1
|
Cadenas J, Adrados CS, Kumar A, Kalra B, Mamsen LS, Andersen CY. Regulating human oocyte maturation in vitro: a hypothesis based on oocytes retrieved from small antral follicles during ovarian tissue cryopreservation. J Assist Reprod Genet 2025:10.1007/s10815-025-03483-9. [PMID: 40261459 DOI: 10.1007/s10815-025-03483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
PURPOSE To characterize the hormonal environment in spent medium and cumulus cell gene expression during human IVM using oocytes from small antral follicles (SAFs) retrieved from surplus medulla tissue after ovarian tissue cryopreservation. METHODS Immature oocytes from surplus medulla tissue underwent 42-h IVM in media with varying FSH and LH concentrations (0, 10, 100 IU/L FSH, and 100 IU/L FSH + 100 IU/L LH). Oocyte maturation was assessed by germinal vesicle (GV), metaphase I (MI), or metaphase II (MII) stages. Gene expression of FSHR, LHCGR, AMH, CYP19 A1, and INHA in cumulus cells was analyzed by RT-qPCR, and GDF9, AMH, inhibin-B, inhibin-A, and total inhibin were measured in the spent media by ELISA. RESULTS Increased FSH concentrations downregulated FSHR expression and upregulated LHCGR, which correlated with MII transition. GDF9 concentrations in the spent medium significantly decreased with higher FSH, as did GDF9, AMH, and inhibin-B in MII oocytes. Inhibin-A levels tended to be higher in the media of MII oocytes. FSHR expression was positively associated with inhibin-B and negatively with inhibin-A, while LHCGR showed the opposite pattern and was also negatively linked to GDF9 concentration. CONCLUSION FSH-induced LHCGR expression, along with FSHR downregulation, is closely linked to oocyte maturation. Reduced GDF9 secretion from oocytes facilitates LHCGR expression on cumulus cells, while FSH and LH collectively induced hormones like inhibin-A, which likely support oocyte maturation.
Collapse
Affiliation(s)
- Jesús Cadenas
- Laboratory of Reproductive Biology, section 5701, University Hospital of Copenhagen, Rigshospitalet, Henrik Harpestrengsvej 6A, 2100, Copenhagen, Denmark.
| | - Cristina Subiran Adrados
- Laboratory of Reproductive Biology, section 5701, University Hospital of Copenhagen, Rigshospitalet, Henrik Harpestrengsvej 6A, 2100, Copenhagen, Denmark
| | - Ajay Kumar
- Ansh Labs LLC, 445 W. Medical Center Blvd, Webster, TX, 77598, USA
| | - Bhanu Kalra
- Ansh Labs LLC, 445 W. Medical Center Blvd, Webster, TX, 77598, USA
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, section 5701, University Hospital of Copenhagen, Rigshospitalet, Henrik Harpestrengsvej 6A, 2100, Copenhagen, Denmark
| | - Claus Yding Andersen
- The Fertility Clinic, Copenhagen University Hospital Herlev, Herlev, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Wang NF, Mamsen LS, Cadenas J, Saritas G, Macklon KT, Fedder J, Ernst E, Johannsen ML, Kristensen SG, Kelsey T, Kumar A, Kalra B, Løssl K, Andersen CY. Impact of female age on concentrations of reproductive hormones and oocyte-specific growth factors in follicular fluid from human small antral follicles. Hum Reprod 2025; 40:707-716. [PMID: 39922201 DOI: 10.1093/humrep/deaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Indexed: 02/10/2025] Open
Abstract
STUDY QUESTION Does maternal age impact hormonal secretions from granulosa cells, theca cells, and the oocyte in human small antral follicles? SUMMARY ANSWER Major hormones secreted by granulosa and theca cells, as well as the oocyte-specific TGF-β members-GDF9, BMP15, and the GDF9/BMP15 heterodimer cumulin-maintain a consistent concentration within the follicular fluid of human small antral follicles, regardless of maternal age. WHAT IS KNOWN ALREADY It is well established that female fertility declines with increasing age. However, it is not known whether this decline is exclusively due to a reduction in oocyte quality and quantity or also involves a decline in the hormone-secreting capabilities of granulosa cells, theca cells, and the oocyte itself. STUDY DESIGN, SIZE, DURATION This is a retrospective study of follicular fluid obtained from human small antral follicles collected in connection with cryopreservation of ovarian tissue at the Laboratory of Reproductive Biology, University Hospital Copenhagen, Rigshospitalet, Denmark, between 2010 and 2020 as part of the hospital's fertility preservation program. PARTICIPANTS/MATERIALS, SETTING, METHODS Follicular fluid samples from human small antral follicles measuring 3-13 mm in diameter from macroscopically normal ovaries of 381 patients aged 5-43 years were included in the study, provided that at least one of the following parameters was measured: AMH, Inhibin A, Inhibin B, oestradiol (E2), progesterone (P4), androstenedione, testosterone, and/or the oocyte-specific TGF-β members GDF9, BMP15, or cumulin. MAIN RESULTS AND THE ROLE OF CHANCE In a linear regression analysis adjusted for follicular volume, female age did not predict the follicular fluid concentrations of AMH, Inhibin B, Inhibin A, E2, androstenedione, testosterone, GDF9, BMP15, or cumulin. Although a significant association was observed between female age and follicular fluid P4 levels, the predictive value of age was poor, accounting for at most 5% of the variation in P4. LIMITATIONS, REASONS FOR CAUTION Hormonal levels may vary with the degree of atresia in each follicle; however, the health status of the small antral follicles in this study was not characterized. Additionally, we cannot exclude possible age-related differences in human follicles larger than 10 mm, as very few of these were included. Furthermore, we did not include women above the age of 43, despite the potential for more pronounced age-related effects in these patients. WIDER IMPLICATIONS OF THE FINDINGS Our results support the idea that the age-related decline in female fertility is primarily due to a reduction in oocyte quality and quantity, but further research is needed to confirm this. STUDY FUNDING/COMPETING INTEREST(S) No specific funding was obtained, and the authors have no conflicts of interest to declare in relation to this work. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- N Friis Wang
- The Fertility Clinic, Department of Gynaecology, Fertility and Obstetrics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - L S Mamsen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - J Cadenas
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - G Saritas
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - K T Macklon
- The Fertility Clinic, Department of Gynaecology, Fertility and Obstetrics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - J Fedder
- The Fertility Clinic, University Hospital of Odense, Odense, Denmark
| | - E Ernst
- University Clinic for Fertility, Regional Hospital Horsens, Horsens, Denmark
| | - M L Johannsen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - S G Kristensen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - T Kelsey
- School of Computer Science, University of St. Andrews, St. Andrews, UK
| | - A Kumar
- Ansh Labs LLC, Webster, TX, USA
| | - B Kalra
- Ansh Labs LLC, Webster, TX, USA
| | - K Løssl
- The Fertility Clinic, Department of Gynaecology, Fertility and Obstetrics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - C Yding Andersen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Fertility Clinic, Copenhagen University Hospital Herlev, Herlev, Denmark
| |
Collapse
|
3
|
Albeitawi S, Bani-Mousa SU, Jarrar B, Aloqaily I, Al-Shlool N, Alsheyab G, Kassab A, Qawasmi B, Awaisheh A. Associations Between Follicular Fluid Biomarkers and IVF/ICSI Outcomes in Normo-Ovulatory Women-A Systematic Review. Biomolecules 2025; 15:443. [PMID: 40149979 PMCID: PMC11940193 DOI: 10.3390/biom15030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
(1) Background: The follicular fluid (FF) comprises a large portion of ovarian follicles, and serves as both a communication and growth medium for oocytes, and thus should be representative of the metabolomic status of the follicle. This review aims to explore FF biomarkers as well as their effects on fertilization, oocyte, and embryo development, and later on implantation and maintenance of pregnancy. (2) Methods: This review was registered in the PROSPERO database with the ID: CRD42025633101. We parsed PubMed, Scopus, and Google Scholar for research on the effects of different FF biomarkers on IVF/ICSI outcomes in normo-ovulatory women. Included studies were assessed for risk of bias using the NOS scale. Data were extracted and tabulated by two independent researchers. (3) Results: 22 included articles, with a sample size range of 31 to 414 and a median of 60 participants, contained 61 biomarkers, including proteins, growth factors, steroid and polypeptide hormones, inflammation and oxidative stress markers, amino acids, vitamins, lipids of different types, and miRNAs. Most of the biomarkers studied had significant effects on IVF/ICSI outcomes, and seem to have roles in various cellular pathways responsible for oocyte and embryo growth, implantation, placental formation, and maintenance of pregnancy. The FF metabolome also seems to be interconnected, with its various components influencing the levels and activities of each other through feedback loops. (4) Conclusions: FF biomarkers can be utilized for diagnostic and therapeutic purposes in IVF; however, further studies are required for choosing the most promising ones due to heterogeneity of results. Widespread adoption of LC-MS and miRNA microarrays can help quantify a representative FF metabolome, and we see great potential for in vitro supplementation (IVS) of some FF biomarkers in improving IVF/ICSI outcomes.
Collapse
Affiliation(s)
- Soha Albeitawi
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | | | - Baraa Jarrar
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ibrahim Aloqaily
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Nour Al-Shlool
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ghaida Alsheyab
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ahmad Kassab
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Baha’a Qawasmi
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Abdalrahman Awaisheh
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| |
Collapse
|
4
|
Smitz J, Sánchez F, Romero S, Van Ranst H, Anckaert E, Gilchrist RB, Ho TM, Vuong LN, Morimoto Y. Human oocyte capacitation culture: Essential step toward hormone-free assisted reproductive technology. Reprod Med Biol 2025; 24:e12640. [PMID: 40078334 PMCID: PMC11897612 DOI: 10.1002/rmb2.12640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Background In vitro oocyte maturation (IVM) is not a novel concept; however, its wide-scale practice has been limited because of the lower clinical outcomes compared to conventional assisted reproductive technologies. Methods This comprehensive review addresses the significant advances made in oocyte in vitro maturation with the biphasic capacitation (CAPA)-IVM strategy applied to small ovarian antral follicles in humans over the last 10 years. CAPA-IVM consists of a prematuration phase wherein immature oocytes are temporarily meiotically arrested to gain competence before undergoing meiotic resumption. Main findings The integration of knowledge from basic research in animal models into clinical practice has led to a reevaluation of IVM for policystic ovary syndrome (PCOS) and onco-fertility patients. The introduction of meticulously conceived growth factors, hormonal supplements, and culture conditions led to an integrated biphasic CAPA-IVM system that promotes oocyte competence. A series of prospective randomized controlled studies validated the reproducible improvements in clinical outcomes and the safety of CAPA-IVM. So far, nearly 1000 babies have been born using this approach. Conclusion The use of CAPA-IVM in clinical studies has set the tone for major progress in the field and is achieving a safer, less expensive, and less emotionally loaded IVF experience, currently validated for PCOS patients.
Collapse
Affiliation(s)
- Johan Smitz
- Follicle Biology Laboratory, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
| | - Flor Sánchez
- Centro de Estudios e Investigaciones en Biología y Medicina ReproductivaLimaPeru
| | - Sergio Romero
- Centro de Fertilidad y Reproducción AsistidaLimaPeru
| | - Heidi Van Ranst
- Follicle Biology Laboratory, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
| | - Ellen Anckaert
- Follicle Biology Laboratory, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
| | - Robert B. Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical MedicineUniversity of New South Wales SydneySydneyNew South WalesAustralia
| | - Tuong M. Ho
- IVFMDMy Duc HospitalHo Chi Minh CityViet Nam
- HOPE Research CenterHo Chi Minh CityViet Nam
| | - Lan N. Vuong
- Department of Obstetrics and GynecologyUniversity of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityViet Nam
| | | |
Collapse
|
5
|
Anazawa M, Ashibe S, Nagao Y. Gene expression levels in cumulus cells are correlated with developmental competence of bovine oocytes. Theriogenology 2025; 231:11-20. [PMID: 39389001 DOI: 10.1016/j.theriogenology.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The generation of mammalian embryos by in vitro culture is hampered by the failure of many of the embryos to develop to the blastocyst stage. This problem occurs even when cumulus-oocyte complexes (COCs) with good morphology are visually selected and used for culture. Because cumulus cells are important for oocyte maturation and subsequent embryo development, here we compared gene expression patterns in cumulus cells of COCs that developed in vitro to the blastocyst stage with those of COCs that failed to develop. Cumulus cells were aspirated from bovine COCs selected for in vitro culture. Oocyte developmental competence was evaluated by screening for cleavage and development to the blastocyst stage. The collected cumulus cells were used to quantify mRNA levels of FSH receptor (FSHR), insulin-like growth factor-1 receptor (IGF-1R), anti-Müllerian hormone (AMH), AMH receptor II (AMHRII), epidermal growth factor receptor (EGFR), estrogen receptor β (ERβ), B cell lymphoma/leukemia-2 associated X (Bax), and cysteine-aspartic acid protease-3 (Caspase-3). We found that the expression levels of FSHR, IGF-1R, AMH, and EGFR were higher in cumulus cells from COCs that developed to blastocysts as compared with those that failed to develop, whereas expression levels of Bax and Caspase-3 were lower in cumulus cells of COCs that matured to the blastocyst stage. Positive correlations were found between FSHR and IGF-1R expression (r = 0.59) and between ERβ and EGFR expression (r = 0.43) in cumulus cells from COCs that developed to the blastocyst stage. Our findings indicate that gene expression levels in cumulus cells are correlated with the developmental competence of bovine oocytes. Measurement of gene expression in cumulus cells therefore offers a non-invasive means of predicting oocyte developmental competence.
