1
|
Jermakowicz AM, Kurimchak AM, Johnson KJ, Bourgain-Guglielmetti F, Kaeppeli S, Affer M, Pradhyumnan H, Suter RK, Walters W, Cepero M, Duncan JS, Ayad NG. RAPID resistance to BET inhibitors is mediated by FGFR1 in glioblastoma. Sci Rep 2024; 14:9284. [PMID: 38654040 PMCID: PMC11039727 DOI: 10.1038/s41598-024-60031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Bromodomain and extra-terminal domain (BET) proteins are therapeutic targets in several cancers including the most common malignant adult brain tumor glioblastoma (GBM). Multiple small molecule inhibitors of BET proteins have been utilized in preclinical and clinical studies. Unfortunately, BET inhibitors have not shown efficacy in clinical trials enrolling GBM patients. One possible reason for this may stem from resistance mechanisms that arise after prolonged treatment within a clinical setting. However, the mechanisms and timeframe of resistance to BET inhibitors in GBM is not known. To identify the temporal order of resistance mechanisms in GBM we performed quantitative proteomics using multiplex-inhibitor bead mass spectrometry and demonstrated that intrinsic resistance to BET inhibitors in GBM treatment occurs rapidly within hours and involves the fibroblast growth factor receptor 1 (FGFR1) protein. Additionally, small molecule inhibition of BET proteins and FGFR1 simultaneously induces synergy in reducing GBM tumor growth in vitro and in vivo. Further, FGFR1 knockdown synergizes with BET inhibitor mediated reduction of GBM cell proliferation. Collectively, our studies suggest that co-targeting BET and FGFR1 may dampen resistance mechanisms to yield a clinical response in GBM.
Collapse
Affiliation(s)
- Anna M Jermakowicz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Alison M Kurimchak
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Katherine J Johnson
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Florence Bourgain-Guglielmetti
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - Simon Kaeppeli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Maurizio Affer
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - Hari Pradhyumnan
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - Robert K Suter
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Winston Walters
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - Maria Cepero
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - James S Duncan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Nagi G Ayad
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA.
| |
Collapse
|
2
|
Cai Y, Yang H, Wan Z, Chen PY, Wang ZB, Guo JJ, Wang D, Wang F, Zhang Y. A novel lncRNA LOC105613571 binding with BDNF in pituitary promotes gonadotropin secretion by AKT/ERK-mTOR pathway in sheep associated with prolificacy. Biofactors 2024; 50:58-73. [PMID: 37431985 DOI: 10.1002/biof.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/14/2023] [Indexed: 07/12/2023]
Abstract
The pituitary is a vital endocrine organ for synthesis and secretion of gonadotropic hormones (FSH and LH), and the gonadotropin showed fluctuations in animals with different fecundity. Long non-coding RNAs (lncRNAs) have been identified as regulatory factors for the reproductive process. However, the profiles of lncRNAs and their roles involved in sheep fecundity remains unclear. In this study, we performed RNA-sequencing for the sheep pituitary gland associated with different fecundity, and identified a novel candidate lncRNA LOC105613571 targeting BDNF related to gonadotropin secretion. Our results showed that expression of lncRNA LOC105613571 and BDNF could be significantly upregulated by GnRH stimulation in sheep pituitary cells in vitro. Notably, either lncRNA LOC105613571 or BDNF silencing inhibited cell proliferation while promoted cell apoptosis. Moreover, lncRNA LOC105613571 knockdown could also downregulate gonadotropin secretion via inactivation AKT, ERK and mTOR pathway. In addition, co-treatment with GnRH stimulation and lncRNA LOC105613571 or BDNF knockdown showed the opposite effect on sheep pituitary cells in vitro. In summary, BDNF-binding lncRNA LOC105613571 in sheep regulates pituitary cell proliferation and gonadotropin secretion via the AKT/ERK-mTOR pathway, providing new ideas for the molecular mechanisms of pituitary functions.
