1
|
Powell G, Long H, Zolkiewski L, Dumbell R, Mallon AM, Lindgren CM, Simon MM. Modelling the genetic aetiology of complex disease: human-mouse conservation of noncoding features and disease-associated loci. Biol Lett 2022; 18:20210630. [PMID: 35317627 PMCID: PMC8941414 DOI: 10.1098/rsbl.2021.0630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Understanding the genetic aetiology of loci associated with a disease is crucial for developing preventative measures and effective treatments. Mouse models are used extensively to understand human pathobiology and mechanistic functions of disease-associated loci. However, the utility of mouse models is limited in part by evolutionary divergence in transcription regulation for pathways of interest. Here, we summarize the alignment of genomic (exonic and multi-cell regulatory) annotations alongside Mendelian and complex disease-associated variant sites between humans and mice. Our results highlight the importance of understanding evolutionary divergence in transcription regulation when interpreting functional studies using mice as models for human disease variants.
Collapse
Affiliation(s)
- George Powell
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.,MRC Harwell Institute, Mammalian Genetics Unit, Oxfordshire OX11 0RD, UK
| | - Helen Long
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.,MRC Harwell Institute, Mammalian Genetics Unit, Oxfordshire OX11 0RD, UK
| | - Louisa Zolkiewski
- MRC Harwell Institute, Mammalian Genetics Unit, Oxfordshire OX11 0RD, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Rebecca Dumbell
- Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Ann-Marie Mallon
- MRC Harwell Institute, Mammalian Genetics Unit, Oxfordshire OX11 0RD, UK
| | - Cecilia M Lindgren
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.,Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.,Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.,Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michelle M Simon
- MRC Harwell Institute, Mammalian Genetics Unit, Oxfordshire OX11 0RD, UK
| |
Collapse
|
2
|
Chean J, Chen CJ, Gugiu G, Wong P, Cha S, Li H, Nguyen T, Bhatticharya S, Shively JE. Human CEACAM1-LF regulates lipid storage in HepG2 cells via fatty acid transporter CD36. J Biol Chem 2021; 297:101311. [PMID: 34666041 PMCID: PMC8577156 DOI: 10.1016/j.jbc.2021.101311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed in the liver and secreted as biliary glycoprotein 1 (BGP1) via bile canaliculi (BCs). CEACAM1-LF is a 72 amino acid cytoplasmic domain mRNA splice isoform with two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Ceacam1−/− or Ser503Ala transgenic mice have been shown to develop insulin resistance and nonalcoholic fatty liver disease; however, the role of the human equivalent residue, Ser508, in lipid dysregulation is unknown. Human HepG2 hepatocytes that express CEACAM1 and form BC in vitro were compared with CEACAM1−/− cells and CEACAM1−/− cells expressing Ser508Ala null or Ser508Asp phosphorylation mimic mutations or to phosphorylation null mutations in the tyrosine ITIMs known to be phosphorylated by the tyrosine kinase Src. CEACAM1−/− cells and the Ser508Asp and Tyr520Phe mutants strongly retained lipids, while Ser508Ala and Tyr493Phe mutants had low lipid levels compared with wild-type cells, indicating that the ITIM mutants phenocopied the Ser508 mutants. We found that the fatty acid transporter CD36 was upregulated in the S508A mutant, coexpressed in BCs with CEACAM1, co-IPed with CEACAM1 and Src, and when downregulated via RNAi, an increase in lipid droplet content was observed. Nuclear translocation of CD36 associated kinase LKB1 was increased sevenfold in the S508A mutant versus CEACAM1−/− cells and correlated with increased activation of CD36-associated kinase AMPK in CEACAM1−/− cells. Thus, while CEACAM1−/− HepG2 cells upregulate lipid storage similar to Ceacam1−/− in murine liver, the null mutation Ser508Ala led to decreased lipid storage, emphasizing evolutionary changes between the CEACAM1 genes in mouse and humans.