Collapse
Affiliation(s)
- Mayuko Anazawa
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan; Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Shiori Ashibe
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan
| | - Yoshikazu Nagao
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan; Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
6
|
Zhang W, Chen X, Guo A, Zhao Z, Zhang B, Li F, Zhang H. IGF2/IGFBP4 reduces apoptosis and increases free cholesterol of chicken granulosa cells in vitro. Poult Sci 2024; 103:104416. [PMID: 39432993 PMCID: PMC11535380 DOI: 10.1016/j.psj.2024.104416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/28/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Follicle selection, a crucial step in maintaining continuous egg production in chickens, is a process that relies on granulosa cells (GCs). In this study, we aimed to identify the key genes that are involved in follicle selection from our previous single-cell transcriptomic data. We used a combination of techniques and assays, including quantitative real-time PCR, immunofluorescence, Oil Red O staining, transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), monodansylcadaverine (MDC) assay, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, cell counting Kit-8 (CCK-8) assay, and 5-ethynyl-2-deoxyuridine (EdU) assay. Multiple indices, such as cell proliferation, cell differentiation, progesterone synthesis, lipid droplet production, total and free cholesterol content, apoptosis, and autophagy, were measured to determine the states of GCs in vitro. The results demonstrated that overexpression of genes related to insulin-like growth factor 2 (IGF2) or IGF-binding protein 4 (IGFBP4) increases intracellular free cholesterol (progesterone precursors) and lipid droplet production, inhibits apoptosis through increased autophagy, and inhibits cell proliferation. This indicates that IGF2 or IGFBP4 can maintain the survival state and improve differentiation tendency of chicken granulosa cells in vitro. Therefore, this study provides new evidence on the functions of IGFs and IGFBPs in chickens, establishing a crucial experimental foundation for understanding the regulatory mechanisms of follicle selection. In addition, our study contributes to understanding follicular development and improves the egg-laying performance of chickens.
Collapse
Affiliation(s)
- Wenhui Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xuejiao Chen
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Axiu Guo
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Zongyi Zhao
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
7
|
Zaniker EJ, Zhang J, Russo D, Huang R, Suritis K, Drake RS, Barlow-Smith E, Shalek AK, Woodruff TK, Xiao S, Goods BA, Duncan FE. Follicle-intrinsic and spatially distinct molecular programs drive follicle rupture and luteinization during ex vivo mammalian ovulation. Commun Biol 2024; 7:1374. [PMID: 39443665 PMCID: PMC11500180 DOI: 10.1038/s42003-024-07074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
During ovulation, the apical wall of the preovulatory follicle breaks down to facilitate gamete release. In parallel, the residual follicle wall differentiates into a progesterone-producing corpus luteum. Disruption of ovulation, whether through contraceptive intervention or infertility, has implications for women's health. In this study, we harness the power of an ex vivo ovulation model and machine-learning guided microdissection to identify differences between the ruptured and unruptured sides of the follicle wall. We demonstrate that the unruptured side exhibits clear markers of luteinization after ovulation while the ruptured side exhibits cell death signals. RNA-sequencing of individual follicle sides reveals 2099 differentially expressed genes (DEGs) between follicle sides without ovulation induction, and 1673 DEGs 12 h after induction of ovulation. Our model validates molecular patterns consistent with known ovulation biology even though this process occurs in the absence of the ovarian stroma, vasculature, and immune cells. We further identify previously unappreciated pathways including amino acid transport and Jag-Notch signaling on the ruptured side and glycolysis, metal ion processing, and IL-11 signaling on the unruptured side of the follicle. This study yields key insights into follicle-inherent, spatially-defined pathways that underlie follicle rupture, which may further understanding of ovulation physiology and advance women's health.
Collapse
Affiliation(s)
- Emily J Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Daniela Russo
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Ruixu Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Kristine Suritis
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Riley S Drake
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Alex K Shalek
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Brittany A Goods
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Guzmán A, Rosales-Torres AM, Medina-Moctezuma ZB, González-Aretia D, Hernández-Coronado CG. Effects and action mechanism of gonadotropins on ovarian follicular cells: A novel role of Sphingosine-1-Phosphate (S1P). A review. Gen Comp Endocrinol 2024; 357:114593. [PMID: 39047797 DOI: 10.1016/j.ygcen.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) control antral follicular growth by regulating several processes, such as the synthesis of hormones and signaling molecules, proliferation, survival, apoptosis, luteinization, and ovulation. To exert these effects, gonadotropins bind to their respective Gs protein-coupled receptors, activating the protein kinase A (PKA) pathway or recruiting Gq proteins to activate protein kinase C (PKC) signaling. Although the action mechanism of FSH and LH is clear, recently, it has been shown that both gonadotropins promote the synthesis of sphingosine-1-phosphate (S1P) in granulosa and theca cells through the activation of sphingosine kinase 1. Moreover, the inhibition of SPHKs reduces S1P synthesis, cell viability, and the proliferation of follicular cells in response to gonadotropins, and the addition of S1P to the culture medium increases the proliferation of granulosa and theca cells without apparent effects on sexual steroid synthesis. Therefore, we consider that S1P is a crucial signaling molecule that complements the canonical gonadotropin pathway to promote the proliferation and viability of granulosa and theca cells.
Collapse
Affiliation(s)
- A Guzmán
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico
| | - A M Rosales-Torres
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico
| | - Z B Medina-Moctezuma
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - D González-Aretia
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - C G Hernández-Coronado
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Lin J, Wu F, Zhu Y, Wang B, Cao Z, Lin J. Letrozole co-treatment in an antagonist protocol for overweight women undergoing IVF treatment: a retrospective study. BMC Pregnancy Childbirth 2024; 24:592. [PMID: 39256667 PMCID: PMC11386352 DOI: 10.1186/s12884-024-06795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Overweight women undergoing IVF treatment have lower success rates. Letrozole, an aromatase inhibitor, has been used as an adjunct for IVF treatment, but its specific effects in overweight women have not been investigated. This study was to explore the effects of letrozole co-treatment in an antagonist protocol for overweight infertile women undergoing IVF treatment. METHODS This retrospective cohort study included overweight infertile women who underwent IVF/ICSI treatment and fresh embryo transfer (ET), with or without letrozole co-treatment in an antagonist protocol, from 2007 to 2021 at Shanghai Ninth People's Hospital (Shanghai, China). A total of 704 overweight infertile women were included: 585 women were in the antagonist group, and 119 women were in the letrozole co-treatment group. The primary outcome was the live birth rate after fresh ET. Propensity score-based patient-matching was employed to balance the covariates between the groups. Multivariate logistic regression analysis was also performed to estimate odds ratio (OR) and 95% confidence interval (CI) for association of letrozole co-treatment and the live birth outcome. RESULTS Letrozole co-treatment induced significant changes in hormonal profile on the trigger day. The letrozole group exhibited a decrease in the total number of follicles compared to the antagonist group, but a higher proportion of large follicles at oocyte retrieval (P < 0.05). The quantity and quality of embryos were comparable between the two groups (P > 0.05). The letrozole co-treatment group had a significantly higher live birth rate than the control group (38.7% vs. 22.6%, P = 0.026). With multivariate logistic regression analysis, letrozole co-treatment was associated with higher odds of live birth after adjusting for potential confounding factors (adjusted OR = 2.00, 95% CI = 1.17-3.39, P = 0.011). Letrozole presented no significant associations with obstetrical or neonatal complications (P > 0.05). CONCLUSION Letrozole co-treatment in an antagonist protocol may offer potential benefits for overweight infertile women undergoing IVF treatment. Further research is warranted to validate these findings and explore the broader implications for letrozole co-treatment.
Collapse
Affiliation(s)
- Jing Lin
- Center for Reproductive Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenglu Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanwen Zhu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bian Wang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengjun Cao
- Department of Gynaecology and Obstetrics, Shanghai Putuo People's Hospital of Tongji University, Shanghai, China.
| | - Jiaying Lin
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Zheng M, Poulsen LC, Wang NF, Mamsen LS, Johannsen ML, Styrishave B, Grøndahl ML, Løssl K, Englund ALM, Skouby SO, Andersen CY. Progesterone and 17-hydroxy-progesterone concentrations in follicular fluid and serum reflect their production in granulosa and theca cells. Reprod Biomed Online 2024; 49:103853. [PMID: 38865783 DOI: 10.1016/j.rbmo.2024.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 06/14/2024]
Abstract
RESEARCH QUESTION How is the production of progesterone (P4) and 17-hydroxy-P4 (17-OH-P4) regulated between theca cells and granulosa cells during the follicular phase, during ovulation and after transformation into a corpus luteum? DESIGN Three cohorts were examined: (i) 31 women undergoing natural and stimulated cycles, with serum hormone measurements taken every 3 days; (ii) 50 women undergoing ovarian stimulation, with hormone concentrations in serum and follicular fluid assessed at five time points during final follicle maturation; and (iii) 12 women undergoing fertility preservation, with hormone concentrations evaluated via the follicular fluid of small antral follicles. RESULTS In the early follicular phase, theca cells primarily synthesized 17-OH-P4 while granulosa cells produced limited P4, maintaining the P4:17-OH-P4 ratio <1. As follicles reached follicle selection at a diameter of approximately 10 mm, P4 synthesis in granulosa cells was up-regulated, but P4 was mainly accumulated in follicular fluid. During final maturation, enhanced activity of the enzyme HSD3B2 in granulosa cells enhanced P4 production, with the P4:17-OH-P4 ratio increasing to >1. The concentration of 17-OH-P4 in the luteal phase was similar to that in the follicular phase, but P4 production increased in the luteal phase, yielding a P4:17-OH-P4 ratio significantly >1. CONCLUSIONS The P4:17-OH-P4 ratio reflects the activity of granulosa cells and theca cells during the follicular phase and following luteinization in the corpus luteum. Managing the function of granulosa cells is key for reducing the concentration of P4 during ovarian stimulation, but the concerted action of FSH and LH on granulosa cells during the second half of the follicular phase makes this complex.
Collapse
Affiliation(s)
- M Zheng
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| | - L C Poulsen
- The Fertility Clinic, Herlev Hospital, Herlev, Denmark
| | - N F Wang
- The Fertility Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - L S Mamsen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Copenhagen, Denmark
| | - M L Johannsen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Copenhagen, Denmark; Toxicology and Drug Metabolism Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M L Grøndahl
- The Fertility Clinic, Herlev Hospital, Herlev, Denmark
| | - K Løssl
- The Fertility Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - A L M Englund
- The Fertility Clinic, Zealand University Hospital, Køge, Denmark
| | - S O Skouby
- The Fertility Clinic, Herlev Hospital, Herlev, Denmark
| | - C Y Andersen
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark; The Fertility Clinic, Herlev Hospital, Herlev, Denmark.
| |
Collapse
|
11
|
Lin J, Wu F, Zhu Y, Zhu Q, Du T, Lin J. The Efficacy of Letrozole Co-Treatment in an Antagonist Protocol for Women with Polycystic Ovary Syndrome Undergoing IVF: A Retrospective Study. Drug Des Devel Ther 2024; 18:2823-2835. [PMID: 39006189 PMCID: PMC11244072 DOI: 10.2147/dddt.s458608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Objective Our objective was to investigate the efficacy of letrozole co-treatment in an antagonist protocol for infertile women with polycystic ovary syndrome (PCOS). Patients and Methods This retrospective cohort study included infertile women with PCOS undergoing IVF/ICSI with and without letrozole co-treatment in an antagonist protocol from 2007-2021 at Shanghai Ninth People's Hospital (Shanghai, China). A total of 1559 participants were enrolled, with 1227 women in the antagonist group and 332 women in the letrozole co-treatment group. Propensity score-based patient-matching model was conducted to balance covariates between the groups. The primary outcome was the number of retrieved oocytes, with secondary outcomes including endocrine parameters, ovarian stimulation outcomes, pregnancy outcomes, and obstetrical and neonatal complications. Results Letrozole co-treatment induced significant changes in hormonal regulation, increased the percentage of large follicles, and resulted in fewer retrieved oocytes (P < 0.05). However, there was no negative impact on the number of usable embryos or good-quality embryos (P > 0.05). The live birth rates following fresh embryo transfer were comparable between the letrozole and control groups (single embryo transfer: 28.9% vs 29.7%, P > 0.05; double embryo transfer: 37.3% vs 45.6%, P > 0.05). Additionally, there were no significant differences between the two groups in the live birth rate per patient after frozen embryo transfer and the cumulative live birth rate (P > 0.05). No significant differences in obstetrical and neonatal complications were observed between the groups (P > 0.05). Conclusion The addition of letrozole to the antagonist protocol for women with PCOS undergoing IVF induces a higher percentage of large follicles during oocyte retrieval, while reducing the overall number of retrieved oocytes. Moreover, the use of letrozole demonstrates comparable clinical outcomes following embryo transfers. These findings highlight the potential application of letrozole in an antagonist protocol for women with PCOS.
Collapse
Affiliation(s)
- Jing Lin
- Center for Reproductive Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Fenglu Wu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yanwen Zhu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Qianqian Zhu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Tong Du
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jiaying Lin
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
Zhan T, Zhang J, Zhang Y, Zhao Q, Chemerinski A, Douglas NC, Zhang Q, Xiao S. A Dose-Response Study on Functional and Transcriptomic Effects of FSH on Ex Vivo Mouse Folliculogenesis. Endocrinology 2024; 165:bqae054. [PMID: 38735763 PMCID: PMC11129714 DOI: 10.1210/endocr/bqae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Follicle-stimulating hormone (FSH) binds to its membrane receptor (FSHR) in granulosa cells to activate various signal transduction pathways and drive the gonadotropin-dependent phase of folliculogenesis. Both FSH insufficiency (due to genetic or nongenetic factors) and FSH excess (as encountered with ovarian stimulation in assisted reproductive technology [ART]) can cause poor female reproductive outcomes, but the underlying molecular mechanisms remain elusive. Herein, we conducted single-follicle and single-oocyte RNA sequencing analysis along with other approaches in an ex vivo mouse folliculogenesis and oogenesis system to investigate the effects of different concentrations of FSH on key follicular events. Our study revealed that a minimum FSH threshold is required for follicle maturation into the high estradiol-secreting preovulatory stage, and such threshold is moderately variable among individual follicles between 5 and 10 mIU/mL. FSH at 5, 10, 20, and 30 mIU/mL induced distinct expression patterns of follicle maturation-related genes, follicular transcriptomics, and follicular cAMP levels. RNA sequencing analysis identified FSH-stimulated activation of G proteins and downstream canonical and novel signaling pathways that may critically regulate follicle maturation, including the cAMP/PKA/CREB, PI3K/AKT/FOXO1, and glycolysis pathways. High FSH at 20 and 30 mIU/mL resulted in noncanonical FSH responses, including premature luteinization, high production of androgen and proinflammatory factors, and reduced expression of energy metabolism-related genes in oocytes. Together, this study improves our understanding of gonadotropin-dependent folliculogenesis and provides crucial insights into how high doses of FSH used in ART may impact follicular health, oocyte quality, pregnancy outcome, and systemic health.
