1
|
Wang X, Wang P, Zhang H, Wang X, Shi J, Hu S. Multiplexed sensitivity-encoding versus single-shot echo-planar imaging: a comparative study for diffusion-weighted imaging of the thyroid lesions. Jpn J Radiol 2024; 42:268-275. [PMID: 37819591 DOI: 10.1007/s11604-023-01500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE To compare multiplexed sensitivity-encoding diffusion-weighted magnetic resonance imaging (MUSE-DWI) and conventional DWI (cDWI) techniques in thyroid MRI. MATERIALS AND METHODS Nineteen patients who underwent thyroid MRI using both MUSE-DWI and cDWI at a 3.0 T MRI system were enrolled. Qualitative parameters (image quality, thyroid contour, and lesion conspicuity) and quantitative parameters (signal-to-noise ratio (SNR), lesion-to-thyroid contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC)) were compared between the two sequences. In addition, ADC values derived from MUSE-DWI and cDWI were separately compared between benign and malignant lesions. RESULTS MUSE-DWI outperformed cDWI in terms of image quality, thyroid contour, and lesion conspicuity. Significantly, higher signal-to-noise ratio (SNR) in both the thyroid and its lesion were found in MUSE-DWI than those in cDWI (both P < 0.05). The lesion-to-thyroid contrast-to-noise ratio (CNR) values were also significantly higher in MUSE-DWI than those in cDWI (P < 0.05). The apparent diffusion coefficient (ADC) of the thyroid in MUSE-DWI was significantly lower than that in cDWI (P < 0.05). The ADC of the lesion in MUSE-DWI was also significantly lower than that in cDWI (P < 0.05). In addition, ADC values derived from MUSE-DWI and cDWI were significantly higher in benign lesions than malignant lesions (P < 0.05). CONCLUSION Compared with cDWI, MUSE-DWI can improve the image quality, thyroid contour sharpness, lesion conspicuity, SNR in both the thyroid and its lesions, and enhancing the CNR between lesions and thyroid.
Collapse
Affiliation(s)
- Xiuyu Wang
- Department of Radiology, Affiliated Hospital, Jiangnan University, No.1000, Hefeng Road, Wuxi, 214000, Jiangsu, China
| | - Peng Wang
- Department of Radiology, Affiliated Hospital, Jiangnan University, No.1000, Hefeng Road, Wuxi, 214000, Jiangsu, China
| | - Heng Zhang
- Department of Radiology, Affiliated Hospital, Jiangnan University, No.1000, Hefeng Road, Wuxi, 214000, Jiangsu, China
| | - Xian Wang
- Department of Radiology, Affiliated Renmin Hospital, Jiangsu University, No.8, Dianli Road, Zhenjiang, 212000, Jiangsu, China
| | - Jie Shi
- GE Healthcare, Beijing, 100000, China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital, Jiangnan University, No.1000, Hefeng Road, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
2
|
Li J, Tian XN, Zhao BG, Wang N, Zhang YJ, Zhang L. Diagnostic value of cervical spine ZOOM-DWI in cervical spondylotic myelopathy. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1223-1229. [PMID: 38231389 DOI: 10.1007/s00586-023-08110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE To investigate the clinical application value of the non-shared incentive diffusion imaging technique (ZOOM-DWI) diagnoses of cervical spondylotic myelopathy (CSM). METHODS 49 CSM patients who presented from January 2022 to December 2022 were selected as the patient group, and 50 healthy volunteers are recruited as the control group. All subjects underwent conventional MRI and ZOOM-DWI of the cervical spine and neurologic mJOA scores in patients with CSM. The spinal ADC values of segments C2-3, C4-5, C5-6, and C6-7 are measured and analyzed in all subjects, with C5-6 being the most severe level of spinal canal compression in the patient group. In addition, the study also analyzes and compares the relationship between the C5-6 ADC value and mJOA score in the patient group. RESULTS The mean ADC shows no significantly different levels in the control group. Among the ADC values at each measurement level in the patient group, except for C4-5 and C6-7 segments are not statistically significant, the remaining pair-wise comparisons all show statistically significant differences (F = 24.368, p < 0.001). And these individuals have the highest ADC value at C5-6. The C5-6 ADC value in the patient group is significantly higher compared with the ADC value in the control group (t = 9.414, p < 0.001), with statistical significance. The ADC value at the patient stenosis shows a significant negative correlation with the mJOA score (r = -0.493, p < 0.001). CONCLUSION Cervical ZOOM-DWI can be applied to diagnose CSM, and spinal ADC value can use as reliable imaging data for diagnosing cervical myelopathy.