Collapse
Affiliation(s)
- Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Pei-Yong Chen
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Bo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jin-Jing Guo
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Daxiang Wang
- Jiangsu Qianbao Animal Husbandry Co., Ltd, Yancheng, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Chaiyadet S, Sotillo J, Smout M, Cooper M, Doolan DL, Waardenberg A, Eichenberger RM, Field M, Brindley PJ, Laha T, Loukas A. Small extracellular vesicles but not microvesicles from Opisthorchis viverrini promote cell proliferation in human cholangiocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.540805. [PMID: 37292777 PMCID: PMC10245807 DOI: 10.1101/2023.05.22.540805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic infection with O. viverrini has been linked to the development of cholangiocarcinoma (CCA), which is a major public health burden in the Lower Mekong River Basin countries, including Thailand, Lao PDR, Vietnam and Cambodia. Despite its importance, the exact mechanisms by which O. viverrini promotes CCA are largely unknown. In this study, we characterized different extracellular vesicle populations released by O. viverrini (OvEVs) using proteomic and transcriptomic analyses and investigated their potential role in host-parasite interactions. While 120k OvEVs promoted cell proliferation in H69 cells at different concentrations, 15k OvEVs did not produce any effect compared to controls. The proteomic analysis of both populations showed differences in their composition that could contribute to this differential effect. Furthermore, the miRNAs present in 120k EVs were analysed and their potential interactions with human host genes was explored by computational target prediction. Different pathways involved in inflammation, immune response and apoptosis were identified as potentially targeted by the miRNAs present in this population of EVs. This is the first study showing specific roles for different EV populations in the pathogenesis of a parasitic helminth, and more importantly, an important advance towards deciphering the mechanisms used in establishment of opisthorchiasis and liver fluke infection-associated malignancy.
Collapse
Affiliation(s)
- Sujittra Chaiyadet
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Martha Cooper
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Denise L Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Ashley Waardenberg
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Current affiliation: i-Synapse, Cairns, QLD, Australia
| | - Ramon M Eichenberger
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Matt Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
4
|
Casati L, Ciceri S, Maggi R, Bottai D. Physiological and Pharmacological overview of the Gonadotropin Releasing Hormone. Biochem Pharmacol 2023; 212:115553. [PMID: 37075816 DOI: 10.1016/j.bcp.2023.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Gonadotropin-releasing Hormone (GnRH) is a decapeptide responsible for the control of the reproductive functions. It shows C- and N-terminal aminoacid modifications and two other distinct isoforms have been so far identified. The biological effects of GnRH are mediated by binding to high-affinity G-protein couple receptors (GnRHR), showing characteristic very short C tail. In mammals, including humans, GnRH-producing neurons originate in the embryonic nasal compartment and during early embryogenesis they undergo rapid migration towards the hypothalamus; the increasing knowledge of such mechanisms improved diagnostic and therapeutic approaches to infertility. The pharmacological use of GnRH, or its synthetic peptide and non-peptide agonists or antagonists, provides a valid tool for reproductive disorders and assisted reproduction technology (ART). The presence of GnRHR in several organs and tissues indicates additional functions of the peptide. The identification of a GnRH/GnRHR system in the human endometrium, ovary, and prostate has extended the functions of the peptide to the physiology and tumor transformation of such tissues. Likely, the activity of a GnRH/GnRHR system at the level of the hippocampus, as well as its decreased expression in mice brain aging, raised interest in its possible involvement in neurogenesis and neuronal functions. In conclusion, GnRH/GnRHR appears to be a fascinating biological system that exerts several possibly integrated pleiotropic actions in the complex control of reproductive functions, tumor growth, neurogenesis, and neuroprotection. This review aims to provide an overview of the physiology of GnRH and the pharmacological applications of its synthetic analogs in the management of reproductive and non-reproductive diseases.
Collapse
Affiliation(s)
- Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Samuele Ciceri
- Dept. of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Milano Italy
| | - Roberto Maggi
- Dept. of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Milano Italy.
| | - Daniele Bottai
- Dept. of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Milano Italy
| |
Collapse
|
5
|
Xu H, Li L, Qu L, Tu J, Sun X, Liu X, Xu K. Atractylenolide-1 affects glycolysis/gluconeogenesis by downregulating the expression of TPI1 and GPI to inhibit the proliferation and invasion of human triple-negative breast cancer cells. Phytother Res 2023; 37:820-833. [PMID: 36420870 DOI: 10.1002/ptr.7661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Atractylenolide-1 (AT-1) is a major octanol alkaloid isolated from Atractylodes Rhizoma and is widely used to treat various diseases. However, few reports have addressed the anticancer potential of AT-1, and the underlying molecular mechanisms of its anticancer effects are unclear. This study aimed to assess the effect of AT-1 on triple-negative breast cancer (TNBC) cell proliferation and migration and explore its potential molecular mechanisms. Cell invasion assays confirmed that the number of migrating cells decreased after AT-1 treatment. Colony formation assays showed that AT-1 treatment impaired the ability of MDA-MB-231 cells to form colonies. AT-1 inhibited the expression of p-p38, p-ERK, and p-AKT in MDA-MB-231 cells, significantly downregulated the proliferation of anti-apoptosis-related proteins CDK1, CCND1, and Bcl2, and up-regulated pro-apoptotic proteins Bak, caspase 3, and caspase 9. The gas chromatography-mass spectroscopy results showed that AT-1 downregulated the metabolism-related genes TPI1 and GPI through the glycolysis/gluconeogenesis pathway and inhibited tumor growth in vivo. AT-1 affected glycolysis/gluconeogenesis by downregulating the expression of TPI1 and GPI, inhibiting the proliferation, migration, and invasion of (TNBC) MDA-MB-231 cells and suppressing tumor growth in vivo.