Collapse
Affiliation(s)
- Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| | - Ying Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| | - Qingshi Zhao
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, NJ 07103, USA
| | - Anat Chemerinski
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, NJ 07103, USA
| | - Nataki C Douglas
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, NJ 07103, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ 07103, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
13
|
Gilchrist RB, Ho TM, De Vos M, Sanchez F, Romero S, Ledger WL, Anckaert E, Vuong LN, Smitz J. A fresh start for IVM: capacitating the oocyte for development using pre-IVM. Hum Reprod Update 2024; 30:3-25. [PMID: 37639630 DOI: 10.1093/humupd/dmad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/08/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND While oocyte IVM is practiced sporadically it has not achieved widespread clinical practice globally. However, recently there have been some seminal advances in our understanding of basic aspects of oocyte biology and ovulation from animal studies that have led to novel approaches to IVM. A significant recent advance in IVM technology is the use of biphasic IVM approaches. These involve the collection of immature oocytes from small antral follicles from minimally stimulated patients/animals (without hCG-priming) and an ∼24 h pre-culture of oocytes in an advanced culture system ('pre-IVM') prior to IVM, followed by routine IVF procedures. If safe and efficacious, this novel procedure may stand to make a significant impact on human ART practices. OBJECTIVE AND RATIONALE The objectives of this review are to examine the major scientific advances in ovarian biology with a unique focus on the development of pre-IVM methodologies, to provide an insight into biphasic IVM procedures, and to report on outcomes from animal and clinical human data, including safety data. The potential future impact of biphasic IVM on ART practice is discussed. SEARCH METHODS Peer review original and review articles were selected from PubMed and Web of Science searches for this narrative review. Searches were performed using the following keywords: oocyte IVM, pre-IVM, biphasic IVM, CAPA-IVM, hCG-triggered/primed IVM, natural cycle IVF/M, ex-vivo IVM, OTO-IVM, oocyte maturation, meiotic competence, oocyte developmental competence, oocyte capacitation, follicle size, cumulus cell (CC), granulosa cell, COC, gap-junction communication, trans-zonal process, cAMP and IVM, cGMP and IVM, CNP and IVM, EGF-like peptide and IVM, minimal stimulation ART, PCOS. OUTCOMES Minimizing gonadotrophin use means IVM oocytes will be collected from small antral (pre-dominant) follicles containing oocytes that are still developing. Standard IVM yields suboptimal clinical outcomes using such oocytes, whereas pre-IVM aims to continue the oocyte's development ex vivo, prior to IVM. Pre-IVM achieves this by eliciting profound cellular changes in the oocyte's CCs, which continue to meet the oocyte's developmental needs during the pre-IVM phase. The literature contains 25 years of animal research on various pre-IVM and biphasic IVM procedures, which serves as a large knowledge base for new approaches to human IVM. A pre-IVM procedure based on c-type natriuretic peptide (named 'capacitation-IVM' (CAPA-IVM)) has undergone pre-clinical human safety and efficacy trials and its adoption into clinical practice resulted in healthy live birth rates not different from conventional IVF. WIDER IMPLICATIONS Over many decades, improvements in clinical IVM have been gradual and incremental but there has likely been a turning of the tide in the past few years, with landmark discoveries in animal oocyte biology finally making their way into clinical practice leading to improved outcomes for patients. Demonstration of favorable clinical results with CAPA-IVM, as the first clinically tested biphasic IVM system, has led to renewed interest in IVM as an alternative, low-intervention, low-cost, safe, patient-friendly ART approach, and especially for patients with PCOS. The same new approach is being used as part of fertility preservation in patients with cancer and holds promise for social oocyte freezing.
Collapse
Affiliation(s)
- Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
| | - Tuong M Ho
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Michel De Vos
- Brussels IVF, UZ Brussel, Brussels, Belgium
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Flor Sanchez
- Centro de Estudios e Investigaciones en Biología y Medicina Reproductiva, Lima, Peru
| | - Sergio Romero
- Laboratory of Reproductive Biology and Fertility Preservation, Cayetano Heredia University (UPCH), Lima, Peru
- Centro de Fertilidad y Reproducción Asistida, Lima, Peru
| | - William L Ledger
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
- City Fertility, Global CHA IVF Partners, Sydney, NSW, Australia
| | - Ellen Anckaert
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lan N Vuong
- Department of Obstetrics and Gynaecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Johan Smitz
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
14
|
Zhang Y, Fu X, Gao S, Gao S, Gao S, Ma J, Chen ZJ. Letrozole use in vitrified single-blastocyst transfer cycles is associated with lower risk of large for gestational age infants in patients with polycystic ovary syndrome. J Assist Reprod Genet 2023; 40:2885-2894. [PMID: 37815736 PMCID: PMC10656372 DOI: 10.1007/s10815-023-02956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
PURPOSE To evaluate the obstetric and perinatal outcomes of three routine endometrial preparation protocols in women with PCOS who underwent frozen embryo transfer (FET). METHODS This was a retrospective study in women with PCOS who underwent FET in an academic reproductive medical center. A total of 2710 cycles were enrolled and classified into three groups according to different endometrial preparation protocols; human menopausal gonadotropin (HMG), letrozole + HMG, or hormone replacement therapy (HRT). RESULTS The stimulation groups had reduced risks of hypertensive disorders of pregnancy (HDP), large for gestational age (LGA) infants, and cesarean delivery than the HRT group. After adjustment for different confounder combinations in the two models, the frequencies of LGA and HDP in the letrozole + HMG group and the HMG group were still significantly lower than those in the HRT group. The letrozole + HMG group exhibited a reduced risk of LGA than HMG group after adjustment of confounders. A trend toward risk reductions in HDP and LGA was observe in turns of HRT, HMG, and letrozole + HMG groups, and the trends were statistically significant (Ptrend = 0.031 and 0.001). CONCLUSION In patients with PCOS, ovarian stimulation protocols for endometrial preparation are associated with reduced risks of HDP and LGA compared to HRT cycles. The use of letrozole could further reduce risk of LGA compared to HMG only protocol. We propose that ovarian stimulation protocols can be used widely for endometrial preparation in FET cycles in women with PCOS, especially with the use of letrozole.
Collapse
Affiliation(s)
- Yiting Zhang
- Center for Reproductive Medicine, the Second Hospital, Cheeloo College of Medicine, Shandong University, No.247 Beiyandajie Road, Jinan, 250000, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Xiao Fu
- Center for Reproductive Medicine, the Second Hospital, Cheeloo College of Medicine, Shandong University, No.247 Beiyandajie Road, Jinan, 250000, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Shuli Gao
- Center for Reproductive Medicine, the Second Hospital, Cheeloo College of Medicine, Shandong University, No.247 Beiyandajie Road, Jinan, 250000, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Shuzhe Gao
- Center for Reproductive Medicine, the Second Hospital, Cheeloo College of Medicine, Shandong University, No.247 Beiyandajie Road, Jinan, 250000, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Shanshan Gao
- Center for Reproductive Medicine, the Second Hospital, Cheeloo College of Medicine, Shandong University, No.247 Beiyandajie Road, Jinan, 250000, Shandong, China.
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
| | - Jinlong Ma
- Center for Reproductive Medicine, the Second Hospital, Cheeloo College of Medicine, Shandong University, No.247 Beiyandajie Road, Jinan, 250000, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, the Second Hospital, Cheeloo College of Medicine, Shandong University, No.247 Beiyandajie Road, Jinan, 250000, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
| |
Collapse
|
15
|
Liu L, Hao M, Zhang J, Chen Z, Zhou J, Wang C, Zhang H, Wang J. FSHR-mTOR-HIF1 signaling alleviates mouse follicles from AMPK-induced atresia. Cell Rep 2023; 42:113158. [PMID: 37733588 DOI: 10.1016/j.celrep.2023.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
The majority of activated ovarian follicles undergo atresia during reproductive life in mammals, and only a small number of follicles are ovulated. Though hormone treatment has been widely used to promote folliculogenesis, the molecular mechanism behind follicle selection and atresia remains under debate due to inconsistency among investigation models. Using a high-throughput molecular pathology strategy, we depicted a transcriptional atlas of mouse follicular granulosa cells (GCs) under physiological condition and obtained molecular signatures in healthy and atresia GCs during development. Functional results revealed hypoxia-inducible factor 1 (HIF1) as a major effector downstream of follicle-stimulating hormone (FSH), and HIF1 activation is essential for follicle growth. Energy shortage leads to prevalent AMP-activated protein kinase (AMPK) activation and drives follicular atresia. FSHR-mTOR-HIF1 signaling helps follicles escape from the atresia fate, while energy stress persists. Our work provides a comprehensive understanding of the molecular network behind follicle selection and atresia under physiological condition.
Collapse
Affiliation(s)
- Longping Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Hao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School, Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials, Digital Medical Devices, Beijing 100081, P.R. China
| | - Ziqi Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Zheng M, Andersen CY, Rasmussen FR, Cadenas J, Christensen ST, Mamsen LS. Expression of genes and enzymes involved in ovarian steroidogenesis in relation to human follicular development. Front Endocrinol (Lausanne) 2023; 14:1268248. [PMID: 37964966 PMCID: PMC10641382 DOI: 10.3389/fendo.2023.1268248] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Granulosa cells (GCs) and theca cells (TCs) play a pivotal role in human ovarian steroidogenesis, facilitating the conversion of cholesterol into sex steroids that regulate normal reproductive function. This study aims to explore the expression patterns of key enzymes that govern human ovarian steroidogenesis throughout follicle development, employing both genomic and immunological methodologies. Methods Follicles and GCs obtained from women undergoing ovarian tissue cryopreservation (OTC) and in vitro fertilisation treatment were utilized. Gene expression data were obtained from a Chinese study using RNA sequencing and from microarray data generated in our laboratory to comprehensively analyse gene expression profiles across distinct stages of follicular development. To corroborate the localisation of key enzymes within GCs and TCs, immunohistochemistry analyses utilizing colourimetric and fluorescent techniques were conducted. Results Steroidogenesis-related enzymes displayed low gene expression levels during early follicle development. However, a notable upregulation of HSD3B2 was observed in GCs as follicles progressed to the antral/preovulatory stage, confirmed consistently using both microarray and RNA sequencing methodologies. Furthermore, immunohistochemical analyses effectively demonstrated that HSD3B2 were not only expressed in GCs, but co-localised with CYP17A1 within a specific subset of TCs surrounding human small antral follicles. Contributing to an enhanced progesterone production during the second half of the follicular phase was a significant upregulation of CYB5A in both microarray and RNA-seq datasets as follicles transition from the antral stage to the pre-ovulatory stage. Moreover, an augmented expression of DHCR24 and LDLR in both types of data, along with HMGCR expression expression in the microarray data, indicates increased substrate availability for ovarian steroidogenesis. Discussion This study confirms and extends that GCs gradually augment expression of HSD3B2 thereby enhancing their capacity for progesterone synthesis as follicles reach the size of selection at around 10 mm in diameter. This is supported by the expression CYB5A and possibly augmented availability of steroid precursors. A subset of TCs exhibit concurrent expression of CYP17A1 and HSD3B2, collectively contributing to the synthesis of 17-hydroxyprogesterone. These data significantly enhance our understanding of the dynamic regulation of progesterone throughout the process of follicular development.
Collapse
Affiliation(s)
- Mengxue Zheng
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Frida Roikjer Rasmussen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jesús Cadenas
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
17
|
Houeis L, Dolmans MM. Summary of the ISFP congress, Brussels, 10-12 November, 2022. J Assist Reprod Genet 2023; 40:433-442. [PMID: 36765026 PMCID: PMC10033808 DOI: 10.1007/s10815-023-02720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/12/2023] Open
Abstract
The 7th International Congress of the ISFP was held in Brussels in November 2022. Hundreds of attendees from all over the world had the rare opportunity to hear the most distinguished leaders discuss and debate the latest advances in the field. Participants were also able to attend workshops under the guidance of skilled practitioners. Numerous topics were considered, including a recap on fertility preservation approaches in cancer and benign pathologies and a section on male factor infertility. Other aspects covered were in vitro maturation and poor responders, the impact of chemotherapy on the ovary, and future perspectives. Participants had the chance to listen to a symposium on fertility preservation techniques, and finally, a keynote lecture on fertility preservation in gynecological cancers brought this prominent and highly influential event to a close.
Collapse
Affiliation(s)
- Lara Houeis
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
- Department of Gynecology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
18
|
Future potential of in vitro maturation including fertility preservation. Fertil Steril 2023; 119:550-559. [PMID: 36702341 DOI: 10.1016/j.fertnstert.2023.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
In several mammalian species, oocytes from small antral follicles after in vitro maturation (IVM) are successfully used for procreation. Humans are the exception, mainly because of limited access to immature oocytes and because oocyte maturation is uniquely regulated in women. With the introduction of cryopreservation of the ovarian cortex for fertility preservation, immature oocytes from small antral follicles in the medulla are now available for developing IVM on the basis of actual human studies. This review presents recent findings in favor of developing human IVM, including the oocyte diameter, follicle size from which the immature oocytes are collected, necessary level of follicle-stimulating hormone and luteinizing hormone to accelerate IVM, and secretion of factors from the cumulus-oocyte complex that affect the way oocyte maturation takes place. Furthermore, on the basis of studies in human granulosa cells and follicle fluid collected during the final maturation of follicles in vivo, a number of signal transduction pathways and hormone levels active during physiological conditions have been identified, providing new candidates and ways to improve the current IVM platform. Furthermore, it is suggested that the small droplet of culture medium in which IVM is performed mimics the hormonal milieu within a follicle created by the somatic cells and oocyte in vivo and may be used to advance oocyte nuclear and cytoplasmic maturation. Collectively, we envision that a continued research effort will develop a human IVM platform equally effective as for other mammalian species.
