1
|
Abid MSR, Qiu H, Checco JW. Label-Free Quantitation of Endogenous Peptides. Methods Mol Biol 2024; 2758:125-150. [PMID: 38549012 PMCID: PMC11027169 DOI: 10.1007/978-1-0716-3646-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Liquid chromatography-mass spectrometry (LC-MS)-based peptidomics methods allow for the detection and identification of many peptides in a complex biological mixture in an untargeted manner. Quantitative peptidomics approaches allow for comparisons of peptide abundance between different samples, allowing one to draw conclusions about peptide differences as a function of experimental treatment or physiology. While stable isotope labeling is a powerful approach for quantitative proteomics and peptidomics, advances in mass spectrometry instrumentation and analysis tools have allowed label-free methods to gain popularity in recent years. In a general label-free quantitative peptidomics experiment, peak intensity information for each peptide is compared across multiple LC-MS runs. Here, we outline a general approach for label-free quantitative peptidomics experiments, including steps for sample preparation, LC-MS data acquisition, data processing, and statistical analysis. Special attention is paid to address run-to-run variability, which can lead to several major problems in label-free experiments. Overall, our method provides researchers with a framework for the development of their own quantitative peptidomics workflows applicable to quantitation of peptides from a wide variety of different biological sources.
Collapse
Affiliation(s)
| | - Haowen Qiu
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE, USA
| | - James W Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
2
|
Zhang J, Jiang X, Yang Y, Yang L, Lu B, Ji Y, Guo L, Zhang F, Xue J, Zhi X. Peptidome analysis reveals critical roles for peptides in a rat model of intestinal ischemia/reperfusion injury. Aging (Albany NY) 2023; 15:12852-12872. [PMID: 37955663 DOI: 10.18632/aging.205200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/15/2023] [Indexed: 11/14/2023]
Abstract
Intestinal ischemia/reperfusion injury (IIRI) has the potential to be life threatening and is associated with significant morbidity and serious damage to distant sites in the body on account of disruption of the intestinal mucosal barrier. In the present study, we have explored this line of research by comparing and identifying peptides that originated from the intestinal segments of IIRI model rats by using liquid chromatography-mass spectrometry (LC-MS). We also analyzed the basic characteristics, cleavage patterns, and functional domains of differentially expressed peptides (DEPs) between the IIRI model rats and control (sham-operated) rats and identified bioactive peptides that are potentially associated with ischemia reperfusion injury. We also performed bioinformatics analyses in order to identify the biological roles of the DEPs based on their precursor proteins. Enrichment analysis demonstrated the role of several DEPs in impairment of the intestinal mucosal barrier caused by IIRI. Based on the results of comprehensive ingenuity pathway analysis, we identified the DEPs that were significantly correlated with IIRI. We identified a candidate precursor protein (Actg2) and seven of its peptides, and we found that Actg2-6 had a more significant difference in its expression, a longer half-life, and better lipophilicity, hydrophobicity, and stability than the other candidate Actg2 peptides examined. Furthermore, we observed that Actg2-6 might play critical roles in the protection of the intestinal mucosal barrier during IIRI. In summary, our study provides a better understanding of the peptidomics profile of IIRI, and the results indicate that Actg2-6 could be a useful target in the treatment of IIRI.
Collapse
Affiliation(s)
- Jiaxuan Zhang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoqi Jiang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yang Yang
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Lei Yang
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Bing Lu
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yannan Ji
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Leijun Guo
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Fan Zhang
- Department of Pediatrics, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226001, China
| | - Jianhua Xue
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaofei Zhi
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
3
|
Ma W, Zhang C, Zhang W, Sheng P, Xu M, Ni Y, Chen M, Cheng B, Zhang X. TMT-Based Comparative Peptidomics Analysis of Rice Seedlings under Salt Stress: An Accessible Method to Explore Plant Stress-Tolerance Processing. J Proteome Res 2022; 21:2905-2919. [PMID: 36351196 DOI: 10.1021/acs.jproteome.2c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rice (Oryza sativa L.) is an important staple crop, particularly in Asia, and abiotic stress conditions easily reduce its yields. Salt stress is one of the critical factors affecting rice growth and yield. In this study, a tandem mass tag (TMT)-based comparative peptidomics analysis of rice seedlings under salt stress was conducted. Rice seedlings were exposed to 50 and 150 mM NaCl for 24 and 72 h, respectively, and the root and shoot tissues of different treatment groups were collected separately for peptidomics analysis. A total of 911 and 1263 nonredundant peptides were identified in two pooled shoot tissue samples, while there were 770 and 672 nonredundant peptides in two pooled root tissue samples, respectively. Compared with the control groups, dozens to hundreds of differentially expressed peptides (DEPs) were characterized in all treatment groups. To explore the potential functions of these DEPs, we analyzed the basic characteristics of DEPs and further analyzed the annotated Gene Ontology terms according to their precursor proteins. Several DEP precursor proteins were closely related to the response to salt stress, and some were derived from the functional domains of their corresponding precursors. The germination rate and cotyledon greening rate of transgenic Arabidopsis expressing two DEPs, OsSTPE2 and OsSTPE3, were significantly enhanced under salt stress. The described workflow enables the discovery of a functional pipeline for the characterization of the plant peptidome and reveals two new plant peptides that confer salinity tolerance to plants. Data are available via ProteomeXchange with identifier PXD037574.
