1
|
Engin AB, Engin A. Obesity-Senescence-Breast Cancer: Clinical Presentation of a Common Unfortunate Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:821-850. [PMID: 39287873 DOI: 10.1007/978-3-031-63657-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
There are few convincing studies establishing the relationship between endogenous factors that cause obesity, cellular aging, and telomere shortening. Without a functional telomerase, a cell undergoing cell division has progressive telomere shortening. While obesity influences health and longevity as well as telomere dynamics, cellular senescence is one of the major drivers of the aging process and of age-related disorders. Oxidative stress induces telomere shortening, while decreasing telomerase activity. When progressive shortening of telomere length reaches a critical point, it triggers cell cycle arrest leading to senescence or apoptotic cell death. Telomerase activity cannot be detected in normal breast tissue. By contrast, maintenance of telomere length as a function of human telomerase is crucial for the survival of breast cancer cells and invasion. Approximately three-quarters of breast cancers in the general population are hormone-dependent and overexpression of estrogen receptors is crucial for their continued growth. In obesity, increasing leptin levels enhance aromatase messenger ribonucleic acid (mRNA) expression, aromatase content, and its enzymatic activity on breast cancer cells, simultaneously activating telomerase in a dose-dependent manner. Meanwhile, applied anti-estrogen therapy increases serum leptin levels and thus enhances leptin resistance in obese postmenopausal breast cancer patients. Many studies revealed that shorter telomeres of postmenopausal breast cancer have higher local recurrence rates and higher tumor grade. In this review, interlinked molecular mechanisms are looked over between the telomere length, lipotoxicity/glycolipotoxicity, and cellular senescence in the context of estrogen receptor alpha-positive (ERα+) postmenopausal breast cancers in obese women. Furthermore, the effect of the potential drugs, which are used for direct inhibition of telomerase and the inhibition of human telomerase reverse transcriptase (hTERT) or human telomerase RNA promoters as well as approved adjuvant endocrine therapies, the selective estrogen receptor modulator and selective estrogen receptor down-regulators are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
2
|
Kolb H, Kempf K, Martin S. Insulin and aging - a disappointing relationship. Front Endocrinol (Lausanne) 2023; 14:1261298. [PMID: 37854186 PMCID: PMC10579801 DOI: 10.3389/fendo.2023.1261298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/25/2023] [Indexed: 10/20/2023] Open
Abstract
Experimental studies in animal models of aging such as nematodes, fruit flies or mice have observed that decreased levels of insulin or insulin signaling promotes longevity. In humans, hyperinsulinemia and concomitant insulin resistance are associated with an elevated risk of age-related diseases suggestive of a shortened healthspan. Age-related disorders include neurodegenerative diseases, hypertension, cardiovascular disease, and type 2 diabetes. High ambient insulin concentrations promote increased lipogenesis and fat storage, heightened protein synthesis and accumulation of non-functional polypeptides due to limited turnover capacity. Moreover, there is impaired autophagy activity, and less endothelial NO synthase activity. These changes are associated with mitochondrial dysfunction and oxidative stress. The cellular stress induced by anabolic activity of insulin initiates an adaptive response aiming at maintaining homeostasis, characterized by activation of the transcription factor Nrf2, of AMP activated kinase, and an unfolded protein response. This protective response is more potent in the long-lived human species than in short-lived models of aging research resulting in a stronger pro-aging impact of insulin in nematodes and fruit flies. In humans, resistance to insulin-induced cell stress decreases with age, because of an increase of insulin and insulin resistance levels but less Nrf2 activation. These detrimental changes might be contained by adopting a lifestyle that promotes low insulin/insulin resistance levels and enhances an adaptive response to cellular stress, as observed with dietary restriction or exercise.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Düsseldorf, Germany
| | - Kerstin Kempf
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Düsseldorf, Germany
| | - Stephan Martin
- Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Düsseldorf, Germany
| |
Collapse
|
3
|
Ghoussaini R, Tamim H, Elbejjani M, Makki M, Nasreddine L, Ismaeel H, Nasrallah MP, Zgheib NK. C-peptide is a predictor of telomere shortening: A five-year longitudinal study. Front Endocrinol (Lausanne) 2022; 13:978747. [PMID: 36060975 PMCID: PMC9434344 DOI: 10.3389/fendo.2022.978747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
AIM Relative telomere length (RTL) predicts the development of many age-related diseases. Yet, few studies have evaluated their longitudinal effect on RTL. We investigated longitudinally the association between cardiometabolic risk factors and RTL. METHODS This was a longitudinal study with a 5-year follow-up period, based on data collected in 2014 and 2019. Of 478 participants in 2014, 198 consented to be followed-up in 2019. The associations between RTL and risk factors were analyzed using t-test, ANOVA or simple linear regression as applicable. RESULTS RTL was significantly shortened after 5 years (P<0.001). Older age (P=0.018) and gender (P=0.05) were significantly associated with shorter RTL at follow-up. Higher baseline C-peptide correlated with shorter RTL (P=0.04) and shortening of RTL (P=0.03) after 5 years. Multivariate linear regression including both age and gender revealed a significant trend for C-peptide and change in RTL after 5 years (P=0.04). Interestingly, there was a trend of shorter RTL at follow-up with diabetes, though the findings were not statistically significant. CONCLUSIONS Higher C-peptide level contributes to telomere shortening over time, suggesting that metabolic dysregulation may play a role in early aging. Further understanding of this relationship and addressing high C-peptide levels can be important to prevent premature aging.