Collapse
|
19
|
Anti-Müllerian Hormone and Polycystic Ovary Syndrome in Women and Its Male Equivalent. Biomedicines 2022; 10:biomedicines10102506. [PMID: 36289767 PMCID: PMC9599141 DOI: 10.3390/biomedicines10102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
This article reviews the main findings on anti-Müllerian hormone (AMH) and its involvement in the pathogenesis of polycystic ovary syndrome (PCOS) and its male equivalent. In women, AMH is produced by granulosa cells from the mid-fetal life to menopause and is a reliable indirect marker of ovarian reserve. AMH protects follicles from atresia, inhibits their differentiation in the ovary, and stimulates gonadotrophin-releasing hormone neurons pulsatility. AMH overexpression in women with PCOS likely contributes to the increase of the follicle cohort and of androgen levels, leading to follicular arrest and anovulation. In the male, AMH is synthesized at high levels by Sertoli cells from fetal life to puberty when serum AMH falls to levels similar to those observed in women. AMH is involved in the differentiation of the genital tract during fetal life and plays a role in Sertoli and Leydig cells differentiation and function. Serum AMH is used to assess Sertoli cell function in children with disorders of sex development and various conditions affecting the hypothalamic–pituitary–testicular axis. Although the reproductive function of male relative of women with PCOS has been poorly investigated, adolescents have elevated levels of AMH which could play a detrimental role on their fertility.
Collapse
|
20
|
Mu X, Pei ML, Zhu F, Shi JZ, Liu P. Serum Metabolomic Signature Predicts Ovarian Response to Controlled Stimulation. Horm Metab Res 2022; 54:625-632. [PMID: 35732192 DOI: 10.1055/a-1882-3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In in vitro fertilization (IVF), it is meaningful to find novel biomarkers predicting ovarian response in advance. The aim of the study was to identify serum metabolomics predicting ovarian response after controlled ovarian stimulation (COS). Blood samples collected at the start of pituitary downregulation and on the fifth day after COS using Liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were analyzed to quantify metabolites. Demographic data were calculated with SPSS version 22.0 software. Multivariate statistics were used to analyze metabolomics dataset. A receiver operating characteristic (ROC) curve was used to evaluate the diagnostic model. Analyses revealed 50 different metabolomics between the pre- and post-COS groups. Compared with baseline, amino acids increased significantly following COS. At baseline, acetylglycine was more abundant in FOI<1 group, while glycine and lipids increased in FOI≥1 group. After COS, glycine, N-acetyl-L-alanine, D-alanine, and 2-aminomuconic acid were higher in those with FOI≥1, but L-glutamine was abundant in FOI<1. ROC curves indicated that combination of glycine, acetylglycine, and lipids predicts different responses to COS (AUC=0.866). Serum metabolism might reflect the response to ovarian stimulation. Higher glycine and PC may be a good predictor for response to COS.
Collapse
Affiliation(s)
- Xin Mu
- Center for Translational Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, China
- Assistant Reproductive Center, Northwest Women and Children's Hospital, Xi'an, China
| | - Mei-Li Pei
- Department of Gynecology and Obstetrics, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, China
| | - Feng Zhu
- Center for Translational Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, China
| | - Juan Zi Shi
- Assistant Reproductive Center, Northwest Women and Children's Hospital, Xi'an, China
| | - Peijun Liu
- Center for Translational Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, China
| |
Collapse
|
21
|
Kolatorova L, Vitku J, Suchopar J, Hill M, Parizek A. Progesterone: A Steroid with Wide Range of Effects in Physiology as Well as Human Medicine. Int J Mol Sci 2022; 23:7989. [PMID: 35887338 PMCID: PMC9322133 DOI: 10.3390/ijms23147989] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Progesterone is a steroid hormone traditionally linked with female fertility and pregnancy. In current reproductive medicine, progesterone and its analogues play crucial roles. While the discovery of its effects has a long history, over recent decades, various novel actions of this interesting steroid have been documented, of which its neuro- and immunoprotective activities are the most widely discussed. Discoveries of the novel biological activities of progesterone have also driven research and development in the field of progesterone analogues used in human medicine. Progestogen treatment has traditionally and predominately been used in maintaining pregnancy, the prevention of preterm labor, various gynecological pathologies, and in lowering the negative effects of menopause. However, there are also various other medical fields where progesterone and its analogues could find application in the future. The aim of this work is to show the mechanisms of action of progesterone and its metabolites, the physiological and pharmacological actions of progesterone and its synthetic analogues in human medicine, as well as the impacts of its production and use on the environment.
Collapse
Affiliation(s)
- Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Josef Suchopar
- DrugAgency, a.s., Klokotska 833/1a, 142 00 Prague, Czech Republic;
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Antonin Parizek
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General Teaching Hospital, Apolinarska 18, 128 51 Prague, Czech Republic;
| |
Collapse
|
22
|
Poulsen LC, Warzecha AK, Bülow NS, Bungum L, Macklon NS, Yding Andersen C, Skouby SO. Effects of letrozole cotreatment on endocrinology and follicle development in women undergoing ovarian stimulation in an antagonist protocol. Hum Reprod 2022; 37:1557-1571. [PMID: 35652260 DOI: 10.1093/humrep/deac119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/17/2022] [Indexed: 12/25/2022] Open
Abstract
STUDY QUESTION What are the downstream endocrine and paracrine consequences of letrozole (LZ) cotreatment during ovarian stimulation and is follicle growth and recruitment affected? SUMMARY ANSWER Letrozole cotreatment induces marked changes in both the follicular and luteal phase endocrinology causing potentiation of follicle diameter and an improved corpus luteum function without affecting the secondarily recruited follicle cohort. WHAT IS KNOWN ALREADY Letrozole is a third-generation aromatase inhibitor that is well-established as an effective ovulatory agent, while its possible benefits in standard in vitro fertilization protocols are less thoroughly investigated. STUDY DESIGN, SIZE, DURATION This study included a double-blinded, placebo-controlled, randomized study with LZ or placebo intervention during ovarian stimulation for IVF treatment, an observational preceding baseline natural cycle and a succeeding follow-up visit. Participants were enrolled between August 2016 and November 2018. Data from the randomized, stimulated cycle were part of a larger RCT, which was previously published. PARTICIPANTS/MATERIALS, SETTING, METHODS The study was conducted at a public fertility clinic at Herlev Hospital, Denmark, including 31 healthy, normo-responding women eligible for IVF treatment. They underwent a natural baseline cycle and were subsequently randomized to receive either LZ 5 mg (n = 16) or placebo (n = 15) daily during ovarian stimulation from cycle day (CD) 2-3 until induction of ovulation. Throughout both cycles, monitoring was performed every third day with transvaginal ultrasound for assessment of follicle count and diameter, and blood analyses for the determination of twelve endocrine and paracrine parameters. A follow-up assessment was performed at CD2-3 in the succeeding cycle. In the randomized part of the study, we determined differences in blood parameters, follicle recruitment, and follicle diameter. In the observational part of the study, we assessed follicle recruitment in between cycles and its correlation to endocrine parameters. MAIN RESULTS AND THE ROLE OF CHANCE Letrozole cotreatment significantly suppressed oestradiol (E2) concentrations in the follicular phase (area under the curve (AUC) -58% (95% CI [-70%; -43%], P < 0.001)) and luteal phase (AUC -39% [-63%; -1%], P = 0.046). This had a marked effect on the endocrine and paracrine output with increased follicular phase luteinizing hormone (AUC +37% [3%; 82%], P = 0.033), androstenedione (AUC +36% [6%; 74%], P = 0.016), testosterone (AUC +37% [7%; 73%], P = 0.013) and 17-OH-progesterone (AUC +114% [10%; 318%], P = 0.027). Furthermore, follicle-stimulating hormone (FSH) was increased at stimulation day 5 in the LZ group (P < 0.05). In the luteal phase, increased corpus luteum output was reflected by elevated progesterone (AUC +44% [1%; 104%], P = 0.043), inhibin A (AUC +52% [11%; 108%], P = 0.011), androstenedione (AUC +31% [9%; 58%], P = 0.006) and testosterone (AUC +29% [6%; 57%], P = 0.012) in the LZ group. The altered balance between oestrogens and androgens was reflected in a markedly reduced SHBG concentration in the LZ group throughout the luteal phase (AUC -35% [-52%; -11%], P = 0.009). Endocrine and paracrine parameters were similar between groups at the follow-up visit. Letrozole cotreatment significantly increased the mean number of follicles >16 mm at oocyte retrieval (7.2 vs 5.2, difference: 2.0, 95% CI [0.1; 3.8], P = 0.036), while the mean total number of follicles at oocyte retrieval was the same (23.7 vs 23.5, difference: 0.2 [-5.8; 6.1], P = 0.958), and the mean FSH consumption during the stimulated cycle was similar (1500 vs 1520 IU, difference -20 IU [-175; 136], P = 0.794). Between cycles, the mean antral follicle count at CD2-3 was unchanged (natural cycle 19.0, stimulated cycle 20.9, follow-up cycle 19.7, P = 0.692) and there was no effect of LZ cotreatment on the recruitment of the next follicle cohort (test for interaction, P = 0.821). LIMITATIONS, REASONS FOR CAUTION This study included a relatively small, selected group of healthy women with an expected normal ovarian function and reserve, and the effects of LZ may therefore be different in other patient groups. WIDER IMPLICATIONS OF THE FINDINGS We confirm some previous findings concerning increased follicle growth and increased endogenous FSH and androgen production, which support the rationale for further studies on the use of LZ cotreatment, for example, as a form of endogenous androgen priming sensitizing the follicle to FSH. Letrozole appears to improve the luteal phase with better stimulation of corpus luteum and progesterone secretion. STUDY FUNDING/COMPETING INTEREST(S) The authors declare no conflicts of interest relating to the present work. TRIAL REGISTRATION NUMBER NCT02939898.
Collapse
Affiliation(s)
- Liv C Poulsen
- Department of Gynaecology and Obstetrics, Endocrinological and Reproductive Unit, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Agnieszka K Warzecha
- Department of Gynaecology and Obstetrics, Endocrinological and Reproductive Unit, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Nathalie S Bülow
- Department of Gynaecology and Obstetrics, Endocrinological and Reproductive Unit, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark.,The Fertility Department, Copenhagen University Hospital, Copenhagen, Denmark
| | - Leif Bungum
- Fertility Clinic, Department of Gynaecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | - Nicholas S Macklon
- Fertility Clinic, Department of Gynaecology and Obstetrics, Zealand University Hospital, Køge, Denmark.,London Women's Clinic, London, UK
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sven O Skouby
- Department of Gynaecology and Obstetrics, Endocrinological and Reproductive Unit, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| |
Collapse
|
23
|
Man L, Lustgarten Guahmich N, Kallinos E, Caiazza B, Khan M, Liu ZY, Patel R, Torres C, Pepin D, Yang HS, Bodine R, Zaninovic N, Schattman G, Rosenwaks Z, James D. Chronic superphysiologic AMH promotes premature luteinization of antral follicles in human ovarian xenografts. SCIENCE ADVANCES 2022; 8:eabi7315. [PMID: 35263130 PMCID: PMC8906729 DOI: 10.1126/sciadv.abi7315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 01/14/2022] [Indexed: 05/19/2023]
Abstract
Anti-Müllerian hormone (AMH) is produced by growing ovarian follicles and provides a diagnostic measure of reproductive reserve in women; however, the impact of AMH on folliculogenesis is poorly understood. We cotransplanted human ovarian cortex with control or AMH-expressing endothelial cells in immunocompromised mice and recovered antral follicles for purification and downstream single-cell RNA sequencing of granulosa and theca/stroma cell fractions. A total of 38 antral follicles were observed (19 control and 19 AMH) at long-term intervals (>10 weeks). In the context of exogenous AMH, follicles exhibited a decreased ratio of primordial to growing follicles and antral follicles of increased diameter. Transcriptomic analysis and immunolabeling revealed a marked increase in factors typically noted at more advanced stages of follicle maturation, with granulosa and theca/stroma cells also displaying molecular hallmarks of luteinization. These results suggest that superphysiologic AMH alone may contribute to ovulatory dysfunction by accelerating maturation and/or luteinization of antral-stage follicles.
Collapse
Affiliation(s)
- Limor Man
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nicole Lustgarten Guahmich
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eleni Kallinos
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Barbara Caiazza
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Monica Khan
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zong-Ying Liu
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ritaben Patel
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carmen Torres
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Pepin
- Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02214, USA
| | - He S. Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard Bodine
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nikica Zaninovic
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medicine, New York, NY 10065, USA
| | - Glenn Schattman
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zev Rosenwaks
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daylon James
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
24
|
Huang Y, Luo W, Luo X, Wu X, Li J, Sun Y, Tang S, Cao J, Gong Y. Comparative Analysis Among Different Species Reveals That the Androgen Receptor Regulates Chicken Follicle Selection Through Species-Specific Genes Related to Follicle Development. Front Genet 2022; 12:752976. [PMID: 35046998 PMCID: PMC8762282 DOI: 10.3389/fgene.2021.752976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
The differences in reproductive processes at the molecular level between viviparous and oviparous animals are evident, and the site in the ovary that synthesizes sex hormones (androgens and oestrogens) and the trends for enriching sex hormones during follicle development in chickens are different from those in mammals, suggesting that the effect of sex hormones on follicle development in chickens is probably different from that in viviparous animals. To explore the specific role of androgen receptors (ARs) on chicken follicular development, we matched the correspondence of follicular development stages among chickens, humans, cows and identified chicken-specific genes related to follicle development (GAL-SPGs) by comparing follicle development-related genes and their biological functions among species (chickens, humans, and cows). A comparison of the core transcription factor regulatory network of granulosa cells (or ovaries) based on super-enhancers among species (chicken, human, and mouse) revealed that AR is a core transcriptional regulator specific to chickens. In vivo experiments showed that inhibition of AR significantly reduced the number of syf (selected stage follicles) in chickens and decreased the expression of GAL-SPGs in F5 follicles, while in vitro experiments showed that inhibition of AR expression in chicken granulosa cells (GCs) significantly down-regulated the expression levels of GAL-SPGs, indicating that AR could regulate follicle selection through chicken-specific genes related to follicle development. A comparison among species (77 vertebrates) of the conserved genomic regions, where chicken super-enhancers are located, revealed that the chicken AR super-enhancer region is conserved in birds, suggesting that the role of AR in follicle selection maybe widespread in birds. In summary, we found that AR can regulate follicle selection through chicken-specific genes related to follicle development, which also emphasizes the important role of AR in follicle selection in chickens and provides a new perspective for understanding the unique process of follicle development in chickens. Our study will contribute to the application of androgens to the control of egg production in chickens and suggests that researchers can delve into the mechanisms of follicle development in birds based on androgen/androgen receptors.
