1
|
Lan H, Liu F, Lu L, Liu A, Ye H. A new type II CHH neuropeptide involves ovarian development in the peppermint shrimp, Lysmata vittata. PLoS One 2024; 19:e0305127. [PMID: 39088423 PMCID: PMC11293640 DOI: 10.1371/journal.pone.0305127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 08/03/2024] Open
Abstract
Type II crustacean hyperglycemic hormone (CHH) neuropeptides play diverse roles in crustaceans. In the hermaphrodite shrimp Lysmata vittata, two transcripts of type II CHHs (molt-inhibiting hormone/gonad-inhibiting hormone, MIH/GIH1 and MIH/GIH2) were identified by transcriptome sequencing, and MIH/GIH1 was later named Lvit-GIH1 for its inhibitory effect on ovarian development. Based on the high similarity of MIH/GIH2 to Lvit-GIH1, we named tentatively MIH/GIH2 as Lvit-GIH2 and explored the role of Lvit-GIH2 in ovarian development. The open reading frame (ORF) of Lvit-GIH2 was 333 bp in length, encoding a precursor consisted of a 32-aa signal peptide and a 78-aa mature peptide, which shared high sequence similarity with the type II subfamily peptides in crustaceans. Notably, Lvit-GIH2 was widely expressed in multiple tissues. The qRT-PCR findings indicated a rising trend in the expression of Lvit-GIH2 from the male phase to the euhermaphrodite phase. Both RNA interference and addition of GIH2 recombinant proteins (rGIH2) experiments showed that Lvit-GIH2 suppressed Lvit-Vg expression in hepatopancreas and Lvit-VgR expression in ovary. To further investigate the role of Lvit-GIH2 in ovarian development, the RNA-sequence analysis was performed to examine the changes in ovary after addition of rGIH2. The results showed that the pathways (Cysteine and methionine metabolism, Apoptosis-multiple species, etc.) and the genes (17bHSD8, IGFR, CHH, etc.) related to ovarian development were negatively regulated by rGIH2. In brief, Lvit-GIH2 might inhibit the ovarian development in L. vittata.
Collapse
Affiliation(s)
- Huiling Lan
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Fang Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Li Lu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - An Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Haihui Ye
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| |
Collapse
|
2
|
Liu F, Liu A, Zhu Z, Wang Y, Ye H. Crustacean female sex hormone: More than a female phenotypes-related hormone in a protandric simultaneous hermaphroditism shrimp. Int J Biol Macromol 2023; 238:124181. [PMID: 36965556 DOI: 10.1016/j.ijbiomac.2023.124181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Crustacean female sex hormone (CFSH) is believed to regulate the development of female-related phenotypes in crustaceans. However, its role in gonadal development has been understudied. This study identified a CFSH gene, Lvit-CFSH1b, in the peppermint shrimp Lysmata vittata, a protandric simultaneous hermaphroditism (PSH) species. Lvit-CFSH1b is only expressed in the eyestalk ganglion. qRT-PCR showed that the expression level of Lvit-CFSH1b significantly increased with the gonad development from stage I to III (male phase) and decreased at stage IV (euhermaphrodite phase). Gene knockdown of Lvit-CFSH1b resulted in retardation of female phenotypes and stimulated the development of male phenotypes. At the same time, ovarian development was inhibited, and spermatogenesis was promoted. In addition, injection of rCFSH1b increased ovarian expression of vitellogenin (Lvit-Vg) and hepatopancreas expression of vitellogenin receptor (Lvit-VgR), while suppressing the expressions of insulin-like androgenic gland hormones (Lvit-IAG1 and Lvit-IAG2) in androgenic glands. The addition of rCFSH1b induced the in vitro expression of Lvit-Vg in ovarian and Lvit-VgR in hepatopancreas explants. In conclusion, this study provides convincing evidence that CFSH expedites the feminization process and impedes masculinization by inhibiting IAG in hermaphroditic crustaceans.
Collapse
Affiliation(s)
- Fang Liu
- Fisheries College, Jimei University, Xiamen 361021, People's Republic of China
| | - An Liu
- Fisheries College, Jimei University, Xiamen 361021, People's Republic of China
| | - Zhihuang Zhu
- Fisheries Research Institute of Fujian, Xiamen 361013, People's Republic of China
| | - Yilei Wang
- Fisheries College, Jimei University, Xiamen 361021, People's Republic of China.
| | - Haihui Ye
- Fisheries College, Jimei University, Xiamen 361021, People's Republic of China.
