139-69161. [PMID: 28978186 PMCID: PMC5620326 DOI: 10.18632/oncotarget.19932] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is the development of new blood vessels, which is required for tumor growth and metastasis. Signal transducer and activator of transcription factor 3 (STAT3) is a transcription factor that regulates a variety of cellular events including proliferation, differentiation and apoptosis. Previous studies revealed that activation of STAT3 promotes tumor angiogenesis. In this review, we described the activities of STAT3 signaling in different cell types involved in angiogenesis. Particularly, we elucidated the molecular mechanisms of STAT3-mediated gene regulation in angiogenic endothelial cells in response to external stimulations such as hypoxia and inflammation. The potential for STAT3 as a therapeutic target was also discussed. Overall, this review provides mechanistic insights for the roles of STAT3 signaling in tumor angiogenesis.
Collapse
Affiliation(s)
- Peng Gao
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Na Niu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Tianshu Wei
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Hideto Tozawa
- The Research Center for Advanced Science and Technology, Isotope Science Center, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Xiaocui Chen
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Caiqing Zhang
- Department of Respiratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Jiandong Zhang
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Youichiro Wada
- The Research Center for Advanced Science and Technology, Isotope Science Center, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Carolyn M Kapron
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|