Collapse
Affiliation(s)
- Ying Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Wei Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China.,Guilin Medical University, Guilin, China
| | - Xuliang Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Xiaohui Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Jinqiu Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China.,Central Laboratory, Affiliated Hospital of Putian University, Putian, China
| | - Yan Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Shuixin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Jianhua Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| |
Collapse
|
25
|
Asgharnia M, Mehrafza M, Raoufi A, Zare Yousefi T, Hosseinzadeh E, Samadnia S, Zahiri Z, Tamimi A, Hosseini A. The efficiency of low-dose letrozole plus clomiphene citrate for ovulation induction in intrauterine insemination cycles: A randomized clinical trial. Int J Gynaecol Obstet 2021; 159:182-187. [PMID: 34890047 DOI: 10.1002/ijgo.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/17/2021] [Accepted: 12/09/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To investigate if combination therapy with clomiphene citrate (CC) plus letrozole (L) was associated with a higher efficacy than L and CC alone in patients undergoing ovarian induction plus intrauterine insemination. METHODS The present multicenter randomized controlled clinical trial was performed between 2018 and 2020. Participants were randomized into three groups: L (n = 167; 5 mg/day), CC (n = 167; 100 mg/day), and L + CC (n = 167) (2.5 mg/day + 50 mg/day) from day 3. Ovarian stimulation was continued with the appropriate dose of gonadotropins daily starting from day 8 and continued until follicular size was 20 mm or more followed by administration of human chorionic gonadotropin (10 000 IU). Semen samples were prepared by direct swim-up technique. RESULTS In the CC group, gonadotropin dose was significantly higher but endometrial thickness was significantly lower compared with other groups. Number of follicles of 18 mm or more was significantly lower in the L group compared with the other two groups. Number of follicles less than 15 mm was meaningfully higher in the CC group compared with the other groups. In the L + CC group, total and largest follicular size, and the rates of chemical, clinical, and ongoing pregnancy, and live birth were significantly higher compared with other groups. CONCLUSION Combination therapy with L + CC was superior to either L or CC for achieving pregnancy in women undergoing ovarian induction plus intrauterine insemination.
Collapse
Affiliation(s)
- Maryam Asgharnia
- Reproductive Health Research Center, Department of Obstetrics & Gynecology, Alzahra Hospital, School of Medical, Guilan University of Medical Sciences, Rasht, Iran
| | - Marzieh Mehrafza
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Azadeh Raoufi
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Tahereh Zare Yousefi
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Elmira Hosseinzadeh
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sajedeh Samadnia
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ziba Zahiri
- Reproductive Health Research Center, Department of Obstetrics & Gynecology, Alzahra Hospital, School of Medical, Guilan University of Medical Sciences, Rasht, Iran
| | - Amirhossein Tamimi
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Hosseini
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
26
|
di Clemente N, Racine C, Pierre A, Taieb J. Anti-Müllerian Hormone in Female Reproduction. Endocr Rev 2021; 42:753-782. [PMID: 33851994 DOI: 10.1210/endrev/bnab012] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/26/2022]
Abstract
Anti-Müllerian hormone (AMH), also called Müllerian inhibiting substance, was shown to be synthesized by the ovary in the 1980s. This article reviews the main findings of the past 20 years on the regulation of the expression of AMH and its specific receptor AMHR2 by granulosa cells, the mechanism of action of AMH, the different roles it plays in the reproductive organs, its clinical utility, and its involvement in the principal pathological conditions affecting women. The findings in respect of regulation tell us that AMH and AMHR2 expression is mainly regulated by bone morphogenetic proteins, gonadotropins, and estrogens. It has now been established that AMH regulates the different steps of folliculogenesis and that it has neuroendocrine effects. On the other hand, the importance of serum AMH as a reliable marker of ovarian reserve and as a useful tool in the prediction of the polycystic ovary syndrome (PCOS) and primary ovarian failure has also been acknowledged. Last but not least, a large body of evidence points to the involvement of AMH in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Nathalie di Clemente
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Chrystèle Racine
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut Hospitalo-Universitaire ICAN, Paris, France.,Sorbonne Paris Cité, Paris-Diderot Université, Paris, France
| | - Alice Pierre
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, INSERM, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l'Axe Gonadotrope U1133, Paris, France
| | - Joëlle Taieb
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, INSERM, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l'Axe Gonadotrope U1133, Paris, France
| |
Collapse
|
27
|
Cadenas J, Nikiforov D, Pors SE, Zuniga LA, Wakimoto Y, Ghezelayagh Z, Mamsen LS, Kristensen SG, Andersen CY. A threshold concentration of FSH is needed during IVM of ex vivo collected human oocytes. J Assist Reprod Genet 2021; 38:1341-1348. [PMID: 34050448 DOI: 10.1007/s10815-021-02244-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/23/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To investigate the effect of different FSH concentrations on human oocyte maturation in vitro and its impact on gene expression of key factors in the surrounding cumulus cells. METHODS The study included 32 patients who underwent unilateral oophorectomy for ovarian tissue cryopreservation (OTC) (aged 28 years on average). Immature oocytes were collected from surplus medulla tissue. A total of 587 immature oocytes were divided into three categories according to the size of the cumulus mass: large (L-COCs), small (S-COCs), and naked oocytes (NOs), and submitted to 44-h IVM with one of the following concentrations of recombinant FSH: 0 IU/L, 20 IU/L, 40 IU/L, 70 IU/L, or 250 IU/L. After IVM, oocyte nuclear maturation stage and diameter were recorded. The relative gene expression of FSHR, LHCGR, and CYP19A1 in cumulus cells before (day 0; D0) and after IVM were evaluated. RESULTS Addition of 70 or 250 IU/L FSH to the IVM medium improved oocyte nuclear maturation compared to 0, 20, and 40 IU/L FSH by upregulating LHCGR and downregulating FSHR in the cumulus cells. CONCLUSION FSH improved oocyte nuclear maturation at concentrations above 70 IU/L suggesting a threshold for FSH during IVM of ex vivo collected human oocytes from small antral follicles. Moreover, current results for the first time highlight that FSH function in vitro is mediated via cumulus cells by downregulating FSHR and upregulating LHCGR, which was also observed when the immature oocytes progressed in meiosis from the GV to the MII stage.
Collapse
Affiliation(s)
- Jesús Cadenas
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| | - Dmitry Nikiforov
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lenin Arturo Zuniga
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Yu Wakimoto
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Zeinab Ghezelayagh
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
28
|
Kristensen SG, Duncan FE. Autonomous follicle growth and the production of mature human eggs in vitro: with or without the ovary? Hum Reprod 2021; 36:1163-1165. [PMID: 33681977 DOI: 10.1093/humrep/deab052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stine Gry Kristensen
- Laboratory of Reproductive Biology, Juliane Marie Center for Women, Children, and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Francesca Elizabeth Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
29
|
Poulsen LC, Englund ALM, Andersen AS, Bøtkjær JA, Mamsen LS, Damdimopoulou P, Østrup O, Grøndahl ML, Yding Andersen C. Follicular hormone dynamics during the midcycle surge of gonadotropins in women undergoing fertility treatment. Mol Hum Reprod 2021; 26:256-268. [PMID: 32023345 DOI: 10.1093/molehr/gaaa013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Changes in concentrations of intra-follicular hormones during ovulation are important for final oocyte maturation and endometrial priming to ensure reproductive success. As no human studies have investigated these changes in detail, our objective was to describe the dynamics of major follicular fluid (FF) hormones and transcription of steroidogenic enzymes and steroid receptors in human granulosa cells (GCs) during ovulation. We conducted a prospective cohort study at a public fertility clinic in 2016-2018. Fifty women undergoing ovarian stimulation for fertility treatment were included. From each woman, FF and GCs were collected by transvaginal ultrasound-guided follicle puncture of one follicle at two specific time points during ovulation, and the study covered a total of five time points: before ovulation induction (OI), 12, 17, 32 and 36 h after OI. Follicular fluid concentrations of oestradiol, progesterone, androstenedione, testosterone, 17-hydroxyprogesterone, anti-Mullerian hormone, inhibin A and inhibin B were measured using ELISA assays, and a statistical mixed model was used to analyse differences in hormone levels between time points. Gene expression of 33 steroidogenic enzymes and six hormone receptors in GCs across ovulation were assessed by microarray analysis, and selected genes were validated by quantitative reverse transcription PCR. We found that concentrations of oestradiol, testosterone, progesterone, AMH, inhibin A and inhibin B (P < 0.001) and gene expression of 12 steroidogenic enzymes and five receptors (false discovery rate < 0.0001) changed significantly during ovulation. Furthermore, we found parallel changes in plasma hormones. The substantial changes in follicular hormone production during ovulation highlight their importance for reproductive success.
Collapse
Affiliation(s)
- L C Poulsen
- Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| | - A L M Englund
- Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| | - A S Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - J A Bøtkjær
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - L S Mamsen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - P Damdimopoulou
- Swedish Toxicology Sciences Research Centre (Swetox), Karolinska Institute, Unit of Toxicology Sciences, 15136 Södertälje, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institute, SE-141 83 Stockholm, Sweden
| | - O Østrup
- Center for Genomic Medicine, Microarray Core Facility, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - M L Grøndahl
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - C Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
30
|
Wołodko K, Castillo-Fernandez J, Kelsey G, Galvão A. Revisiting the Impact of Local Leptin Signaling in Folliculogenesis and Oocyte Maturation in Obese Mothers. Int J Mol Sci 2021; 22:4270. [PMID: 33924072 PMCID: PMC8074257 DOI: 10.3390/ijms22084270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
The complex nature of folliculogenesis regulation accounts for its susceptibility to maternal physiological fitness. In obese mothers, progressive expansion of adipose tissue culminates with severe hyperestrogenism and hyperleptinemia with detrimental effects for ovarian performance. Indeed, maternal obesity is associated with the establishment of ovarian leptin resistance. This review summarizes current knowledge on potential effects of impaired leptin signaling throughout folliculogenesis and oocyte developmental competence in mice and women.
Collapse
Affiliation(s)
- Karolina Wołodko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Tuwima 10, 10-748 Olsztyn, Poland;
| | | | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; (J.C.-F.); (G.K.)
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - António Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Tuwima 10, 10-748 Olsztyn, Poland;
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; (J.C.-F.); (G.K.)
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
31
|
Polycystic Ovary Syndrome: Pathophysiology, Presentation and Treatment a Mini-Review Article. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2020-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Polycystic ovary syndrome (PCOS) is a common heterogeneous disorder which is known as syndrome. The term ‘syndrome’ refers to a collection of clinical features or a phenotype. The specific features of the PCOS phenotype include clinical signs of androgen excess, elevated serum androgen concentrations, irregular menses, and infertility. It is common heterogenous disorder which affects women with different clinical presentations. In the basis of this disease is hormonal imbalance, such as insulin resistance and hyperinsulinemia. This review was based on searching all the available literature in the next databases: Pubmed, ClinicalTrials, Embase, Medline Complete, Web of Science, Cochrane Library, the Chinese Science and Technology Periodical Database (VIP), WanFang Database (Chinese Ministry of Science & Technology). The search terms included hormonal and metabolic aspects, therapy of PCOS, polycystic ovary syndrome, PCOS.We included only randomized clinical intervention trials in young women published in last five years and included 12 articles in our review analysis. More research is needed to clarify the complex pathophysiology of PCOS. No single test is currently available for its diagnosis. Additionally, once diagnosis is established, the options for treatment are of limited number and effectiveness because they target only the symptoms of PCOS. Finally, patients with PCOS have higher rates of metabolic complications, such as cardiovascular disease, but their impact on mortality is not clear. Therefore, more prospective epidemiologic studies on the topic are necessary.
Collapse
|
32
|
The ratio of exogenous Luteinizing hormone to Follicle stimulating hormone administered for controlled ovarian stimulation is associated with oocytes' number and competence. Biosci Rep 2021; 40:221613. [PMID: 31850491 PMCID: PMC6944660 DOI: 10.1042/bsr20190811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/01/2022] Open
Abstract
We performed a retrospective study aiming to study the relationship between the ratio of the exogenous luteinizing hormone to follicle stimulating hormone (LH/FSH) administrated for controlled ovarian stimulation (COS) and the number and competence of the oocytes retrieved for in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). Eight hundred sixty-eight consecutive infertile patients (mean age 34.54 ± 4.01 years, mean anti-Müllerian hormone (AMH) 2.94 ± 2.07 ng/ml) treated with long agonist protocol and a mixed gonadotropin protocol (human menopausal gonadotropin in association with recombinant FSH (recFSH)) who performed IVF/ICSI between January 2013 and February 2016, were included. Patients with severe male factor were excluded. LH/FSH was calculated based on total doses of the two gonadotropins. We found, after adjustment for confounders, a positive relationship between LH/FSH and the retrieved oocytes’ (β = 0.229, P<0.0001) and zygotes’ number (β = 0.144, P<0.0001) in the entire study group and in subgroups according to age (<35 and ≥35 years) and ovarian reserve (AMH < 1.1 and ≥ 1.1 ng/ml). The fertilization rate was positively associated with LH/FSH in patients with LH/FSH in the lowest three quartiles (below 0.77) (β = 0.096, P=0.034). However, patients in the fourth quartile of LH/FSH had a lower fertilization rate as compared with patients in quartiles 1–3 which, after adjustment for covariates, was only marginally negatively related with LH/FSH (β = −0.108, P=0.05). In conclusion, our results suggest that the adequate LH/FSH administrated during COS can improve the oocytes’ and zygotes’ number in IVF/ICSI cycles, but also the fertilization rate when a certain proportion of LH/FSH is not exceeded.
Collapse
|
33
|
Zhang X, Feng T, Yang J, Hao Y, Li S, Zhang Y, Qian Y. A flexible short protocol in women with poor ovarian response over 40 years old. J Ovarian Res 2021; 14:3. [PMID: 33402208 PMCID: PMC7786950 DOI: 10.1186/s13048-020-00761-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 12/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian responsiveness to controlled ovarian stimulation is essential for a successful clinical outcome in assisted reproductive technology (ART) cycles. We aimed to find a suitable new ovulation stimulation protocol for poor ovarian response (POR) patients over 40 years old. METHODS A retrospective analysis of 488 ART cycles was evaluated from January 2015 to June 2019. Comparisons were made between the flexible short protocol (FSP), routine short protocol and mild stimulation protocol. RESULTS Compared with the routine short protocol, the FSP delayed the gonadotropin start time and reduced the total gonadotropin dose per stimulation cycle. At the same time, compared with the mild stimulation protocol, the FSP improved oocyte quality and embryo quality and improved embryo implantation potential after transfer. Furthermore, the use of the FSP reduced the probability of premature ovulation, as it inhibited the premature luteinizing hormone (LH) surge to a certain extent. CONCLUSIONS The FSP yielded better outcomes than other protocols for patients with POR over 40 years old in our study. However, further prospective studies are needed to provide more substantial evidence and to determine whether the FSP can be successful for both patients over 40 years group and younger POR patients.