Collapse
Affiliation(s)
- Jia Li
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Shijiazhuang City, 050000, China
| | - Xiao-Nan Tian
- Department of CTMRI, The Third Hospital of HeBei Medical University, Shijiazhuang, 050051, China
| | - Bao-Gen Zhao
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Shijiazhuang City, 050000, China
| | - Ning Wang
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Shijiazhuang City, 050000, China
| | - Yu-Jin Zhang
- Department of CTMRI, The Third Hospital of HeBei Medical University, Shijiazhuang, 050051, China
| | - Li Zhang
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Shijiazhuang City, 050000, China.
| |
Collapse
|
3
|
Peng Y, Wang TT, Wang JZ, Wang H, Fan RY, Gong LG, Li WG. The Application of Artificial Intelligence in Thyroid Nodules: A Systematic Review Based on Bibliometric Analysis. Endocr Metab Immune Disord Drug Targets 2024; 24:1280-1290. [PMID: 38178659 DOI: 10.2174/0118715303264254231117113456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/22/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Thyroid nodules are common lesions in benign and malignant thyroid diseases. More and more studies have been conducted on the feasibility of artificial intelligence (AI) in the detection, diagnosis, and evaluation of thyroid nodules. The aim of this study was to use bibliometric methods to analyze and predict the hot spots and frontiers of AI in thyroid nodules. METHODS Articles on the application of artificial intelligence in thyroid nodules were retrieved from the Web of Science core collection database. A website (https://bibliometric.com/), VOSviewer and CiteSpace software were used for bibliometric analyses. The collaboration maps of countries and institutions were analyzed. The cluster and timeline view based on cocitation references and keywords citation bursts visualization map were generated. RESULTS The study included 601 papers about AI in thyroid nodules. China contributed to more than half (52.41%) of these publications. The cluster view and timeline view of co-citation references were assembled into 9 clusters, "AI", "deep learning", "papillary thyroid carcinoma", "radiomics", "ultrasound image", "biomarkers", "medical image segmentation", "central lymph node metastasis (CLNM)", and "self-organizing auto-encoder". The "AI", "radiomics", "medical image segmentation", "deep learning", and "CLNM", emerging in the last 10 years and continuing until recent years. CONCLUSION An increasing number of scholars were devoted to this field. The potential future research hotspots include risk factor assessment and CLNM prediction of thyroid carcinoma based on radiomics and deep learning, automatic segmentation based on medical images (especially ultrasound images).
