1
|
Shen C, Huang Z, Chen X, Wang Z, Zhou J, Wang Z, Liu D, Li C, Zhao T, Zhang Y, Xu S, Zhou W, Peng W. Rapid ultra-sensitive nucleic acid detection using plasmonic fiber-optic spectral combs and gold nanoparticle-tagged targets. Biosens Bioelectron 2023; 242:115719. [PMID: 37797532 DOI: 10.1016/j.bios.2023.115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/24/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Nucleic acid (NA) is a widely-used biomarker for viruses. Accurate quantification of NA can provide a reliable basis for point-of-care diagnosis and treatment. Here, we propose a tilted fiber Bragg grating (TFBG)-based plasmonic fiber-optic spectral comb for fast response and ultralow limit NA detection. The TFBG is coated with a gold film which enables excitation of surface plasmon resonance (SPR), and single-stranded probe NAs with known base sequences are assembled on the gold film. To enhance sensitivity of refractive index (RI) for sensing a chosen combination of probe and target NAs around the TFBG surface, gold nanoparticles (AuNPs) are bonded to the target NA molecules as "RI-labels". The NA combination-induced aggregation of AuNPs induces significant spectral responses in the TFBG that would be below the detection threshold for the NAs in the absence of the AuNPs. The proposed TFBG-SPR NA sensor shows a fast response time of 30 s and an ultra-wide NA detection range from 1 × 10-18 mol/L to 1 × 10-7 mol/L. In the NA concentration range of 1 × 10-12 mol/L (1 pM) to 105 pM, an ultra-high sensitivity of 1.534 dB/lg(pM) is obtained. The sensor achieves an ultra-low limit of detection down to 1.0 × 10-18 mol/L (1 aM), which is more than an order of magnitude lower than the previous reports. The proposed sensor not only shows potentials in practical applications of NA detection, but also provides a new way for TFBG-SPR biochemical sensors to achieve higher RI sensitivity.
Collapse
Affiliation(s)
- Changyu Shen
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| | - Zhenlin Huang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Xiaoman Chen
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Zhihao Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Jun Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Zhaokun Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Dejun Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chenxia Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Tianqi Zhao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Yang Zhang
- School of Physics, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Shiqing Xu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Wenjun Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Wei Peng
- School of Physics, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
2
|
Huertas CS, Lechuga LM. Ultrasensitive Label-Free Nucleic-Acid Biosensors Based on Bimodal Waveguide Interferometers. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2393:89-125. [PMID: 34837176 DOI: 10.1007/978-1-0716-1803-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The bimodal waveguide (BiMW) biosensor is an innovative common path interferometric sensor based on the evanescent field detection principle. This biosensor allows for the direct detection of virtually any biomolecular interaction in a label-free scheme by using specific biorecognition elements. Due to its inherent ultrasensitivity, it has been employed for the monitoring of relevant nucleic-acid sequences such as mRNA transcripts or microRNAs present at the attomolar-femtomolar concentration level in human samples. The application of the BiMW biosensor to detect these nucleic acids can be a powerful analytical tool for diagnosis and prognosis of complex illnesses, such as cancer, where these biomarkers play a major role. The BiMW sensor is fabricated using standard silicon-based microelectronics technology, which allows its miniaturization and cost-effective production, meeting the requirements of portability and disposability for the development of point-of-care (PoC) sensing platforms.In this chapter, we describe the working principle of the BiMW biosensor as well as its application for the analysis of nucleic acids. Concretely, we show a detailed description of DNA functionalization procedures and the complete analysis of two different RNA biomarkers for cancer diagnosis: (1) the analysis of mRNA transcripts generated by alternative splicing of Fas gene, and (2) the detection of miRNA 181a from urine liquid biopsies, for the early diagnosis of bladder cancer. The biosensing detection is performed by a direct assay in real time, by monitoring the changes in the intensity pattern of the light propagating through the BiMW biosensor, due to the hybridization of the target with the specific DNA probe previously functionalized on the BiMW sensor surface.
Collapse
Affiliation(s)
- Cesar S Huertas
- Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne, VIC, Australia.
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, Campus UAB, Ed-ICN2, Barcelona, Spain
| |
Collapse
|
3
|
Tsurumi A, Li WX. Aging mechanisms-A perspective mostly from Drosophila. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10026. [PMID: 36619249 PMCID: PMC9744567 DOI: 10.1002/ggn2.10026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 01/11/2023]
Abstract
A mechanistic understanding of the natural aging process, which is distinct from aging-related disease mechanisms, is essential for developing interventions to extend lifespan or healthspan. Here, we discuss current trends in aging research and address conceptual and experimental challenges in the field. We examine various molecular markers implicated in aging with an emphasis on the role of heterochromatin and epigenetic changes. Studies in model organisms have been advantageous in elucidating conserved genetic and epigenetic mechanisms and assessing interventions that affect aging. We highlight the use of Drosophila, which allows controlled studies for evaluating genetic and environmental contributors to aging conveniently. Finally, we propose the use of novel methodologies and future strategies using Drosophila in aging research.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of SurgeryMassachusetts General Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Microbiology and ImmunologyHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Hospitals for Children‐Boston®BostonMassachusettsUSA
| | - Willis X. Li
- Department of MedicineUniversity of California at San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
4
|
Huertas CS, Calvo-Lozano O, Mitchell A, Lechuga LM. Advanced Evanescent-Wave Optical Biosensors for the Detection of Nucleic Acids: An Analytic Perspective. Front Chem 2019; 7:724. [PMID: 31709240 PMCID: PMC6823211 DOI: 10.3389/fchem.2019.00724] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Evanescent-wave optical biosensors have become an attractive alternative for the screening of nucleic acids in the clinical context. They possess highly sensitive transducers able to perform detection of a wide range of nucleic acid-based biomarkers without the need of any label or marker. These optical biosensor platforms are very versatile, allowing the incorporation of an almost limitless range of biorecognition probes precisely and robustly adhered to the sensor surface by covalent surface chemistry approaches. In addition, their application can be further enhanced by their combination with different processes, thanks to their integration with complex and automated microfluidic systems, facilitating the development of multiplexed and user-friendly platforms. The objective of this work is to provide a comprehensive synopsis of cutting-edge analytical strategies based on these label-free optical biosensors able to deal with the drawbacks related to DNA and RNA detection, from single point mutations assays and epigenetic alterations, to bacterial infections. Several plasmonic and silicon photonic-based biosensors are described together with their most recent applications in this area. We also identify and analyse the main challenges faced when attempting to harness this technology and how several innovative approaches introduced in the last years manage those issues, including the use of new biorecognition probes, surface functionalization approaches, signal amplification and enhancement strategies, as well as, sophisticated microfluidic solutions.
Collapse
Affiliation(s)
- Cesar S. Huertas
- Integrated Photonics and Applications Centre, School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Olalla Calvo-Lozano
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, CIBER-BBN, Barcelona, Spain
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre, School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, CIBER-BBN, Barcelona, Spain
| |
Collapse
|