Collapse
Affiliation(s)
- Xinyue Zhang
- Reproductive Medical Center of the Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, 210011, Nanjing, China
| | - Ting Feng
- Reproductive Medical Center of the Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, 210011, Nanjing, China
| | - Jihong Yang
- Reproductive Medical Center of the Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, 210011, Nanjing, China
| | - Yingying Hao
- Reproductive Medical Center of the Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, 210011, Nanjing, China
| | - Suying Li
- Reproductive Medical Center of the Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, 210011, Nanjing, China
| | - Yan Zhang
- Reproductive Medical Center of the Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, 210011, Nanjing, China
| | - Yun Qian
- Reproductive Medical Center of the Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan, 210011, Nanjing, China.
| |
Collapse
|
34
|
Mamsen LS, Bøtkjær JA, Kristensen SG, Pors SE, Jeppesen JV, Kumar A, Kalra B, Ernst E, Andersen CY. High Variability of Molecular Isoforms of AMH in Follicular Fluid and Granulosa Cells From Human Small Antral Follicles. Front Endocrinol (Lausanne) 2021; 12:617523. [PMID: 33737910 PMCID: PMC7961079 DOI: 10.3389/fendo.2021.617523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
Anti-Müllerian hormone (AMH) is a member of the TGF-β superfamily produced by follicular granulosa cells (GCs) in women from late gestation to the end of reproductive life. AMH is thought to inhibit aromatase (i.e., CYP19) expression and decrease the conversion of androgens to oestrogens, especially in small antral follicles before dominance is achieved. Thus, AMH acts as a gatekeeper of ovarian steroidogenesis. However, the exact function and processing of AMH has not been fully elucidated. The present study measured and determined AMH isoforms in human follicular fluid (FF) from small antral follicles and in human GCs using four ELISAs, western blot, and immunofluorescence analysis. We evaluated the presence of the following isoforms: full-length AMH precursor (proAMH), cleaved associated AMH (AMHN,C), N-terminal pro-region (AMHN), and active C-terminal (AMHC) AMH. A negative correlation between follicle diameter and the AMH forms was detected. Moreover, western blot analysis detected various AMH forms in both FFs and GCs, which did not match our consensus forms, suggesting an unknown proteolytic processing of AMH. The presence of these new molecular weight isoforms of AMH differs between individual follicles of identical size in the same woman. This study detected several AMH forms in FF and GCs obtained from human small antral follicles, which suggests that intrafollicular processing of AMH is complex and variable. Thus, it may be difficult to develop an antibody-based AMH assay that detects all AMH isoforms. Furthermore, the variability between follicles suggests that designing a recombinant AMH standard will be difficult.
Collapse
Affiliation(s)
- Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- *Correspondence: Linn Salto Mamsen,
| | - Jane Alrø Bøtkjær
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Janni Vikkelsø Jeppesen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ajay Kumar
- Ansh Labs, LLC, Webster, TX, United States
| | | | - Erik Ernst
- Department of Obstetrics and Gynaecology, Regional Hospital of Randers, Randers, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
35
|
Prabhudesai KS, Raje S, Dhamanaskar A, Modi D, Dighe V, Contini A, Idicula-Thomas S. Identification and in vivo validation of a 9-mer peptide derived from FSHβ with FSHR antagonist activity. Peptides 2020; 132:170367. [PMID: 32645381 DOI: 10.1016/j.peptides.2020.170367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022]
Abstract
FSH-FSHR interaction is critical for folliculogenesis, spermatogenesis and progression of several cancers. Therefore, FSHR is an attractive target for fertility regulation and cancer therapeutics. Based on homology and structural analysis of hFSH-FSHR(ECD) complex, a minimal continuous stretch within FSHβ seat-belt loop (FSHβ (89-97)) was identified to be crucial for FSHR interaction. The ability of FSHβ (89-97) peptide to neutralize FSHR activity was evaluated by a panel of in vitro and in vivo experiments. The synthetic peptide significantly inhibited binding of [125I]-FSH to rat Fshr as well as FSH-induced cAMP production. In immature rats, FSHβ (89-97) peptide administration reduced FSH-mediated increase in ovarian weight. The peptide inhibited transition of follicles from pre-antral to antral stage and hindered the cell cycle progression of granulosa cells beyond G0/G1 phase. In adult rats, administration of the peptide inhibited estradiol synthesis and significantly perturbed folliculogenesis.
Collapse
Affiliation(s)
- Kaushiki S Prabhudesai
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai, 400012, Maharashtra, India
| | - Sahil Raje
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai, 400012, Maharashtra, India
| | - Ankita Dhamanaskar
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai, 400012, Maharashtra, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400012, Maharashtra, India
| | - Vikas Dighe
- National Center for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive Health, Mumbai, 400012, Maharashtra, India
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano, Via Venezian, 21, 20133, Milano, Italy
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai, 400012, Maharashtra, India.
| |
Collapse
|
36
|
Lunding SA, Pors SE, Kristensen SG, Landersoe SK, Jeppesen JV, Flachs EM, Pinborg A, Macklon KT, Pedersen AT, Andersen CY, Andersen AN. Biopsying, fragmentation and autotransplantation of fresh ovarian cortical tissue in infertile women with diminished ovarian reserve. Hum Reprod 2020; 34:1924-1936. [PMID: 31593582 DOI: 10.1093/humrep/dez152] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Can ovarian biopsying per se and/or autotransplantation of fragmented ovarian cortical tissue activate dormant follicles and increase the number of recruitable follicles for IVF/ICSI in women with diminished ovarian reserve (DOR)? SUMMARY ANSWER Ovarian biopsying followed by immediate autotransplantation of fragmented cortical tissue failed to increase the number of recruitable follicles for IVF/ICSI 10 weeks after the procedure either at the graft site or in the biopsied ovary, but 12 of the 20 women subsequently had a clinical pregnancy during the 1-year follow-up. WHAT IS KNOWN ALREADY Infertile women with DOR constitute a group of patients with poor reproductive outcome mainly due to the low number of mature oocytes available for IVF/ICSI. Recent studies have shown that in vitro activation of residual dormant follicles by both chemical treatment and tissue fragmentation has resulted in return of menstrual cycles and pregnancies in a fraction of amenorrhoeic women with premature ovarian insufficiency. STUDY DESIGN, SIZE, DURATION This is a prospective clinical cohort study including 20 women with DOR treated at the fertility clinic, Rigshospitalet, Denmark, during April 2016-December 2017. Non-pregnant patients were on average followed for 280 days (range 118-408), while women who conceived were followed until delivery. Study follow-up of non-pregnant patients ended in September 2018. PARTICIPANTS, MATERIALS, SETTING, METHODS The study included infertile women aged 30-39 years with preserved menstrual cycles, indication for IVF/ICSI and repeated serum measurements of anti-Müllerian hormone (AMH) ≤ 5 pmol/L. Patients were randomized to have four biopsies taken from either the left or the right ovary by laparoscopy followed by fragmentation of the cortical tissue to an approximate size of 1 mm3 and autotransplanted to a peritoneal pocket. The other ovary served as a control. Patients were followed weekly for 10 weeks with recording of hormone profile, antral follicle count (AFC), ovarian volume and assessment for ectopic follicle growth. After 10 weeks, an IVF/ICSI-cycle with maximal ovarian stimulation was initiated. MAIN RESULTS AND THE ROLE OF CHANCE No difference in the number of mature follicles after ovarian stimulation 10 weeks after the procedure in the biopsied versus the control ovaries was observed (1.0 vs. 0.7 follicles, P = 0.35). In only three patients, growth of four follicles was detected at the graft site 24-268 days after the procedure. From one of these follicles, a metaphase II (MII) oocyte was retrieved and fertilized, but embryonic development failed. Overall AMH levels did not change significantly after the procedure (P = 0.2). The AFC increased by 0.14 (95% CI: 0.06;0.21) per week (P < 0.005), and the biopsied ovary had on average 0.6 (95% CI: 0.3;-0.88) follicles fewer than the control ovary (P = 0.01). Serum levels of androstenedione and testosterone increased significantly by 0.63 nmol/L (95% CI: 0.21;1.04) and 0.11 nmol/L (95% CI: 0.01;0.21) 1 week after the procedure, respectively, and testosterone increased consecutively over the 10 weeks by 0.0095 nmol/L (95% CI: 0.0002;0.0188) per week (P = 0.045). In 7 of the 20 patients, there was a serum AMH elevation 5 to 8 weeks after the procedure. In this group, mean AMH increased from 2.08 pmol/L (range 1.74-2.34) to 3.94 pmol/L (range 3.66-4.29) from Weeks 1-4 to Weeks 5-8. A clinical pregnancy was obtained in 12 of the 20 (60%) patients with and without medically assisted reproduction (MAR) treatments. We report a cumulated live birth rate per started IVF/ICSI cycle of 18.4%. LIMITATIONS, REASON FOR CAUTION Limitations of the study were the number of patients included and the lack of a non-operated control group. Moreover, 9 of the 20 women had no male partner at inclusion and were treated with donor sperm, but each of these women had an average of 6.8 (range 4-9) unsuccessful MAR treatments with donor sperm prior to inclusion. WIDER IMPLICATIONS OF THE FINDINGS Although 12 out of 20 patients became pregnant during the follow-up period, the current study does not indicate that biopsying, fragmenting and autotransplanting of ovarian cortical tissue increase the number of recruitable follicles for IVF/ICSI after 10 weeks. However, a proportion of the patients may have a follicular response in Weeks 5-8 after the procedure. It could therefore be relevant to perform a future study on the possible effects of biopsying per se that includes stimulation for IVF/ICSI earlier than week 10. STUDY FUNDING/COMPETING INTEREST(S) This study is part of the ReproUnion collaborative study, co-financed by the European Union, Interreg V ÖKS. The funders had no role in the study design, data collection and interpretation, or decision to submit the work for publication. None of the authors have a conflict of interest. TRIAL REGISTRATION NUMBER NCT02792569.
Collapse
Affiliation(s)
- Stine Aagaard Lunding
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Selma Kloeve Landersoe
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Esben Meulengracht Flachs
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital, Bispebjerg Hospital, Copenhagen, Denmark
| | - Anja Pinborg
- The Fertility Clinic, Department of Obstetrics and Gynaecology, Copenhagen University Hospital, Hvidovre Hospital, Hvidovre, Denmark
| | - Kirsten Tryde Macklon
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anette Tønnes Pedersen
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Gynaecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anders Nyboe Andersen
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
37
|
LH supplementation of ovarian stimulation protocols influences follicular fluid steroid composition contributing to the improvement of ovarian response in poor responder women. Sci Rep 2020; 10:12907. [PMID: 32737326 PMCID: PMC7395161 DOI: 10.1038/s41598-020-69325-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/09/2020] [Indexed: 11/15/2022] Open
Abstract
In this prospective study, we evaluated the steroid levels in 111 follicular fluids (FF) collected from 13 women stimulated with FSH monotherapy and 205 FF collected from 28 women stimulated with FSH + LH because of a previous history of hypo-responsiveness to FSH. Steroid levels were measured by HPLC/MS–MS and related to ovarian stimulation protocol, oocyte maturity, fertilization and quality of blastocysts, after individually tracking the fate of all retrieved oocytes. 17-Hydroxy-Progesterone, Androstenedione, Estradiol and Estrone were significantly higher in the FSH + LH protocol. Progesterone, 17-Hydroxy-Progesterone and Estradiol were more expressed in FF yielding a mature oocyte (p < 0.01) in the FSH + LH protocol. FF Progesterone concentration was correlated with the rate of normal fertilization in the FSH protocol. None of the FF steroids measured were associated with blastocyst quality and achievement of pregnancy. Our results indicate that LH supplementation in hypo-responsive women modifies ovarian steroid production, mimicking physiological production better and likely contributing to an improved ovarian response. Employing a correct methodological procedure to evaluate the relationship between FF steroid hormones and assisted reproduction outcomes, our study reveals that some steroids in single follicles may be helpful in predicting oocyte maturity and fertilization.
Collapse
|
38
|
A review of the physiology behind letrozole applications in infertility: are current protocols optimal? J Assist Reprod Genet 2020; 37:2093-2104. [PMID: 32712844 PMCID: PMC7492298 DOI: 10.1007/s10815-020-01892-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/13/2020] [Indexed: 11/23/2022] Open
Abstract
Letrozole is a targeted aromatase inhibitor which has primarily been used in post-menopausal women with breast cancer. Recently, it has been utilized in infertile pre-menopausal women because of its ability to enhance FSH production for ovulation induction. However, the ovarian follicle’s response to FSH is only a part of the endocrine events occurring in a developing follicle. The health of the small antral follicles is driven primarily by androgens, which contribute to granulosa cell mitosis, sensitivity to FSH, and resistance to atresia. In contrast, elevated androgens in the late antral to pre-ovulatory follicle have a negative impact on follicle health and lead to atresia and cystic follicle formation. This ovarian physiologic data suggests that current applications of letrozole to infertility may be squandering some of the primary benefits available in using letrozole to promote follicle development. Four applications of letrozole to infertility that have appeared in the medical literature are reviewed. Androgen-related benefits are reviewed and various questions put forward about how letrozole could be more effectively used to help patients in these settings.