| |
Collapse
|
3
|
Azemin WA, Alias N, Ali AM, Shamsir MS. Structural and functional characterisation of HepTH1-5 peptide as a potential hepcidin replacement. J Biomol Struct Dyn 2023; 41:681-704. [PMID: 34870559 DOI: 10.1080/07391102.2021.2011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepcidin is a principal regulator of iron homeostasis and its dysregulation has been recognised as a causative factor in cancers and iron disorders. The strategy of manipulating the presence of hepcidin peptide has been used for cancer treatment. However, this has demonstrated poor efficiency and has been short-lived in patients. Many studies reported using minihepcidin therapy as an alternative way to treat hepcidin dysregulation, but this was only applied to non-cancer patients. Highly conserved fish hepcidin protein, HepTH1-5, was investigated to determine its potential use in developing a hepcidin replacement for human hepcidin (Hepc25) and as a therapeutic agent by targeting the tumour suppressor protein, p53, through structure-function analysis. The authors found that HepTH1-5 is stably bound to ferroportin, compared to Hepc25, by triggering the ferroportin internalisation via Lys42 and Lys270 ubiquitination, in a similar manner to the Hepc25 activity. Moreover, the residues Ile24 and Gly24, along with copper and zinc ligands, interacted with similar residues, Lys24 and Asp1 of Hepc25, respectively, showing that those molecules are crucial to the hepcidin replacement strategy. HepTH1-5 interacts with p53 and activates its function through phosphorylation. This finding shows that HepTH1-5 might be involved in the apoptosis signalling pathway upon a DNA damage response. This study will be very helpful for understanding the mechanism of the hepcidin replacement and providing insights into the HepTH1-5 peptide as a new target for hepcidin and cancer therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia.,Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nadiawati Alias
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Abdul Manaf Ali
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Johor, Malaysia
| |
Collapse
|
4
|
Techa S, Thongda W, Bunphimpapha P, Ittarat W, Boonbangyang M, Wilantho A, Ngamphiw C, Pratoomchat B, Nounurai P, Piyapattanakorn S. Isolation and functional identification of secretin family G-protein coupled receptor from Y-organ of the mud crab, Scylla olivacea. Gene X 2023; 848:146900. [DOI: 10.1016/j.gene.2022.146900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022] Open
|
5
|
Wang D, Liu X, Zhang J, Gao B, Liu P, Li J, Meng X. Identification of Neuropeptides Using Long-Read RNA-Seq in the Swimming Crab Portunus trituberculatus, and Their Expression Profile Under Acute Ammonia Stress. Front Physiol 2022; 13:910585. [PMID: 35651875 PMCID: PMC9149262 DOI: 10.3389/fphys.2022.910585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Daixia Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaochen Liu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingyan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Baoquan Gao
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ping Liu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jian Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xianliang Meng
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Xianliang Meng,
| |
Collapse
|
6
|
Potential receptors in Fenneropenaeus merguiensis ovary and role of saxophone, the bone morphogenetic protein receptor, in ovarian development. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111141. [PMID: 34990826 DOI: 10.1016/j.cbpa.2021.111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
Receptors, which play an initial role in signaling pathways in several physiological processes, including reproduction, are among the several molecular factors that control ovarian development in organisms. This study aimed to identify and study receptors potentially involved in controlling the reproductive process of female banana shrimp, Fenneropenaeus merguiensis. Ovarian transcriptomes derived from 4 developmental stages were generated by RNA sequencing. A total of 53,763 transcripts were obtained from the de novo assembled transcriptome, and 663 genes were identified as receptors. Among them, 185 receptors were differentially expressed during ovarian development. Fifteen of these differentially expressed receptors showed distinct expression patterns that were validated by RT-qPCR. Bone morphogenetic protein receptors (BMPR) and their signaling genes were investigated for their roles in shrimp vitellogenesis. The expressions of F. merguiensis saxophone (FmSax), a BMP type I receptor, and BMP type II receptor (FmBMPRII) as well as FmMad, FmMed, and FmSMAD3 were significantly altered during ovarian development. RNA interference was used to investigate the role of FmSax in vitellogenesis. The result indicated that the expression of vitellogenin (Vg) was significantly reduced in both ovary and hepatopancreas of FmSax-knockdown shrimp compared to control shrimp. Furthermore, in FmSax-silencing shrimp, FmBMPRII, FmMad, and FmMed expressions were decreased as well as Vg expression. These findings suggest that FmSax positively regulates Vg synthesis via the BMP signaling pathway.
Collapse
|
7
|
Li Y, Gao H, Yu R, Zhang Y, Feng F, Tang J, Li B. Identification and characterization of G protein-coupled receptors in Spodoptera frugiperda (Insecta: Lepidoptera). Gen Comp Endocrinol 2022; 317:113976. [PMID: 35016911 DOI: 10.1016/j.ygcen.2022.113976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Spodoptera frugiperda (Insecta: Lepidoptera) is a destructive invasive pest feeding on various plants and causing serious damage to several economically-important crops. G protein-coupled receptors (GPCRs) are cellular receptors that coordinate diverse signaling processes, associated with many physiological processes and disease states. However, less information about GPCRs had been reported in S. frugiperda, limiting the recognition of signaling system and in-depth studies of this pest. Here, a total of 167 GPCRs were identified in S. frugiperda. Compared with other insects, the GPCRs of S. frugiperda were significantly expanded. A large of tandem duplication and segmental duplication events were observed, which may be the key factor to increase the size of GPCR family. In detail, these expansion events mainly concentrate on biogenic amine receptors, neuropeptide and protein hormone receptors, which may be involved in feeding, reproduction, life span, and tolerance of S. frugiperda. Additionally, 17 Mth/Mthl members were identified in S. frugiperda, which may be similar to the evolutionary pattern of 16 Mth/Mthl members in Drosophila. Moreover, the expression patterns across different developmental stages of all GPCR genes were also analyzed. Among these, most of the GPCR genes are poorly expressed in S. frugiperda and some highly expressed GPCR genes help S. frugiperda adapt to the environment better, such as Rh6 and AkhR. In this study, all GPCRs in S. frugiperda were identified for the first time, which provided a basis for further revealing the role of these receptors in the physiological and behavioral regulation of this pest.
