1
|
Yu H, Nie Y, Ran X, Li S, Rong K, Zhang X. Multi-omics analysis and longitudinal study of reprogramming by dietary creatine to endogenous metabolism in largemouth bass (Micropterus salmoides). FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:1-18. [PMID: 39638990 DOI: 10.1007/s10695-024-01417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Creatine is a feed additive with physiological pleiotropic properties and also an energy homeostasis protector in vertebrates and is successfully used in terrestrial livestock and aquaculture. Here, two feeding trials were performed to investigate dietary creatine on endogenous creatine metabolism and physiological reprogramming in largemouth bass. The results showed that the endogenous creatine metabolism genes AGAT, GAMT, and SLC6A8 of largemouth bass are highly conserved with the amino acid sequences of other teleosts and are clustered separately from mammals. Among the 16 major tissues in largemouth bass, both creatine synthesis genes (agat, gamt) and transporter gene slc6a8 are most highly expressed in muscle. Muscle has a high threshold but sensitive creatine negative feedback to regulate endogenous creatine metabolism. Dietary creatine intake significantly inhibits endogenous creatine synthesis and transport in muscle in a dose-dependent manner, and this inhibitory effect recovers with a decrease in dietary creatine content. In addition, physiological creatine saturation required prolonged exogenous creatine intake, and it would be shortened by high doses of creatine, which provides guidance for maximizing economic benefits in aquaculture. Metabolome and transcriptome showed that dietary creatine significantly affected the metabolism of the creatine precursor substance-arginine. Exogenous creatine intake spared arginine that would otherwise be used for creatine synthesis, increased arginine levels, and caused reprogramming of arginine metabolism. Overall, these results demonstrate that the addition of creatine to largemouth bass diets is safe and recoverable, and the benefits of creatine intake in largemouth bass are not limited to enhancing the function of creatine itself but also include a reduction in the metabolic burden of essential amino acids to better growth performance.
Collapse
Affiliation(s)
- Haodong Yu
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yukang Nie
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xinping Ran
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoyun Li
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Keming Rong
- Hubei Tianchen Biotechnology Institute, Wuhan, 430207, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Hubei Tianchen Biotechnology Institute, Wuhan, 430207, China.
| |
Collapse
|
2
|
Tönißen K, Franz GP, Albrecht E, Lutze P, Bochert R, Grunow B. Pikeperch muscle tissues: a comparative study of structure, enzymes, genes, and proteins in wild and farmed fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1527-1544. [PMID: 38733450 PMCID: PMC11286731 DOI: 10.1007/s10695-024-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Pikeperch (Sander lucioperca) is a freshwater species and an internationally highly demanded fish in aquaculture. Despite intensive research efforts on this species, fundamental knowledge of skeletal muscle biology and structural characteristics is missing. Therefore, we conducted a comprehensive analysis of skeletal muscle parameters in adult pikeperch from two different origins, wild-caught specimens from a lake and those reared in a recirculating aquaculture system. The analyses comprised the biochemical characteristics (nucleic acid, protein content), enzyme activities (creatine kinase, lactate dehydrogenase, NADP-dependent isocitrate dehydrogenase), muscle-specific gene and protein expression (related to myofibre formation, regeneration and permanent growth, muscle structure), and muscle fibre structure. The findings reveal distinct differences between the skeletal muscle of wild and farmed pikeperch. Specifically, nucleic acid content, enzyme activity, and protein expression varied significantly. The higher enzyme activity observed in wild pikeperch suggests greater metabolically activity in their muscles. Conversely, farmed pikeperch indicated a potential for pronounced muscle growth. As the data on pikeperch skeletal muscle characteristics is sparse, the purpose of our study is to gain fundamental insights into the characteristics of adult pikeperch muscle. The presented data serve as a foundation for further research on percids' muscle biology and have the potential to contribute to advancements and adaptations in aquaculture practices.