Collapse
Affiliation(s)
- Yun Peng
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China
| | - Tong-Tong Wang
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China
| | - Jing-Zhi Wang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Heng Wang
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China
| | - Ruo-Yun Fan
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China
| | - Liang-Geng Gong
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China
| | - Wu-Gen Li
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China
| |
Collapse
|
4
|
Liu W, Liu H, Xie S, Masokano IB, Bai Y, Wang X, Zhong L, Wu Y, Nie J, Zhou G, Pei Y, Li W. Comparing the clinical utility of single-shot, readout-segmented and zoomit echo-planar imaging in diffusion-weighted imaging of the kidney at 3 T. Sci Rep 2022; 12:12389. [PMID: 35859112 PMCID: PMC9300617 DOI: 10.1038/s41598-022-16670-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
We compared the clinical utility of single-shot echo-planar imaging (SS-EPI) using different breathing schemes, readout-segmented EPI and zoomit EPI in the repeatability of apparent diffusion coefficient (ADC) measurements, cortico-medullary contrast to noise ratio (c-mCNR) and image quality. In this institutional review board-approved prospective study, some common clinically applicable diffusion-weighted imaging (b = 50, 400, 800 s/mm2) of kidney on 3.0 T MRI were performed on 22 volunteers using SS-EPI with breath-hold diffusion-weighted imaging (BH-DWI), free-breathing (FB-DWI), navigator-triggered (NT-DWI) and respiratory-triggered (RT-DWI), readout-segmented DWI (RS-DWI), and Zoomit DWI (Z-DWI). ADC and c-mCNR were measured in 12 anatomic locations (the upper, middle, and lower pole of the renal cortex and medulla), and image quality was assessed on these DWI sequences. A DWI with the optimal clinical utility was decided by systematically assessing the ADC repeatability, c-mCNR and image quality among the DWIs. For ADC measurements, Z-DWI had an excellent intra-observer agreement (intra-class correlation coefficients (ICCs): 0.876–0.944) and good inter-observer agreement (inter-class ICCs: 0.798–0.856) in six DWI sequences. Z-DWI had the highest ADC repeatability in most of the 12 anatomic locations of the kidneys (mean ADC absolute difference: 0.070–0.111 × 10−3 mm2/s, limit of agreement: 0.031–0.056 × 10−3 mm2/s). In all DWIs, Z-DWI yielded a slightly higher c-mCNR than other DWIs in most representative locations (P > 0.05), which was significantly higher than BH-DWI and FB-DWI in the middle pole of both kidneys and the upper pole of the left kidney (P < 0.05). In addition, Z-DWI yielded image quality that was similar to RT-DWI and NT-DWI (P > 0.05) and superior to BH-DWI, FB-DWI and RS-DWI (P < 0.05). Our results suggest that Z-DWI provides the highest ADC reproducibility, better c-mCNR and good image quality on 3.0 T MRI, making it the recommended sequence for clinical DWI of the kidney.
Collapse
Affiliation(s)
- Wenguang Liu
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hui Liu
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, People's Republic of China
| | - Simin Xie
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, People's Republic of China
| | - Ismail Bilal Masokano
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yu Bai
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, People's Republic of China
| | - Xiao Wang
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, People's Republic of China
| | - Linhui Zhong
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, People's Republic of China
| | - Yi Wu
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, People's Republic of China
| | - Jilin Nie
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, People's Republic of China
| | - Gaofeng Zhou
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, People's Republic of China
| | - Yigang Pei
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Kai Fu District, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Liu Z, Zou L, Yang Q, Qian L, Li T, Luo H, Che C, Lei Y, Chen P, Qiu C, Liu X, Wu Y, Luo D. Baseline Amide Proton Transfer Imaging at 3T Fails to Predict Early Response to Induction Chemotherapy in Nasopharyngeal Carcinoma. Front Oncol 2022; 12:822756. [PMID: 35211414 PMCID: PMC8861375 DOI: 10.3389/fonc.2022.822756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
Background Early identification of nasopharyngeal carcinoma (NPC) patients with high risk of failure to induction chemotherapy (IC) would facilitate prompt individualized treatment decisions and thus reduce toxicity and improve overall survival rate. This study aims to investigate the value of amide proton transfer (APT) imaging in predicting short-term response of NPC to IC and its potential correlation with well-established prognosis-related clinical characteristics. Methods and Materials A total of 80 pathologically confirmed NPC patients receiving pre-treatment APT imaging at 3T were retrospectively enrolled. Using asymmetry analysis, APT maps were calculated with mean (APTmean), 90th percentile (APT90) of APT signals in manually segmented NPC measured. APT values were compared among groups with different histopathological subtypes, clinical stages (namely, T, M, N, and overall stages), EBV-related indices (EBV-DNA), or responses to induction chemotherapy, using Mann–Whitney U test or Kruskal–Wallis H test. Results NPC showed significantly higher APTmean than normal nasopharyngeal tissues (1.81 ± 0.62% vs.1.32 ± 0.56%, P <0.001). APT signals showed no significant difference between undifferentiated and differentiated NPC subtypes groups, different EBV-DNA groups, or among T, N, M stages and overall clinical stages of II, III, IVA and IVB (all P >0.05). Similarly, baseline APT-related parameters did not differ significantly among different treatment response groups after IC, no matter if evaluated with RECIST criteria or sum volumetric regression ratio (SVRR) (all P >0.05). Conclusion NPC showed significantly stronger APT effect than normal nasopharyngeal tissue, facilitating NPC lesion detection and early identification. However, stationary baseline APT values exhibited no significant correlation with histologic subtypes, clinical stages and EBV-related indices, and showed limited value to predict short-term treatment response to IC.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.,Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liyan Zou