Collapse
|
39
|
Grynnerup AGA, Løssl K, Pilsgaard F, Bogstad JW, Prætorius L, Zedeler A, Lunding SA, Bungum L, Andersen AN, Pinborg A. Contribution of recruitable follicles to circulating anti-Müllerian hormone levels following maximal gonadotrophin stimulation in patients with limited ovarian reserve. Gynecol Endocrinol 2020; 36:273-276. [PMID: 31385725 DOI: 10.1080/09513590.2019.1648414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In women, the majority of anti-Müllerian hormone (AMH) measured in serum originate from small antral follicles measuring 2-10 mm. In gonadotrophin-stimulated cycles prior to assisted reproductive technology (ART), most of the recruitable follicles develop beyond 10 mm in size and thus lose their AMH secretion capacity causing declining serum AMH levels. The aim of this study was to define the residual serum AMH level after elimination of the AMH producing recruitable follicles following maximal gonadotrophin stimulation. We measured serum AMH and number of follicles according to size at several time points during a cycle of maximal gonadotrophin stimulation (fixed dose of 300 IE HP-hMG) in 107 women with low AMH (median AMH 5 pmol/L, interquartile range (IQR) 3.3-8.3). We found that AMH decreased gradually and reached a minimum level of -55.4% (95% CI -59.6; -50.7) of the baseline value four days after ovulation trigger. Our findings suggest that the residual AMH production origins from pre-antral and small antral follicles not visible by sonography and that they account for up to 40% of the circulating AMH.
Collapse
Affiliation(s)
| | - Kristine Løssl
- Fertility Clinic, Hvidovre Hospital, Copenhagen University, Hvidovre, Denmark
- Fertility Clinic, Rigshospitalet, Copenhagen University, København, Denmark
| | - Fie Pilsgaard
- Fertility Clinic, Hvidovre Hospital, Copenhagen University, Hvidovre, Denmark
| | - Jeanette Wulff Bogstad
- Fertility Clinic, Hvidovre Hospital, Copenhagen University, Hvidovre, Denmark
- Fertility Clinic, Rigshospitalet, Copenhagen University, København, Denmark
| | - Lisbeth Prætorius
- Fertility Clinic, Hvidovre Hospital, Copenhagen University, Hvidovre, Denmark
| | - Anne Zedeler
- Fertility Clinic, Hvidovre Hospital, Copenhagen University, Hvidovre, Denmark
| | | | - Leif Bungum
- Fertility Clinic, Herlev Hospital, Copenhagen University, Herlev, Denmark
| | | | - Anja Pinborg
- Fertility Clinic, Hvidovre Hospital, Copenhagen University, Hvidovre, Denmark
- Fertility Clinic, Rigshospitalet, Copenhagen University, København, Denmark
| |
Collapse
|
40
|
Wang D, Wang T, Wang R, Zhang X, Wang L, Xiang Z, Zhuang L, Shen S, Wang H, Gao Q, Wang Y. Suppression of p66Shc prevents hyperandrogenism-induced ovarian oxidative stress and fibrosis. J Transl Med 2020; 18:84. [PMID: 32066482 PMCID: PMC7027222 DOI: 10.1186/s12967-020-02249-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/28/2020] [Indexed: 01/29/2023] Open
Abstract
Background Rats with hyperandrogen-induced polycystic ovary syndrome (PCOS) have been shown to develop ovarian oxidative stress (OS) and fibrosis. The Sirt1 agonist, resveratrol, can reduce OS through inhibiting p66Shc in other models of OS. Methods We created a rat PCOS model with increased OS levels following treatment with one of the two androgens, dehydroepiandrosterone (DHEA) and dihydrotestosterone (DHT). The PCOS related features were determined by measurement of malondialdehyde (MDA) and superoxide dismutase (SOD) levels or by examining the reactive oxygen species (ROS) levels using the DCF-DA probe. The potential mechanisms by which p66Shc/Sirt1 mediates ovarian fibrosis were explored by western blotting, quantitative reverse transcription-PCR, immunofluorescence staining, and immunohistochemistry. Results Hyperandrogen dramatically augmented OS and activation of fibrotic factors in the ovary. Our data demonstrated that treatment with resveratrol enhanced Sirt1 and decreased ovarian OS as well as inhibited phosphorylation of p66Shc both in vivo and in vitro. The treatment suppressed fibrotic factor activation and improved ovarian morphology. Lentivirus- or siRNA-mediated p66Shc knockdown resulted in a dramatic enhancement of Sirt1 expression, down-regulation of ROS and suppression of fibrotic factors in granulosa cells. Moreover, p66Shc overexpression markedly increased the expression of fibrotic factors. Additionally, silencing Sirt1 induced a dramatic increase in p66Shc and enhanced activation of fibrotic factors. Conclusions p66Shc may be a direct target of Sirt1 for inducing ROS and thus promoting fibrosis. Further exploration of the mechanisms of p66Shc in both fibrosis and OS may provide novel therapeutic strategies that will facilitate the improvement in PCOS symptoms and reproductive functions.
Collapse
Affiliation(s)
- Daojuan Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
| | - Tingyu Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
| | - Rong Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xinlin Zhang
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, 321 Zhongshan Road, 210008, Nanjing, Jiangsu Province, China
| | - Lei Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lingjia Zhuang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
| | - Shanmei Shen
- Department of Endocrinology, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Hongwei Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
| | - Qian Gao
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Yong Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
41
|
Løssl K, Freiesleben NLC, Wissing ML, Birch Petersen K, Holt MD, Mamsen LS, Anderson RA, Andersen CY. Biological and Clinical Rationale for Androgen Priming in Ovarian Stimulation. Front Endocrinol (Lausanne) 2020; 11:627. [PMID: 33013703 PMCID: PMC7498541 DOI: 10.3389/fendo.2020.00627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022] Open
Abstract
Androgen receptors are expressed by all stages of growing follicles, and follicular fluid androgen levels are positively correlated to granulosa cell androgen receptor and follicle-stimulating hormone (FSH) receptor expression. Thus, androgens may promote follicular growth, accumulation and/or responsiveness to gonadotropins. This is explored therapeutically in the concept of androgen priming, to improve the ovarian response to stimulation in assisted reproduction. Androgen effects may be achieved in two different ways, either directly by providing exogenous androgen or by providing luteinizing hormone (LH) activity [i.e., LH or human chorionic gonadotropin (hCG)] to stimulate local ovarian production of androgen. The androgen concentrations in follicular fluid by far exceed the levels in female circulation and it has recently been shown that there was no correlation between serum testosterone levels and follicular fluid androgen levels. There is some evidence that administration of exogenous dehydroepiandrosterone or testosterone increases live birth rates, but an optimal protocol has not been established and such adjuvant treatment should be considered experimental. Furthermore, studies exploring long-term administration of LH activity, achieving LH levels comparable to those seen in women with polycystic ovary syndrome, are awaited. The aim of the present review is to discuss critically the most suitable approach for androgen priming from a biological and clinical standpoint, and to evaluate current approaches and results obtained in clinical trials.
Collapse
Affiliation(s)
- Kristine Løssl
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Claus Yding Andersen
| |
Collapse
|
42
|
Lawrenz B, Depret Bixio L, Coughlan C, Andersen CY, Melado L, Kalra B, Savjani G, Fatemi HM, Kumar A. Inhibin A-A Promising Predictive Parameter for Determination of Final Oocyte Maturation in Ovarian Stimulation for IVF/ICSI. Front Endocrinol (Lausanne) 2020; 11:307. [PMID: 32499758 PMCID: PMC7243678 DOI: 10.3389/fendo.2020.00307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022] Open
Abstract
The number of mature oocytes is a key factor in the success of Assisted Reproductive Techniques (ART). Exogenous gonadotropins are administered during ovarian stimulation in order to maximize the number of oocytes available for fertilization. During stimulation, monitoring is mandatory to evaluate individual response, to avoid treatment complications and assist in the determination of the optimal day for final oocyte maturation and oocyte retrieval. Routine monitoring during stimulation includes transvaginal ultrasound examinations and measurement of serum estradiol (E2). Due to multifollicular growth of follicles of varying size, serum E2 levels are commonly supraphysiological and often variable, rendering E2-measurement during ovarian stimulation unreliable as a determinant of oocyte maturity. In contrast to serum E2, serum Inhibin A levels increase once a minimum follicle size of 12-15 mm is achieved. Due to this fact, serum Inhibin A levels could present in combination with ultrasound monitoring a more reliable parameter to determine the optimal follicle size for final oocyte maturation, as only follicles with a size of 12 mm and beyond will contribute to the serum Inhibin A level. This prospective observational, cross-sectional study demonstrates, that on the day of final oocyte maturation serum Inhibin A is strongly correlated to the number of follicles ≥15 mm (0.72) and to the number of retrieved and mature oocytes (ρ 0.82/0.77, respectively), whereas serum E2 is moderately correlated to the parameters mentioned above (ρ 0.64/0.69/0.69, respectively). With an area under the curve (AUC) of 0.91 for Inhibin A, compared to an AUC of 0.84 for E2, Inhibin A can be regarded as a better predictor for the optimal timing of trigger medication with a threshold number of ≥10 mature oocytes. It can be concluded from this data that serum Inhibin A in combination with transvaginal ultrasound monitoring may be a more powerful tool in the decision making process on trigger timing as compared to E2.
Collapse
Affiliation(s)
- Barbara Lawrenz
- IVF Department, IVIRMA Middle-East Fertility Clinic, Abu Dhabi, United Arab Emirates
- Department of Obstetrical, Women's University Hospital Tuebingen, Tübingen, Germany
- *Correspondence: Barbara Lawrenz
| | - Leyla Depret Bixio
- IVF Department, IVIRMA Middle-East Fertility Clinic, Abu Dhabi, United Arab Emirates
| | - Carol Coughlan
- IVF Department, IVIRMA Middle-East Fertility Clinic, Abu Dhabi, United Arab Emirates
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura Melado
- IVF Department, IVIRMA Middle-East Fertility Clinic, Abu Dhabi, United Arab Emirates
| | | | | | - Human M. Fatemi
- IVF Department, IVIRMA Middle-East Fertility Clinic, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
43
|
Owens LA, Kristensen SG, Lerner A, Christopoulos G, Lavery S, Hanyaloglu AC, Hardy K, Yding Andersen C, Franks S. Gene Expression in Granulosa Cells From Small Antral Follicles From Women With or Without Polycystic Ovaries. J Clin Endocrinol Metab 2019; 104:6182-6192. [PMID: 31276164 PMCID: PMC6822643 DOI: 10.1210/jc.2019-00780] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/01/2019] [Indexed: 01/30/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is the most common cause of anovulation. A key feature of PCOS is arrest of follicles at the small- to medium-sized antral stage. OBJECTIVE AND DESIGN To provide further insight into the mechanism of follicle arrest in PCOS, we profiled (i) gonadotropin receptors; (ii) characteristics of aberrant steroidogenesis; and (iii) expression of anti-Müllerian hormone (AMH) and its receptor in granulosa cells (GCs) from unstimulated, human small antral follicles (hSAFs) and from granulosa lutein cells (GLCs). SETTING GCs from hSAFs were collected at the time of cryopreservation of ovarian tissue for fertility preservation and GLCs collected during oocyte aspiration before in vitro fertilization/intracytoplasmic sperm injection. PARTICIPANTS We collected hSAF GCs from 31 women (98 follicles): 10 with polycystic ovaries (PCO) and 21 without. GLCs were collected from 6 women with PCOS and 6 controls undergoing IVF. MAIN OUTCOME MEASURES Expression of the following genes: LHCGR, FSHR, AR, INSR, HSD3B2, CYP11A1, CYP19, STAR, AMH, AMHR2, FST, INHBA, INHBB in GCs and GLCs were compared between women with PCO and controls. RESULTS GCs in hSAFs from women with PCO showed higher expression of LHCGR in a subset (20%) of follicles. Expression of FSHR (P < 0.05), AR (P < 0.05), and CYP11A1 (P < 0.05) was lower, and expression of CYP19A1 (P < 0.05), STAR (P < 0.05), HSD3B2 (P = NS), and INHBA (P < 0.05) was higher in PCO GCs. Gene expression in GL cells differed between women with and without PCOS but also differed from that in GCs. CONCLUSIONS Follicle arrest in PCO is characterized in GCs by differential regulation of key genes involved in follicle growth and function.
Collapse
Affiliation(s)
- Lisa Ann Owens
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital, Imperial College London, London, United Kingdom
- Correspondence and Reprint Requests: Lisa Owens, MD, PhD, Institute of Reproductive and Developmental Biology, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom. E-mail:
| | - Stine Gry Kristensen
- Faculty of Health and Medical Sciences, Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Avi Lerner
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Georgios Christopoulos
- Wolfson Fertility Unit, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Stuart Lavery
- Wolfson Fertility Unit, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Kate Hardy
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Claus Yding Andersen
- Faculty of Health and Medical Sciences, Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
44
|
Kristensen SG, Kumar A, Kalra B, Pors SE, Bøtkjær JA, Mamsen LS, Colmorn LB, Fedder J, Ernst E, Owens LA, Hardy K, Franks S, Andersen CY. Quantitative Differences in TGF-β Family Members Measured in Small Antral Follicle Fluids From Women With or Without PCO. J Clin Endocrinol Metab 2019; 104:6371-6384. [PMID: 31287539 DOI: 10.1210/jc.2019-01094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/01/2019] [Indexed: 02/09/2023]
Abstract
CONTEXT Members of the TGF-β family have been implicated in aberrant follicle development in women with polycystic ovaries (PCO). OBJECTIVE Are there quantitative differences in the concentrations of TGF-β family members in fluid from human small antral follicles (hSAFs) in women with or without PCO? DESIGN AND SETTING Follicle fluids (FFs) were collected from 4- to 11-mm hSAFs obtained from women undergoing ovarian tissue cryopreservation for fertility preservation. PATIENTS FFs from 16 women with PCO (FF = 93) and 33 women without PCO (FF = 92). MAIN OUTCOME MEASURES Intrafollicular concentrations of growth differentiation factor-9 (GDF9); anti-Müllerian hormone (AMH); inhibin-A and inhibin-B; total inhibin; activin-A, activin-B, and activin-AB; follistatin; follistatin-like-3; estradiol; and testosterone. RESULTS Activin-B concentrations were reported in hSAFs, and concentrations were 10 times higher than activin-A and activin-AB concentrations. Activin-B showed significant associations with other growth factors. Concentrations of inhibin-A and inhibin-B were significantly lower in FFs from women with PCO, especially in hSAFs <8 mm in diameter. AMH concentrations did not differ between the groups in hSAFs <8 mm; however, AMH remained high in hSAFs >8 mm in women with PCO but decreased in women without PCO. Estradiol was significantly lower in FFs from women with PCO and showed significant associations with AMH. Concentrations of GDF9 showed significantly higher concentrations in PCO FFs of follicles >6 mm. CONCLUSIONS Altered concentrations of TGF-β family members in hSAFs from women with PCO highlight altered growth factor signaling as a potential mechanism for follicle growth arrest.