Collapse
Affiliation(s)
- Wanlu Ma
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Chenchen Zhang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Wei Zhang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Pijie Sheng
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Minyan Xu
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Ying Ni
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Meng Chen
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Beijiu Cheng
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China.,Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xin Zhang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China.,Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| |
Collapse
|
4
|
Madsen CT, Refsgaard JC, Teufel FG, Kjærulff SK, Wang Z, Meng G, Jessen C, Heljo P, Jiang Q, Zhao X, Wu B, Zhou X, Tang Y, Jeppesen JF, Kelstrup CD, Buckley ST, Tullin S, Nygaard-Jensen J, Chen X, Zhang F, Olsen JV, Han D, Grønborg M, de Lichtenberg U. Combining mass spectrometry and machine learning to discover bioactive peptides. Nat Commun 2022; 13:6235. [PMID: 36266275 PMCID: PMC9584923 DOI: 10.1038/s41467-022-34031-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/10/2022] [Indexed: 12/25/2022] Open
Abstract
Peptides play important roles in regulating biological processes and form the basis of a multiplicity of therapeutic drugs. To date, only about 300 peptides in human have confirmed bioactivity, although tens of thousands have been reported in the literature. The majority of these are inactive degradation products of endogenous proteins and peptides, presenting a needle-in-a-haystack problem of identifying the most promising candidate peptides from large-scale peptidomics experiments to test for bioactivity. To address this challenge, we conducted a comprehensive analysis of the mammalian peptidome across seven tissues in four different mouse strains and used the data to train a machine learning model that predicts hundreds of peptide candidates based on patterns in the mass spectrometry data. We provide in silico validation examples and experimental confirmation of bioactivity for two peptides, demonstrating the utility of this resource for discovering lead peptides for further characterization and therapeutic development.
Collapse
Affiliation(s)
| | - Jan C Refsgaard
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
- Intomics, Kongens Lyngby, Denmark
| | - Felix G Teufel
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Sonny K Kjærulff
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
- Intomics, Kongens Lyngby, Denmark
| | - Zhe Wang
- Novo Nordisk Research Centre China, Beijing, China
| | - Guangjun Meng
- Novo Nordisk Research Centre China, Beijing, China
- Pulmongene LTD. Rm 502, Building 2, No. 9, Yike Road, Zhongguancun Life Science Park, Changping District, Beijing, China
| | - Carsten Jessen
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Petteri Heljo
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Qunfeng Jiang
- Novo Nordisk Research Centre China, Beijing, China
- Innovent Biologics, Inc. DongPing Jie 168, Suzhou, China
| | - Xin Zhao
- Novo Nordisk Research Centre China, Beijing, China
| | - Bo Wu
- Novo Nordisk Research Centre China, Beijing, China
- QL Biopharmaceutical, Rm 101, Building 7, 20 Life Science Park Road, Beijing, China
| | - Xueping Zhou
- Novo Nordisk Research Centre China, Beijing, China
- Crinetics pharmaceuticals, 10222 Barnes Canyon Rd Building 2, San Diego, CA, 92121, USA
| | - Yang Tang
- Novo Nordisk Research Centre China, Beijing, China
- Roche R&D Center (China) Ltd, Building 5, 371 Lishizhen Road, 201203, Pudong, Shanghai, China
| | - Jacob F Jeppesen
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | | | | | - Søren Tullin
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
- Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| | - Jan Nygaard-Jensen
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
- Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| | - Xiaoli Chen
- Novo Nordisk Research Centre China, Beijing, China
| | - Fang Zhang
- Novo Nordisk Research Centre China, Beijing, China
- Structure Therapeutics. 701 Gateway Blvd., South San Francisco, CA, 94080, USA
| | - Jesper V Olsen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Dan Han
- Novo Nordisk Research Centre China, Beijing, China
| | - Mads Grønborg
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Ulrik de Lichtenberg
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
- The Novo Nordisk Foundation, Tuborg Havnevej 19, 2900, Hellerup, Denmark
| |
Collapse
|