Collapse
Affiliation(s)
- Katrin Tönißen
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - George P Franz
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Elke Albrecht
- Working Group Muscle-Fat Crosstalk, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Philipp Lutze
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ralf Bochert
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA MV), Institute of Fisheries, Research Station Aquaculture, Born, Germany
| | - Bianka Grunow
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
3
|
He W, Li X, Wu G. Dietary glycine supplementation enhances syntheses of creatine and glutathione by tissues of hybrid striped bass (Morone saxatilis ♀ × Morone chrysops ♂) fed soybean meal-based diets. J Anim Sci Biotechnol 2024; 15:67. [PMID: 38720393 PMCID: PMC11080189 DOI: 10.1186/s40104-024-01024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND We recently reported that supplementing glycine to soybean meal-based diets is necessary for the optimum growth of 5- to 40-g (Phase-I) and 110- to 240-g (Phase-II) hybrid striped bass (HSB), as well as their intestinal health. Although glycine serves as an essential substrate for syntheses of creatine and glutathione (GSH) in mammals (e.g., pigs), little is known about these metabolic pathways or their nutritional regulation in fish. This study tested the hypothesis that glycine supplementation enhances the activities of creatine- and GSH-forming enzymes as well as creatine and GSH availabilities in tissues of hybrid striped bass (HSB; Morone saxatilis♀ × Morone chrysops♂). METHODS Phase-I and Phase-II HSB were fed a soybean meal-based diet supplemented with 0%, 1%, or 2% glycine for 8 weeks. At the end of the 56-d feeding, tissues (liver, intestine, skeletal muscle, kidneys, and pancreas) were collected for biochemical analyses. RESULTS In contrast to terrestrial mammals and birds, creatine synthesis occurred primarily in skeletal muscle from all HSB. The liver was most active in GSH synthesis among the HSB tissues studied. In Phase-I HSB, supplementation with 1% or 2% glycine increased (P < 0.05) concentrations of intramuscular creatine (15%-19%) and hepatic GSH (8%-11%), while reducing (P < 0.05) hepatic GSH sulfide (GSSG)/GSH ratios by 14%-15%, compared with the 0-glycine group; there were no differences (P > 0.05) in these variables between the 1% and 2% glycine groups. In Phase-II HSB, supplementation with 1% and 2% glycine increased (P < 0.05) concentrations of creatine and GSH in the muscle (15%-27%) and liver (11%-20%) in a dose-dependent manner, with reduced ratios of hepatic GSSG/GSH in the 1% or 2% glycine group. In all HSB, supplementation with 1% and 2% glycine dose-dependently increased (P < 0.05) activities of intramuscular arginine:glycine amidinotransferase (22%-41%) and hepatic γ-glutamylcysteine synthetase (17%-37%), with elevated activities of intramuscular guanidinoacetate methyltransferase and hepatic GSH synthetase and GSH reductase in the 1% or 2% glycine group. Glycine supplementation also increased (P < 0.05) concentrations of creatine and activities of its synthetic enzymes in tail kidneys and pancreas, and concentrations of GSH and activities of its synthetic enzymes in the proximal intestine. CONCLUSIONS Skeletal muscle and liver are the major organs for creatine and GSH syntheses in HSB, respectively. Dietary glycine intake regulates creatine and GSH syntheses by both Phase-I and Phase-II HSB in a tissue-specific manner. Based on the metabolic data, glycine is a conditionally essential amino acid for the growing fish.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Xinyu Li
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Hua Y, Huang W, Wang F, Jing Z, Li J, Wang Q, Zhao Y. Metabolites, gene expression, and gut microbiota profiles suggest the putative mechanisms via which dietary creatine increases the serum taurine and g-ABA contents in Megalobrama amblycephala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:253-274. [PMID: 36897433 DOI: 10.1007/s10695-023-01177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/01/2023] [Indexed: 05/04/2023]
Abstract
A 90-day experiment was conducted to explore the effects of creatine on growth performance, liver health status, metabolites, and gut microbiota in Megalobrama amblycephala. There were 6 treatments as follows: control (CD, 29.41% carbohydrates), high carbohydrate (HCD, 38.14% carbohydrates), betaine (BET, 1.2% betaine + 39.76% carbohydrates), creatine 1 (CRE1, 0.5% creatine + 1.2% betaine + 39.29% carbohydrates), creatine 2 (CRE2, 1% creatine + 1.2% betaine + 39.50% carbohydrates), and creatine 3 (CRE3, 2% creatine + 1.2% betaine + 39.44% carbohydrates). The results showed that supplementing creatine and betaine together reduced the feed conversion ratio significantly (P < 0.05, compared to CD and HCD) and improved liver health (compared to HCD). Compared with the BET group, dietary creatine significantly increased the abundances of Firmicutes, Bacteroidota, ZOR0006, and Bacteroides and decreased the abundances of Proteobacteria, Fusobacteriota, Vibrio, Crenobacter, and Shewanella in the CRE1 group. Dietary creatine increased the content of taurine, arginine, ornithine, γ-aminobutyric acid (g-ABA), and creatine (CRE1 vs. BET group) and the expression of creatine kinase (ck), sulfinoalanine decarboxylase (csad), guanidinoacetate N-methyltransferase (gamt), glycine amidinotransferase (gatm), agmatinase (agmat), diamine oxidase1 (aoc1), and glutamate decarboxylase (gad) in the CRE1 group. Overall, these results suggested that dietary supplementation of creatine (0.5-2%) did not affect the growth performance, but it altered the gut microbial composition at the phylum and genus levels, which might be beneficial to the gut health of M. amblycephala; dietary creatine also increased the serum content of taurine by enhancing the expressions of ck and csad and increased the serum content of g-ABA by enhancing the arginine content and the expressions of gatm, agmat, gad, and aoc1.