Collapse
Affiliation(s)
- Stine Gry Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | | | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Jane Alrø Bøtkjær
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Lotte Berdiin Colmorn
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Odense University, Odense, Denmark
| | - Erik Ernst
- Department of Gynecology and Obstetrics, Aarhus University Hospital, Skejby, Denmark
| | - Lisa Ann Owens
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Kate Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Poulsen LLC, Pla I, Sanchez A, Grøndahl ML, Marko-Varga G, Yding Andersen C, Englund ALM, Malm J. Progressive changes in human follicular fluid composition over the course of ovulation: quantitative proteomic analyses. Mol Cell Endocrinol 2019; 495:110522. [PMID: 31356852 DOI: 10.1016/j.mce.2019.110522] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Follicular fluid (FF) acts as a vehicle for paracrine signalling between somatic cells of the follicle and the oocyte. To investigate changes in the protein composition of FF during ovulation, we conducted a prospective cohort study including 25 women undergoing fertility treatment. Follicular fluid was aspirated either before or 12, 17, 32 or 36 h after induction of ovulation (five patients per time point). Liquid chromatography-mass spectrometry was used to identify and quantify FF proteins. In total, 400 proteins were identified and the levels of 40 proteins changed significantly across ovulation, evaluated by analysis of covariance (adjusted p < 0.05) and on-off expression patterns. The majority peaked after 12-17 h, e.g., AREG (p < 0.0001), TNFAIP6 (p < 0.0001), and LDHB (p = 0.0316), while some increased to peak after 36 h e.g., ACPP (p < 0.0001), TIMP1 (p < 0.0001) and SERPINE1 (p = 0.0002). Collectively, this study highlights proteins and pathways of importance for ovulation and oocyte competence in humans.
Collapse
Affiliation(s)
- Liv la Cour Poulsen
- Zealand Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark.
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Marie Louise Grøndahl
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Japan
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | | | - Johan Malm
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| |
Collapse
|
46
|
Witchel SF, Oberfield SE, Peña AS. Polycystic Ovary Syndrome: Pathophysiology, Presentation, and Treatment With Emphasis on Adolescent Girls. J Endocr Soc 2019; 3:1545-1573. [PMID: 31384717 PMCID: PMC6676075 DOI: 10.1210/js.2019-00078] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous disorder characterized by hyperandrogenism and chronic anovulation. Depending on diagnostic criteria, 6% to 20% of reproductive aged women are affected. Symptoms of PCOS arise during the early pubertal years. Both normal female pubertal development and PCOS are characterized by irregular menstrual cycles, anovulation, and acne. Owing to the complicated interwoven pathophysiology, discerning the inciting causes is challenging. Most available clinical data communicate findings and outcomes in adult women. Whereas the Rotterdam criteria are accepted for adult women, different diagnostic criteria for PCOS in adolescent girls have been delineated. Diagnostic features for adolescent girls are menstrual irregularity, clinical hyperandrogenism, and/or hyperandrogenemia. Pelvic ultrasound findings are not needed for the diagnosis of PCOS in adolescent girls. Even before definitive diagnosis of PCOS, adolescents with clinical signs of androgen excess and oligomenorrhea/amenorrhea, features of PCOS, can be regarded as being "at risk for PCOS." Management of both those at risk for PCOS and those with a confirmed PCOS diagnosis includes education, healthy lifestyle interventions, and therapeutic interventions targeting their symptoms. Interventions can include metformin, combined oral contraceptive pills, spironolactone, and local treatments for hirsutism and acne. In addition to ascertaining for associated comorbidities, management should also include regular follow-up visits and planned transition to adult care providers. Comprehensive knowledge regarding the pathogenesis of PCOS will enable earlier identification of girls with high propensity to develop PCOS. Timely implementation of individualized therapeutic interventions will improve overall management of PCOS during adolescence, prevent associated comorbidities, and improve quality of life.
Collapse
Affiliation(s)
- Selma Feldman Witchel
- UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, Columbia University Medical Center, New York–Presbyterian Morgan Stanley Children’s Hospital, New York, New York
| | - Alexia S Peña
- Robinson Research Institute, University of Adelaide, North Adelaide, South Australia, Australia
| |
Collapse
|
47
|
Dević Pavlić S, Tramišak Milaković T, Panić Horvat L, Čavlović K, Vlašić H, Manestar M, Smiljan Severinski N, Radojčić Badovinac A. Genes for anti-Müllerian hormone and androgen receptor are underexpressed in human cumulus cells surrounding morphologically highly graded oocytes. SAGE Open Med 2019; 7:2050312119865137. [PMID: 31360520 PMCID: PMC6637837 DOI: 10.1177/2050312119865137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/01/2019] [Indexed: 01/25/2023] Open
Abstract
Objectives: The aim of this study was to investigate the expression of genes crucial for the quality of the oocyte and whether expression levels of these genes in cumulus cells can be biological markers for the quality of the oocyte, zygote or embryo, or even for achievement of pregnancy after the assisted reproductive technology procedure. We examined the expression profile of the anti-Müllerian hormone (AMH) gene and its respective receptors: anti-Müllerian hormone receptor type 2 (AMHR2), follicle-stimulating hormone receptor (FSHR) and androgen receptor (AR) in cumulus cells (CCs) surrounding the oocyte, as well as AMH concentrations in follicular fluid of the associated follicle. The obtained gene expression levels were correlated with the morphological quality of the associated oocyte, zygote and embryo as well as with assisted reproductive technology outcome following the intracytoplasmic sperm injection procedure. Methods: This study involved 129 cumulus cells and 35 follicular fluid samples, taken from 58 patients undergoing the intracytoplasmic sperm injection procedure. Oocytes, zygotes and embryos were assessed for morphological quality. The relative gene expression of AMH, AMHR2, FSHR and AR was calculated using the delta–delta Ct method. Anti-Müllerian hormone concentrations in follicular fluids were measured by enzyme-linked immunosorbent assay. Results: The results yielded suggest a relationship between AMH, AR and oocyte morphology: AMH and AR gene expression levels in CCs surrounding morphologically optimal oocytes were significantly lower than in CCs surrounding oocytes with suboptimal morphology (p = 0.011 and p = 0.008, respectively). Statistically significant positive correlation was found between mRNA expression levels of AMH and FSHR (p < 0.001), AMH and AR (p = 0.001), AMHR2 and FSHR (p < 0.001), AMHR2 and AR (p < 0.001), as well as between FSHR and AR (p < 0.001). Conclusion: Assessed results point to AMH and AR relation with oocyte maturity, but not with its fertilization potential, or with embryo quality.
Collapse
Affiliation(s)
| | | | - Linda Panić Horvat
- Department of Obstetrics and Gynaecology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Kristina Čavlović
- Department of Obstetrics and Gynaecology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Hrvoje Vlašić
- Šparac Gynecology and Obstetrics Polyclinic, Split, Croatia
| | - Miljenko Manestar
- Department of Obstetrics and Gynaecology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | | | - Anđelka Radojčić Badovinac
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia.,Department of Obstetrics and Gynaecology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| |
Collapse
|
48
|
Kordus RJ, Hossain A, Corso MC, Chakraborty H, Whitman-Elia GF, LaVoie HA. Cumulus cell pappalysin-1, luteinizing hormone/choriogonadotropin receptor, amphiregulin and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 mRNA levels associate with oocyte developmental competence and embryo outcomes. J Assist Reprod Genet 2019; 36:1457-1469. [PMID: 31187330 DOI: 10.1007/s10815-019-01489-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To determine whether a selected set of mRNA biomarkers expressed in individual cumulus granulosa cell (CC) masses show association with oocyte developmental competence, embryo ploidy status, and embryo outcomes. METHODS This prospective observational cohort pilot study assessed levels of mRNA biomarkers in 163 individual CC samples from 15 women stimulated in antagonist cycles. Nineteen mRNA biomarker levels were measured by real-time PCR and related to the development of their corresponding individually cultured oocytes and subsequent embryos, embryo ploidy status, and live birth outcomes. RESULTS PAPPA mRNA levels were significantly higher in CC from oocytes that led to euploid embryos resulting in live births and aneuploid embryos compared to immature oocytes by ANOVA. LHCGR mRNA levels were significantly higher in CC of oocytes resulting in embryos associated with live birth compared to immature oocytes and oocytes resulting in arrested embryos by ANOVA. Using a general linearized mixed model to assess ploidy status, CC HSD3B mRNA levels in oocytes producing euploid embryos were significantly lower than other oocyte outcomes, collectively. When transferred euploid embryos outcomes were analyzed by ANOVA, AREG mRNA levels were significantly lower and PAPPA mRNA levels significantly higher in CC from oocytes that produced live births compared to transferred embryos that did not form a pregnancy. CONCLUSIONS Collectively, PAPPA, LHCGR, and AREG mRNA levels in CC may be able to identify oocytes with the best odds of resulting in a live birth, and HSD3B1 mRNA levels may be able to identify oocytes capable of producing euploid embryos.
Collapse
Affiliation(s)
- Richard J Kordus
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Fertility Center of the Carolinas, Department of Obstetrics and Gynecology, Prisma Health - Upstate, Greenville, SC, USA
| | - Akhtar Hossain
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Michael C Corso
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | - Gail F Whitman-Elia
- Advanced Fertility and Reproductive Endocrinology Institute, LLC, Columbia, SC, USA
- Piedmont Reproductive Endocrinology Group, Columbia, SC, USA
| | - Holly A LaVoie
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
49
|
Mamsen LS, Charkiewicz K, Anderson RA, Telfer EE, McLaughlin M, Kelsey TW, Kristensen SG, Gook DA, Ernst E, Andersen CY. Characterization of follicles in girls and young women with Turner syndrome who underwent ovarian tissue cryopreservation. Fertil Steril 2019; 111:1217-1225.e3. [PMID: 30922638 DOI: 10.1016/j.fertnstert.2019.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/17/2019] [Accepted: 02/01/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To characterize ovarian follicles of girls and young women with Turner syndrome (TS) who underwent ovarian tissue cryopreservation (OTC). DESIGN Retrospective case-control study. SETTING University hospital. PATIENT(S) Fifteen girls and young women with TS aged 5-22 years at OTC were included, together with 42 control girls and young women aged 1-25 years who underwent OTC because of cancer. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Follicle density (follicles/mm3), morphology, and health were assessed in ovarian cortex biopsies from TS patients and compared with controls. Hormone concentrations were measured in serum and follicle fluids. Immature cumulus oocyte complexes were obtained and matured in vitro. RESULT(S) Follicles were found in 60% of the biopsies (9 of 15) from TS ovaries. In 78% of the ovaries (7 of 9) with follicles, the follicle density was within the 95% confidence interval of the control group. There was a high rate of abnormal follicle morphology. Six follicle-specific proteins were expressed similarly in TS and control ovaries. However, apoptosis and zona pellucida protein expression were found to be abnormal in TS. Turner syndrome follicle fluid from small antral follicles had lower concentrations of estrogen and testosterone and higher concentrations of antimüllerian hormone than controls. Thirty-one cumulus oocyte complexes were collected from one patient and cultured for 48 hours in vitro, resulting in five metaphase II oocytes (maturation rate 16%, degeneration rate 19%). CONCLUSION(S) The benefits of OTC may be limited to a highly selected group of TS mosaic patients in whom a sizeable pool of normal follicles is present at OTC.
Collapse
Affiliation(s)
- Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| | - Karol Charkiewicz
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark; Department of Perinatology and Obstetrics, Medical University of Bialystok, Bialystok, Poland
| | - Richard A Anderson
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences and Genes and Development Group, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie McLaughlin
- Institute of Cell Biology, School of Biological Sciences and Genes and Development Group, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas W Kelsey
- University of St. Andrews, School of Computer Science, North Haugh, St. Andrews, United Kingdom
| | - Stine G Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Debra A Gook
- Reproductive Services and Melbourne IVF, Royal Women's Hospital, Parkville, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Erik Ernst
- Department of Obstetrics and Gynaecology, Randers Regional Hospital, Randers, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
50
|
von Wolff M, Andersen CY, Woodruff TK, Nawroth F. FertiPROTEKT, Oncofertility Consortium and the Danish Fertility-Preservation Networks - What Can We Learn From Their Experiences? CLINICAL MEDICINE INSIGHTS. REPRODUCTIVE HEALTH 2019; 13:1179558119845865. [PMID: 31068758 PMCID: PMC6495450 DOI: 10.1177/1179558119845865] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/27/2019] [Indexed: 01/18/2023]
Abstract
Fertility preservation is an increasingly important discipline. It requires close coordination between reproductive medicine specialists, reproductive biologists, and oncologists in various disciplines. In addition, it represents a particular health policy challenge, since fertility-protection measures are to be understood as a treatment for side effects of gonadotoxic treatments and would therefore normally have to be reimbursed by health insurance companies. Therefore, it is inevitable that fertility-preservation activities should organise themselves into a network structure both as a medical-logistic network and as a professional medical society. The necessary network structures can differ significantly at regional, national, and international level, as the size of the regions to be integrated and the local cultural and geographical conditions, as well as the political conditions are very different. To address these issues, the current review aims to point out the basic importance and the chances but also the difficulties of fertility-protection networks and give practical guidance for the development of such network structures. We will not only discuss network structures theoretically but also present them based on three established, different sized networks, such as the Danish Network (www.rigshospitalet.dk), representing a centralised network in a small country; the German-Austrian-Swiss network FertiPROTEKT® (www.fertiprotekt.com), representing a centralised as well as decentralised network in a large country; and the Oncofertility® Consortium (www.oncofertility.northwestern.edu), representing a decentralised, internationally oriented network, primarily serving the transfer of knowledge among its members.
Collapse
Affiliation(s)
- Michael von Wolff
- University Women’s Hospital, Division of Gynaecological Endocrinology and Reproductive Medicine, Inselspital, University Hospital, Bern, Switzerland
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Faculty of Health Science, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA
| | - Frank Nawroth
- Centre for Infertility, Prenatal Medicine, Endocrinology and Osteology, Amedes group, Hamburg, Germany
| |
Collapse
|