Collapse
Affiliation(s)
- Racha Ghoussaini
- Faculty of Medicine, School of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hani Tamim
- Faculty of Medicine, Clinical Research Institute, American University of Beirut Medical Center, Beirut, Lebanon
- Faculty of Medicine, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Martine Elbejjani
- Faculty of Medicine, Clinical Research Institute, American University of Beirut Medical Center, Beirut, Lebanon
- Faculty of Medicine, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maha Makki
- Faculty of Medicine, Clinical Research Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lara Nasreddine
- Faculty of Agricultural and Food Sciences, Department of Nutrition and Food Sciences, American University of Beirut, Beirut, Lebanon
- Vascular Medicine Program, American University of Beirut, Beirut, Lebanon
| | - Hussain Ismaeel
- Vascular Medicine Program, American University of Beirut, Beirut, Lebanon
- Faculty of Medicine, Department of Internal Medicine, Division of Cardiology, American University of Beirut, Beirut, Lebanon
| | - Mona P. Nasrallah
- Vascular Medicine Program, American University of Beirut, Beirut, Lebanon
- Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology, American University of Beirut Medical Center, Beirut, Lebanon
- *Correspondence: Mona P. Nasrallah, ; Nathalie K. Zgheib,
| | - Nathalie K. Zgheib
- Vascular Medicine Program, American University of Beirut, Beirut, Lebanon
- Faculty of Medicine, Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- *Correspondence: Mona P. Nasrallah, ; Nathalie K. Zgheib,
| |
Collapse
|
4
|
Mangge H, Renner W, Almer G, Gruber HJ, Zelzer S, Moeller R, Horejsi R, Herrmann M. Subcutaneous adipose tissue distribution and telomere length. Clin Chem Lab Med 2020; 57:1358-1363. [PMID: 30913032 DOI: 10.1515/cclm-2018-0801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023]
Abstract
Background Overweight and obese individuals have a reduced life expectancy due to cardiovascular disease (CVD), type 2 diabetes, stroke and cancer. Systemic inflammation and premature telomere shortening have been discussed as potential mechanisms linking these conditions. We investigated the relation of subcutaneous adipose tissue (SAT) distribution to leukocyte relative telomere length (RTL). Methods We measured RTL in 375 participants of the observational STYJOBS/EDECTA cohort (ClinicalTrials.gov Identifier NCT00482924) using a qPCR based method. SAT distribution was determined by lipometry yielding a percent body fat value and SAT thicknesses at 15 standardized locations across the entire body. A correlation analysis between RTL, age, sex, lipometry data and conventional body measures (body mass index [BMI], waist-, hip circumference, waist-to-hip ratio, waist-to-height ratio) was calculated. The strongest determinants of RTL were determined by a stepwise multiple regression analysis. Results RTL was not associated with age or sex. RTL was significantly negatively correlated with BMI, percent body fat, waist-, hip circumference and waist-to-height ratio. Furthermore, RTL correlated with SAT at the following locations: neck, triceps, biceps, upper back, front chest, lateral chest, upper abdomen, lower abdomen, lower back, hip, front thigh, lateral thigh, rear thigh and calf. Stepwise regression analysis revealed nuchal and hip SAT as the strongest predictors of RTL. No significant association was seen between RTL and waist-to-hip ratio. Conclusions RTL is negatively associated with parameters describing body fat composure. Nuchal and hip SAT thicknesses are the strongest predictors of RTL. Central obesity appears to correlate with premature genomic aging.
Collapse
Affiliation(s)
- Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Wilfried Renner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Reinhard Moeller
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, Graz, Austria
| | - Renate Horejsi
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|