Collapse
Affiliation(s)
- Jennifer Chean
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Charng-Jui Chen
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Gabriel Gugiu
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Patty Wong
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Seung Cha
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Harry Li
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Tung Nguyen
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Supriyo Bhatticharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - John E Shively
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA.
| |
Collapse
|
3
|
Laber S, Forcisi S, Bentley L, Petzold J, Moritz F, Smirnov KS, Al Sadat L, Williamson I, Strobel S, Agnew T, Sengupta S, Nicol T, Grallert H, Heier M, Honecker J, Mianne J, Teboul L, Dumbell R, Long H, Simon M, Lindgren C, Bickmore WA, Hauner H, Schmitt-Kopplin P, Claussnitzer M, Cox RD. Linking the FTO obesity rs1421085 variant circuitry to cellular, metabolic, and organismal phenotypes in vivo. SCIENCE ADVANCES 2021; 7:eabg0108. [PMID: 34290091 PMCID: PMC8294759 DOI: 10.1126/sciadv.abg0108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/04/2021] [Indexed: 05/09/2023]
Abstract
Variants in FTO have the strongest association with obesity; however, it is still unclear how those noncoding variants mechanistically affect whole-body physiology. We engineered a deletion of the rs1421085 conserved cis-regulatory module (CRM) in mice and confirmed in vivo that the CRM modulates Irx3 and Irx5 gene expression and mitochondrial function in adipocytes. The CRM affects molecular and cellular phenotypes in an adipose depot-dependent manner and affects organismal phenotypes that are relevant for obesity, including decreased high-fat diet-induced weight gain, decreased whole-body fat mass, and decreased skin fat thickness. Last, we connected the CRM to a genetically determined effect on steroid patterns in males that was dependent on nutritional challenge and conserved across mice and humans. Together, our data establish cross-species conservation of the rs1421085 regulatory circuitry at the molecular, cellular, metabolic, and organismal level, revealing previously unknown contextual dependence of the variant's action.
Collapse
Affiliation(s)
- Samantha Laber
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sara Forcisi
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Liz Bentley
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Julia Petzold
- Institute of Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franco Moritz
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kirill S Smirnov
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Loubna Al Sadat
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Else Kröner-Fresenius-Centre for Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Iain Williamson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Sophie Strobel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute of Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Agnew
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Shahana Sengupta
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Tom Nicol
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Harald Grallert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Center Munich, Germany
| | - Margit Heier
- KORA Study Center Augsburg, University Hospital of Augsburg, Augsburg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, Munich, Germany
| | - Julius Honecker
- Else Kröner-Fresenius-Centre for Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Joffrey Mianne
- Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, UK
| | - Lydia Teboul
- Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, UK
| | - Rebecca Dumbell
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Helen Long
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK
- Nuffield Department of Medicine, University of Oxford, Henry Wellcome Building for Molecular Physiology, Old Road Campus, Headington, Oxford OX3 7BN, UK
| | - Michelle Simon
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Cecilia Lindgren
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Hans Hauner
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Else Kröner-Fresenius-Centre for Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Institute for Aging Research, Hebrew SeniorLife and Harvard Medical School, Boston, MA, USA
| | - Roger D Cox
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK.
| |
Collapse
|
4
|
George MN, Leavens KF, Gadue P. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers. Front Endocrinol (Lausanne) 2021; 12:682625. [PMID: 34149620 PMCID: PMC8206553 DOI: 10.3389/fendo.2021.682625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
A mechanistic understanding of the genetic basis of complex diseases such as diabetes mellitus remain elusive due in large part to the activity of genetic disease modifiers that impact the penetrance and/or presentation of disease phenotypes. In the face of such complexity, rare forms of diabetes that result from single-gene mutations (monogenic diabetes) can be used to model the contribution of individual genetic factors to pancreatic β-cell dysfunction and the breakdown of glucose homeostasis. Here we review the contribution of protein coding and non-protein coding genetic disease modifiers to the pathogenesis of diabetes subtypes, as well as how recent technological advances in the generation, differentiation, and genome editing of human pluripotent stem cells (hPSC) enable the development of cell-based disease models. Finally, we describe a disease modifier discovery platform that utilizes these technologies to identify novel genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with monogenic diabetes caused by heterozygous mutations.