Collapse
Affiliation(s)
- Yizhuo Hua
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Wangwang Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Fan Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Zhao Jing
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Juntao Li
- Institute of Tropical Bioscience and Biotechnology, Haikou, 570102, China
| | - Qingchao Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Yuhua Zhao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
5
|
Li Y, Yuan P, Fan S, Zhai B, Jin W, Li D, Li H, Sun G, Han R, Liu X, Tian Y, Li G, Kang X. Weighted gene co-expression network indicates that the DYNLL2 is an important regulator of chicken breast muscle development and is regulated by miR-148a-3p. BMC Genomics 2022; 23:258. [PMID: 35379193 PMCID: PMC8978428 DOI: 10.1186/s12864-022-08522-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The characteristics of muscle fibers determine the growth and meat quality of poultry. In this study, we performed a weighted gene co-expression network analysis (WGCNA) on the muscle fiber characteristics and transcriptome profile of the breast muscle tissue of Gushi chicken at 6, 14, 22, and 30 weeks. RESULTS A total of 27 coexpressed biological functional modules were identified, of which the midnight blue module had the strongest correlation with muscle fiber and diameter. In addition, 7 hub genes were found from the midnight blue module, including LC8 dynein light chain 2 (DYNLL2). Combined with miRNA transcriptome data, miR-148a-3p was found to be a potential target miRNA of DYNLL2. Experiments on chicken primary myoblasts (CPMs) demonstrated that miR-148a-3p promotes the expression of myosin heavy chain (MYHC) protein by targeting DYNLL2, proving that it can promote differentiation of myoblasts. CONCLUSIONS This study proved that the hub gene DYNLL2 and its target miR-148-3p are important regulators in chicken myogenesis. These results provide novel insights for understanding the molecular regulation mechanisms related to the development of chicken breast muscle.
Collapse
Affiliation(s)
- Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenjiao Jin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Han Y, Guo W, Su R, Zhang Y, Yang L, Borjigin G, Duan Y. Effects of sheep slaughter age on myogenic characteristics in skeletal muscle satellite cells. Anim Biosci 2022; 35:614-623. [PMID: 34991228 PMCID: PMC8902214 DOI: 10.5713/ab.21.0193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/14/2021] [Indexed: 01/22/2023] Open
Abstract
Objective The objective of this study was to investigate the effects of sheep slaughter age on myogenic characteristics in skeletal muscle satellite cells (SMSCs). Methods Primary SMSCs were isolated from hind leg biceps femoris muscles of Wurank lambs (slaughtered at three months, Mth-3) and adults (slaughtered at fifteen months, Mth-15). SMSCs were selected by morphological observation and fluorescence staining. Myogenic regulatory factors (MRF) and myosin heavy chain (MyHC) expressions of SMSCs were analyzed on days 1, 3, 4, and 5. Results The expressions of myogenic factor 5 (Myf5), myogenic differentiation (MyoD), Myf6, and myogenin (MyoG) in Mth-15 were significantly higher in Mth-15 than in Mth-3 on days 1, 3, and 4 (p<0.05). However, MyoG expression in Mth-15 was significantly lower than in Mth-3 on day 5 (p<0.05). The expressions of MyHC I, MyHC IIa, and MyHC IIx in Mth-15 were significantly higher than in Mth-3 on days 1 and 3 (p<0.05), and MyHC IIb were significantly lower than in Mth-3 on days 3 and 4 (p<0.05). In contrast, the expression of MyHC IIx in Mth-15 was significantly lower and MyHC IIb was significantly higher than in Mth-3 on days 5 (p<0.05). Conclusion The slaughter age altered the expression of MRFs and MyHCs in SMSCs while differentiation, which caused the variation of myogenic characteristics, and thus may affect the meat quality of Wurank sheep.