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Qian Yang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Tianran Li
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Honghong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Canwen Che
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yuanyuan Lei
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Peng Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chunyan Qiu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dehong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.,Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Song Q, Chen P, Chen X, Sun C, Wang J, Tan B, Liu H, Cheng Y. Dynamic Change of Amide Proton Transfer Imaging in Irradiated Nasopharyngeal Carcinoma and Related Histopathological Mechanism. Mol Imaging Biol 2021; 23:846-853. [PMID: 33876335 DOI: 10.1007/s11307-021-01607-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To investigate the dynamic change of amide proton transfer (APT) imaging before and after irradiation in nasopharyngeal carcinoma (NPC) and the underlying histopathological mechanism. MATERIALS AND METHODS Tumor-bearing BALB/C nude mouse models were established and randomly divided into three groups: high-dose group (20 Gy/2 fractions), low-dose group (10 Gy/2 fractions), and control group (0 Gy). MRI scanning was performed before irradiation and 3rd, 6th, and 9th day post-irradiation. Scanning sequence included T1 weighted, T2 weighted, and APT. HE staining and TUNEL immunofluorescence detection were performed to detect necrosis and apoptosis. RESULTS After high-dose irradiation, the mean tumor APT values decreased significantly on the 3rd day and 6th day (from 3.83 before radiotherapy to 2.41%, P < 0.001, 3rd day; from 2.41 to 1.80%, P = 0.001, 6th day). For low-dose irradiation, the mean tumor APT values decreased slightly on the 3rd day and 6th day (from 3.52 to 3.13%, P = 0.109, 3rd day; from 3.13 to 3.05%, P = 0.64, 6th day). The mean APT values of nonirradiated tumor changed slightly. In contrast, the average volume of high-dose irradiated tumors did not decrease obviously until the 9th day post-irradiation (from 290 before radiotherapy to 208 mm3 on the 9th day). The low-dose irradiated tumors showed slow growth, and the nonirradiated tumors showed rapid growth. Subsequent HE staining and TUNEL staining showed obvious necrosis characteristics and higher proportion of positive apoptotic cell nucleus in high-dose irradiated tumors, but not nonirradiated tumors. CONCLUSION The APT signal intensity decreased after irradiation, which is earlier than the change of tumor volume. What is more, the decrease of APT signal intensity is more significant in high-dose group. Histological analysis showed obvious apoptosis and necrosis histological characteristic in irradiated tumor, which may explain the decrease of APT signal intensity. These results indicate that APT imaging has the potential to serve as a reliable biomarker for response assessment in NPC.
Collapse
Affiliation(s)
- Qingxu Song
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xin Chen
- Department of MR, Shandong Medical Imaging Research Institute, Jinan, Shandong, People's Republic of China
| | - Cong Sun
- Department of MR, Shandong Medical Imaging Research Institute, Jinan, Shandong, People's Republic of China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Bingxu Tan
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Hong Liu
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
7
|
Meyer HJ, Wienke A, Surov A. Discrimination between malignant and benign thyroid tumors by diffusion-weighted imaging - A systematic review and meta analysis. Magn Reson Imaging 2021; 84:41-57. [PMID: 34560233 DOI: 10.1016/j.mri.2021.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Magnetic resonance imaging is used to stage thyroid tumors. Diffusion weighted imaging (DWI) and apparent diffusion coefficient (ADC) can be used to reflect tumor microstructure. Our aim was to compare ADC values of malignant and benign thyroid lesions based on a large sample. METHODS MEDLINE library, EMBASE and SCOPUS databases were screened for the associations between ADC values and thyroid lesions up to August 2021. The primary endpoint of the systematic review were ADC values of benign and malignant thyroid lesions. In total, 29 studies were suitable for the analysis and were included into the present study. RESULTS The included studies comprised a total of 2137 lesions, 1118 (52.3%) benign and 1019 (47.7%) malignant lesions. The pooled mean ADC value of the benign thyroid lesions was 1.88 × 10-3 mm2/s [95% CI 1.77-2.0] and the pooled mean ADC value of malignant thyroid lesions was 1.15 × 10-3 mm2/s [95% CI 1.04-1.25]. CONCLUSIONS ADC can well discriminate benign and malignant thyroid tumors. Therefore, DWI should be implemented into the presurgical diagnostic work-up in clinical routine.