Collapse
Affiliation(s)
- Matthew N. George
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Karla F. Leavens
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
5
|
Zhu F, Nair RR, Fisher EMC, Cunningham TJ. Humanising the mouse genome piece by piece. Nat Commun 2019; 10:1845. [PMID: 31015419 PMCID: PMC6478830 DOI: 10.1038/s41467-019-09716-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/23/2019] [Indexed: 12/14/2022] Open
Abstract
To better understand human health and disease, researchers create a wide variety of mouse models that carry human DNA. With recent advances in genome engineering, the targeted replacement of mouse genomic regions with orthologous human sequences has become increasingly viable, ranging from finely tuned humanisation of individual nucleotides and amino acids to the incorporation of many megabases of human DNA. Here, we examine emerging technologies for targeted genomic humanisation, we review the spectrum of existing genomically humanised mouse models and the insights such models have provided, and consider the lessons learned for designing such models in the future. Generation of transgenic mice has become routine in studying gene function and disease mechanisms, but often this is not enough to fully understand human biology. Here, the authors review the current state of the art of targeted genomic humanisation strategies and their advantages over classic approaches.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Remya R Nair
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK.
| | | |
Collapse
|
6
|
Chiefari E, Foti DP, Sgarra R, Pegoraro S, Arcidiacono B, Brunetti FS, Greco M, Manfioletti G, Brunetti A. Transcriptional Regulation of Glucose Metabolism: The Emerging Role of the HMGA1 Chromatin Factor. Front Endocrinol (Lausanne) 2018; 9:357. [PMID: 30034366 PMCID: PMC6043803 DOI: 10.3389/fendo.2018.00357] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
HMGA1 (high mobility group A1) is a nonhistone architectural chromosomal protein that functions mainly as a dynamic regulator of chromatin structure and gene transcription. As such, HMGA1 is involved in a variety of fundamental cellular processes, including gene expression, epigenetic regulation, cell differentiation and proliferation, as well as DNA repair. In the last years, many reports have demonstrated a role of HMGA1 in the transcriptional regulation of several genes implicated in glucose homeostasis. Initially, it was proved that HMGA1 is essential for normal expression of the insulin receptor (INSR), a critical link in insulin action and glucose homeostasis. Later, it was demonstrated that HMGA1 is also a downstream nuclear target of the INSR signaling pathway, representing a novel mediator of insulin action and function at this level. Moreover, other observations have indicated the role of HMGA1 as a positive modulator of the Forkhead box protein O1 (FoxO1), a master regulatory factor for gluconeogenesis and glycogenolysis, as well as a positive regulator of the expression of insulin and of a series of circulating proteins that are involved in glucose counterregulation, such as the insulin growth factor binding protein 1 (IGFBP1), and the retinol binding protein 4 (RBP4). Thus, several lines of evidence underscore the importance of HMGA1 in the regulation of glucose production and disposal. Consistently, lack of HMGA1 causes insulin resistance and diabetes in humans and mice, while variations in the HMGA1 gene are associated with the risk of type 2 diabetes and metabolic syndrome, two highly prevalent diseases that share insulin resistance as a common pathogenetic mechanism. This review intends to give an overview about our current knowledge on the role of HMGA1 in glucose metabolism. Although research in this field is ongoing, many aspects still remain elusive. Future directions to improve our insights into the pathophysiology of glucose homeostasis may include epigenetic studies and the use of "omics" strategies. We believe that a more comprehensive understanding of HMGA1 and its networks may reveal interesting molecular links between glucose metabolism and other biological processes, such as cell proliferation and differentiation.
Collapse
Affiliation(s)
- Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Daniela P. Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvia Pegoraro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Manfredi Greco
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | | | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti
| |
Collapse
|
7
|
Reddy PH. Can Diabetes Be Controlled by Lifestyle Activities? CURRENT RESEARCH IN DIABETES & OBESITY JOURNAL 2017; 1:555568. [PMID: 29399663 PMCID: PMC5792082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Diabetes is a complex disease that affects millions of people worldwide. Diabetes is a metabolic disease, in which increased blood glucose levels ultimately lead to heart disease, stroke, kidney failure, foot ulcers, and damage to the eyes. Current prevalence rates of diabetes are extremely high in countries throughout the world. Multiple forms of diabetes have been identified, including type 1, type 2, type 3, neonatal and gestational. The purpose of this article is to discuss recent developments in diabetes research, including prevalence, morbidity and mortality rates, and lifestyle factors that are associated with diabetes onset and progression. This article also discusses how lifestyle factors delay and/or prevent diabetes.
Collapse
Affiliation(s)
- P. Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, United States
- Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
- Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
- Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
- Department of Public Health, Graduate School of Biomedical Sciences, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| |
Collapse
|