Collapse
Affiliation(s)
- Yunfei Han
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenrui Guo
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rina Su
- Inner Mongolia Vocational college of Chemical Engineering, Hohhot 010018, China
| | - Yanni Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Le Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yan Duan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
7
|
Wang J, Jiang H, Alhamoud Y, Chen Y, Zhuang J, Liu T, Cai L, Shen W, Wu X, Zheng W, Feng F. Integrated metabolomic and gene expression analyses to study the effects of glycerol monolaurate on flesh quality in large yellow croaker (Larimichthys crocea). Food Chem 2021; 367:130749. [PMID: 34375886 DOI: 10.1016/j.foodchem.2021.130749] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
To improve the quality of cultured large yellow croaker (Larimichthys crocea), this study was performed to study the impacts of glycerol monolaurate (GML) on the nutritional value, growth performance, muscle texture, and taste intensity of L. crocea. The results showed that GML as a feed additive significantly increased the crude lipid content and reduced the diameters of muscle fibers, which in turn markedly altered the flesh texture in terms of cohesiveness. Moreover, the taste indicators (umami and richness) and flavor-related amino acid (glutamic acid, glycine, and proline) contents of L. crocea muscle were significantly higher in the GML group. Metabolomic and gene expression analyses showed that GML supplementation could significantly improve amino acid biosynthesis and metabolism, promote protein and lipid synthesis, and activate myogenic-related signaling pathways of L. crocea. Consequently, adding an appropriate amount of GML to fish feed would be conducive to providing healthy, nutrient-rich and acceptably flavored aquatic-products.
Collapse
Affiliation(s)
- Jing Wang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huiqi Jiang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yasmin Alhamoud
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food Engineering, Faculty of Chemical and Petroleum Engineering, Al-Baath University, Homs, Syria
| | - Yong Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310058, China
| | - Jiachen Zhuang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tao Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Luyun Cai
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weiliang Shen
- Ningbo Academy of Oceanology and Fishery, Ningbo 315100, China
| | - Xiongfei Wu
- Ningbo Academy of Oceanology and Fishery, Ningbo 315100, China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde 352103, China
| | - Fengqin Feng
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Louvado A, Coelho FJRC, Palma M, Tavares LC, Ozorio ROA, Magnoni L, Viegas I, Gomes NCM. Effect of glycerol feed-supplementation on seabass metabolism and gut microbiota. Appl Microbiol Biotechnol 2020; 104:8439-8453. [PMID: 32845369 DOI: 10.1007/s00253-020-10809-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2020] [Accepted: 08/02/2020] [Indexed: 12/22/2022]
Abstract
Dietary glycerol supplementation in aquaculture feed is seen as an alternative and inexpensive way to fuel fish metabolism, attenuate metabolic utilization of dietary proteins and, subsequently, reduce nitrogen excretion. In this study, we evaluated the impact of dietary glycerol supplementation on nitrogen excretion of European seabass (Dicentrarchus labrax) and its effects on metabolite profile and bacterial community composition of gut digesta. These effects were evaluated in a 60-day trial with fish fed diets supplemented with 2.5% or 5% (w/w) refined glycerol and without glycerol supplementation. Nuclear magnetic resonance spectroscopy and high-throughput 16S rRNA gene sequencing were used to characterize the effects of glycerol supplementation on digesta metabolite and bacterial community composition of 6-h postprandial fish. Our results showed that ammonia excretion was not altered by dietary glycerol supplementation, and the highest glycerol dosage was associated with significant increases in amino acids and a decrease of ergogenic creatine in digesta metabolome. Concomitantly, significant decreases in putative amino acid degradation pathways were detected in the predicted metagenome analysis, suggesting a metabolic shift. Taxon-specific analysis revealed significant increases in abundance of some specific genera (e.g., Burkholderia and Vibrio) and bacterial diversity. Overall, our results indicate glycerol supplementation may decrease amino acid catabolism without adversely affecting fish gut bacterial communities.Key points• Glycerol can be an inexpensive and energetic alternative in fish feed formulations.• Glycerol did not affect nitrogen excretion and gut bacteriome composition.• Glycerol reduced uptake of amino acids and increased uptake of ergogenic creatine.• Glycerol reduced putative amino acid degradation pathways in predicted metagenome.
Collapse
Affiliation(s)
- A Louvado
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - F J R C Coelho
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Palma
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, 3000-456, Coimbra, Portugal
| | - L C Tavares
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - R O A Ozorio
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - L Magnoni
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - I Viegas
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, 3000-456, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - N C M Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|