Collapse
Affiliation(s)
- Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Linghang Qu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiyuan Tu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiongjie Sun
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianqiong Liu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
6
|
Pang J, Zhu D, Liu Y, Liu D, Zhao C, Zhang J, Li S, Liu Z, Li X, Huang P, Wen S, Yang J. A Cyclodiaryliodonium NOX Inhibitor for the Treatment of Pancreatic Cancer via Enzyme-Activatable Targeted Delivery by Sulfated Glycosaminoglycan Derivatives. Adv Healthc Mater 2023:e2203011. [PMID: 36841552 DOI: 10.1002/adhm.202203011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Indexed: 02/27/2023]
Abstract
Pancreatic cancer renders a principal cause of cancer mortalities with a dismal prognosis, lacking sufficiently safe and effective therapeutics. Here, diversified cyclodiaryliodonium (CDAI) NADPH oxidase (NOX) inhibitors are rationally designed with tens of nanomolar optimal growth inhibition, and CD44-targeted delivery is implemented using synthesized sulfated glycosaminoglycan derivatives. The self-assembled nanoparticle-drug conjugate (NDC) enables hyaluronidase-activatable controlled release and facilitates cellular trafficking. NOX inhibition reprograms the metabolic phenotype by simultaneously impairing mitochondrial respiration and glycolysis. Moreover, the NDC selectively diminishes non-mitochondrial reactive oxygen species (ROS) but significantly elevates cytotoxic ROS through mitochondrial membrane depolarization. Transcriptomic profiling reveals perturbed p53, NF-κB, and GnRH signaling pathways interconnected with NOX inhibition. After being validated in patient-derived pancreatic cancer cells, the anticancer efficacy is further verified in xenograft mice bearing heterotopic and orthotopic pancreatic tumors, with extended survival and ameliorated systemic toxicity. It is envisaged that the translation of cyclodiaryliodonium inhibitors with an optimized molecular design can be expedited by enzyme-activatable targeted delivery with improved pharmacokinetic profiles and preserved efficacy.
Collapse
Affiliation(s)
- Jiadong Pang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Daqian Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yang Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dingxin Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chunhua Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jianeng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zexian Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaobing Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| |
Collapse
|
7
|
Torrini F, Scarano S, Palladino P, Minunni M. Advances and perspectives in the analytical technology for small peptide hormones analysis: A glimpse to gonadorelin. J Pharm Biomed Anal 2023; 228:115312. [PMID: 36858006 DOI: 10.1016/j.jpba.2023.115312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
In the last twenty years, we have witnessed an important evolution of bioanalytical approaches moving from conventional lab bench instrumentation to simpler, easy-to-use techniques to deliver analytical responses on-site, with reduced analysis times and costs. In this frame, affinity reagents production has also jointly advanced from natural receptors to biomimetic, abiotic receptors, animal-free produced. Among biomimetic ones, aptamers, and molecular imprinted polymers (MIPs) play a leading role. Herein, our motivation is to provide insights into the evolution of conventional and innovative analytical approaches based on chromatography, immunochemistry, and affinity sensing referred to as peptide hormones. Indeed, the analysis of peptide hormones represents a current challenge for biomedical, pharmaceutical, and anti-doping analysis. Specifically, as a paradigmatic example, we report the case of gonadorelin, a neuropeptide that in recent years has drawn a lot of attention as a therapeutic drug misused in doping practices during sports competitions.