Collapse
Affiliation(s)
- Hans-Jonas Meyer
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany.
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexey Surov
- Department of Radiology and Nuclear Medicine, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
8
|
Li G, Jiang G, Mei Y, Gao P, Liu R, Jiang M, Zhao Y, Li M, Wu Y, Fu S, Liu M, Li L, Li W, Yan J. Applying Amide Proton Transfer-Weighted Imaging (APTWI) to Distinguish Papillary Thyroid Carcinomas and Predominantly Solid Adenomatous Nodules: Comparison With Diffusion-Weighted Imaging. Front Oncol 2020; 10:918. [PMID: 32637356 PMCID: PMC7317983 DOI: 10.3389/fonc.2020.00918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/11/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Amide proton transfer-weighted (ATPw) imaging is a novel MRI technique that has been used to identify benign and malignant tumors. The present study evaluated the role of APTw imaging in differentiating papillary thyroid carcinoma from predominantly solid adenomatous nodule. Methods: This study included 24 cases of solitary papillary thyroid carcinoma, and 20 cases of solid adenomatous nodules. Normal thyroid tissues were examined in 12 healthy subjects. The healthy subjects, eight cases of adenomatous nodule with cystic degeneration, and 12 cases of thyroid goiter, were only considered in the descriptive analysis, not included in our statistical analysis. The mean APTw value and the apparent diffusion coefficients (ADCs) of papillary thyroid carcinoma and solid adenomatous nodule were compared via a Mann-Whitney U test and receiver operating characteristic (ROC)-curve analyses. Results: The adenomatous nodule (3.3 ± 1.3%) exhibited significantly higher APTw value (p < 0.05) than that of the papillary thyroid carcinoma (1.8 ± 0.7%). The optimal cut-off value of the mean APTw value in differentiating papillary thyroid carcinoma from adenomatous nodule was 3.15%, with a sensitivity of 60% and a specificity of 100%. The mean ADC of papillary thyroid carcinoma (1.2 ± 0.2 × 10−3 mm2/s) was significantly lower than that of adenomatous nodule (2.0 ± 0.4 × 10−3 mm2/s). The optimal cut-off value of the mean ADC was 1.35 × 10−3 mm2/s, with a sensitivity of 100% and a specificity of 75%. Based on the ROC-curve analysis of APT and ADC, the ADC showed a higher area under the curve (AUC) than that of APT (AUCAPT = 0.84, AUCADC = 0.95). Conclusion: APTw imaging may be as useful as DWI for the differentiation of papillary thyroid carcinoma from predominantly solid adenomatous nodule. Although the sensitivity of ADC was greater than that of APT, APT had greater specificity.
Collapse
Affiliation(s)
- Guomin Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihua Jiang
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | | | - Peng Gao
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ruijian Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Min Jiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yue Zhao
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Meng Li
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yunfan Wu
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shishun Fu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mengchen Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Liming Li
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wuming Li
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jianhao Yan
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
9
|
Qamar S, King AD, Ai QYH, Mo FKF, Chen W, Poon DMC, Tong M, Ma BB, Yeung DKW, Wang YX, Yuan J. Pre-treatment amide proton transfer imaging predicts treatment outcome in nasopharyngeal carcinoma. Eur Radiol 2020; 30:6339-6347. [DOI: 10.1007/s00330-020-06985-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023]
|