Collapse
Affiliation(s)
- Francesca Torrini
- Department of Chemistry 'Ugo Schiff', University of Florence, 50019 Sesto Fiorentino, FI, Italy.
| | - Simona Scarano
- Department of Chemistry 'Ugo Schiff', University of Florence, 50019 Sesto Fiorentino, FI, Italy
| | - Pasquale Palladino
- Department of Chemistry 'Ugo Schiff', University of Florence, 50019 Sesto Fiorentino, FI, Italy
| | - Maria Minunni
- Department of Chemistry 'Ugo Schiff', University of Florence, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
8
|
Pu Y, Han J, Zhang M, Liu M, Abdusamat G, Liu H. SKA1 promotes tumor metastasis via SAFB-mediated transcription repression of DUSP6 in clear cell renal cell carcinoma. Aging (Albany NY) 2022; 14:9679-9698. [PMID: 36462498 PMCID: PMC9792197 DOI: 10.18632/aging.204418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022]
Abstract
The most hostile form of urologic cancer, clear cell renal cell carcinoma (ccRCC), has a high fatality rate and poor prognosis due to tumor metastasis at initial presentation. The complex process driving ccRCC metastasis is still unknown, though. In this study, we demonstrate that Spindle and kinetochore-associated protein 1 (SKA1) expression is significantly upregulated in ccRCC tissues and associated with aggressive clinicopathologic characteristics. Functionally, SKA1 knockdown on ccRCC cells reduced cancer cell motility both in vivo and in vitro research. These bioactivities of SKA1 may be brought on by its specific interaction with scaffold attachment factor B, according to the proposed mechanism (SAFB), which could further depress the transcription of dual specificity phosphatase 6 (DUSP6). Our findings may provide a new way of researching SKA1-regulated tumor metastasis, and indicate that SKA1 is a prospective therapeutic target for renal carcinoma.
Collapse
Affiliation(s)
- Yan Pu
- Institute of Cancer Research, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Jing Han
- Institute of Cancer Research, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Mengmeng Zhang
- Institute of Cancer Research, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Mengxue Liu
- Institute of Cancer Research, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Gulnazar Abdusamat
- Department of Pharmacy, Xinjiang Medical University, Urumqi 830011, PR China
| | - Huibin Liu
- Institute of Cancer Research, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, PR China,The Clinical Research Center of Breast Tumor and Thyroid Tumor in Xinjiang Autonomous Region, Urumqi 830011, PR China
| |
Collapse
|
9
|
Pnueli L, Melamed P. Epigenetic repression of gonadotropin gene expression via a GnRH-mediated DNA delivery system. Gene Ther 2022; 29:294-303. [PMID: 35301447 DOI: 10.1038/s41434-022-00325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 11/09/2022]
Abstract
The reproductive axis is activated by gonadotropin-releasing hormone (GnRH), which stimulates the pituitary gonadotropes to secrete hormones that drive gonadal function and steroidogenesis. Thus repression of this axis, which is conserved across mammals and sexes, can reduce steroid levels and/or prevent reproduction. Steroid-dependent pathologies, including various cancers, are commonly treated with GnRH super-analogs which have long-term side-effects, while humane solutions for controlling reproduction in domestic and wild animal populations are lacking. GnRH-conjugated toxins are undergoing clinical trials for GnRHR-expressing cancer cells, and have been examined for gonadotrope ablation in animals, but showed low and/or transient effects and administration of toxins has many potential complications. Here we exploit GnRH targeting to gonadotropes to deliver DNA encoding an effector that induces gonadotropin gene repressive epigenetic modifications which are perpetuated over time. Several layers of specificity are endowed through targeting to GnRHR-expressing cells and due to local cleavage of the peptide packaging the DNA; the DNA-encoded effector is expressed and directed to the target genes by the DNA binding domain of a highly specific transcription factor. This design has multiple advantages over existing methods of shutting down the reproductive axis, and its modular design should allow adaptation for broad applications.
Collapse
Affiliation(s)
- Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
10
|
Wang M, Zeng L, Su P, Ma L, Zhang M, Zhang YZ. Autophagy: a multifaceted player in the fate of sperm. Hum Reprod Update 2021; 28:200-231. [PMID: 34967891 PMCID: PMC8889000 DOI: 10.1093/humupd/dmab043] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Autophagy is an intracellular catabolic process of degrading and recycling proteins and organelles to modulate various physiological and pathological events, including cell differentiation and development. Emerging data indicate that autophagy is closely associated with male reproduction, especially the biosynthetic and catabolic processes of sperm. Throughout the fate of sperm, a series of highly specialized cellular events occur, involving pre-testicular, testicular and post-testicular events. Nonetheless, the most fundamental question of whether autophagy plays a protective or harmful role in male reproduction, especially in sperm, remains unclear. OBJECTIVE AND RATIONALE We summarize the functional roles of autophagy in the pre-testicular (hypothalamic–pituitary–testis (HPG) axis), testicular (spermatocytogenesis, spermatidogenesis, spermiogenesis, spermiation) and post-testicular (sperm maturation and fertilization) processes according to the timeline of sperm fate. Additionally, critical mechanisms of the action and clinical impacts of autophagy on sperm are identified, laying the foundation for the treatment of male infertility. SEARCH METHODS In this narrative review, the PubMed database was used to search peer-reviewed publications for summarizing the functional roles of autophagy in the fate of sperm using the following terms: ‘autophagy’, ‘sperm’, ‘hypothalamic–pituitary–testis axis’, ‘spermatogenesis’, ‘spermatocytogenesis’, ‘spermatidogenesis’, ‘spermiogenesis’, ‘spermiation’, ‘sperm maturation’, ‘fertilization’, ‘capacitation’ and ‘acrosome’ in combination with autophagy-related proteins. We also performed a bibliographic search for the clinical impact of the autophagy process using the keywords of autophagy inhibitors such as ‘bafilomycin A1’, ‘chloroquine’, ‘hydroxychloroquine’, ‘3-Methyl Adenine (3-MA)’, ‘lucanthone’, ‘wortmannin’ and autophagy activators such as ‘rapamycin’, ‘perifosine’, ‘metformin’ in combination with ‘disease’, ‘treatment’, ‘therapy’, ‘male infertility’ and equivalent terms. In addition, reference lists of primary and review articles were reviewed for additional relevant publications. All relevant publications until August 2021 were critically evaluated and discussed on the basis of relevance, quality and timelines. OUTCOMES (i) In pre-testicular processes, autophagy-related genes are involved in the regulation of the HPG axis; and (ii) in testicular processes, mTORC1, the main gate to autophagy, is crucial for spermatogonia stem cell (SCCs) proliferation, differentiation, meiotic progression, inactivation of sex chromosomes and spermiogenesis. During spermatidogenesis, autophagy maintains haploid round spermatid chromatoid body homeostasis for differentiation. During spermiogenesis, autophagy participates in acrosome biogenesis, flagella assembly, head shaping and the removal of cytoplasm from elongating spermatid. After spermatogenesis, through PDLIM1, autophagy orchestrates apical ectoplasmic specialization and basal ectoplasmic specialization to handle cytoskeleton assembly, governing spermatid movement and release during spermiation. In post-testicular processes, there is no direct evidence that autophagy participates in the process of capacitation. However, autophagy modulates the acrosome reaction, paternal mitochondria elimination and clearance of membranous organelles during fertilization. WIDER IMPLICATIONS Deciphering the roles of autophagy in the entire fate of sperm will provide valuable insights into therapies for diseases, especially male infertility.
Collapse
Affiliation(s)
- Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Harvard Reproductive Endocrine Science Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Ling Zeng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ling Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Yuan Zhen Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| |
Collapse
|
11
|
Wang Y, Wang Y, Liu L, Cui H. Ovariectomy induces abdominal fat accumulation by improving gonadotropin-releasing hormone secretion in mouse. Biochem Biophys Res Commun 2021; 588:111-117. [PMID: 34953207 DOI: 10.1016/j.bbrc.2021.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
The ovariectomy would induce the occurrence of obesity, but its regulatory mechanism is not clear. This study aimed to elucidate the regulation on fat accumulation for ovariectomy in mouse. In the current study, the abdominal fat mass dramatically increased in OVX mice compared with sham mice at eighth week after ovariectomy, accompanied with the higher GnRH level in blood and abdominal fat tissue. Also, a decrease of the abdominal fat mass was occurred in OVX mice with a GnRH-antagonist injection. Furthermore, the results in vivo and in vitro confirmed that GnRH promoted the transition of G1/S phase by upregulating CCND1 and CCNE1 mRNA levels by the mediation of GnRHR via the PKA-CREB pathway. Meanwhile, the higher FSH secretion was induced by increase GnRH and accelerate fat deposition in abdominal fat tissue. Our findings are the first to elucidate the effect mechanism of ovariectomy on obesity in mouse. GnRH stimulates fat accumulation in adipocytes via PKA-CREB pathway by directly promoting cell proliferation for driving the cell cycle and simultaneously accelerating differentiation for improving the FSH secretion.
Collapse
Affiliation(s)
- Yongli Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yidong Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Li Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Huanxian Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|