Collapse
Affiliation(s)
- Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yonglei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
Tu S, Xu R, Wang M, Xie X, Bao C, Zhu D. Identification and characterization of expression profiles of neuropeptides and their GPCRs in the swimming crab, Portunus trituberculatus. PeerJ 2021; 9:e12179. [PMID: 34616625 PMCID: PMC8449533 DOI: 10.7717/peerj.12179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/29/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropeptides and their G protein-coupled receptors (GPCRs) regulate multiple physiological processes. Currently, little is known about the identity of native neuropeptides and their receptors in Portunus trituberculatus. This study employed RNA-sequencing and reverse transcription-polymerase chain reaction (RT-PCR) techniques to identify neuropeptides and their receptors that might be involved in regulation of reproductive processes of P. trituberculatus. In the central nervous system transcriptome data, 47 neuropeptide transcripts were identified. In further analyses, the tissue expression profile of 32 putative neuropeptide-encoding transcripts was estimated. Results showed that the 32 transcripts were expressed in the central nervous system and 23 of them were expressed in the ovary. A total of 47 GPCR-encoding transcripts belonging to two classes were identified, including 39 encoding GPCR-A family and eight encoding GPCR-B family. In addition, we assessed the tissue expression profile of 33 GPCRs (27 GPCR-As and six GPCR-Bs) transcripts. These GPCRs were found to be widely expressed in different tissues. Similar to the expression profiles of neuropeptides, 20 of these putative GPCR-encoding transcripts were also detected in the ovary. This is the first study to establish the identify of neuropeptides and their GPCRs in P. trituberculatus, and provide information for further investigations into the effect of neuropeptides on the physiology and behavior of decapod crustaceans.
Collapse
Affiliation(s)
- Shisheng Tu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Rui Xu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Mengen Wang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Xi Xie
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Chenchang Bao
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Dongfa Zhu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Mykles DL. Signaling Pathways That Regulate the Crustacean Molting Gland. Front Endocrinol (Lausanne) 2021; 12:674711. [PMID: 34234741 PMCID: PMC8256442 DOI: 10.3389/fendo.2021.674711] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
A pair of Y-organs (YOs) are the molting glands of decapod crustaceans. They synthesize and secrete steroid molting hormones (ecdysteroids) and their activity is controlled by external and internal signals. The YO transitions through four physiological states over the molt cycle, which are mediated by molt-inhibiting hormone (MIH; basal state), mechanistic Target of Rapamycin Complex 1 (mTORC1; activated state), Transforming Growth Factor-β (TGFβ)/Activin (committed state), and ecdysteroid (repressed state) signaling pathways. MIH, produced in the eyestalk X-organ/sinus gland complex, inhibits the synthesis of ecdysteroids. A model for MIH signaling is organized into a cAMP/Ca2+-dependent triggering phase and a nitric oxide/cGMP-dependent summation phase, which maintains the YO in the basal state during intermolt. A reduction in MIH release triggers YO activation, which requires mTORC1-dependent protein synthesis, followed by mTORC1-dependent gene expression. TGFβ/Activin signaling is required for YO commitment in mid-premolt. The YO transcriptome has 878 unique contigs assigned to 23 KEGG signaling pathways, 478 of which are differentially expressed over the molt cycle. Ninety-nine contigs encode G protein-coupled receptors (GPCRs), 65 of which bind a variety of neuropeptides and biogenic amines. Among these are putative receptors for MIH/crustacean hyperglycemic hormone neuropeptides, corazonin, relaxin, serotonin, octopamine, dopamine, allatostatins, Bursicon, ecdysis-triggering hormone (ETH), CCHamide, FMRFamide, and proctolin. Contigs encoding receptor tyrosine kinase insulin-like receptor, epidermal growth factor (EGF) receptor, and fibroblast growth factor (FGF) receptor and ligands EGF and FGF suggest that the YO is positively regulated by insulin-like peptides and growth factors. Future research should focus on the interactions of signaling pathways that integrate physiological status with environmental cues for molt control.
Collapse
Affiliation(s)
- Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States
| |
Collapse
|
10
|
Liu F, Shi W, Ye H, Zeng C, Zhu Z. Insulin-like androgenic gland hormone 1 (IAG1) regulates sexual differentiation in a hermaphrodite shrimp through feedback to neuroendocrine factors. Gen Comp Endocrinol 2021; 303:113706. [PMID: 33359802 DOI: 10.1016/j.ygcen.2020.113706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Insulin-like androgenic gland hormone (IAG) is regarded as a key sexual differentiation regulator in gonochoristic crustaceans. However, until now the knowledge concerning its functions in hermaphroditic crustaceans is scanty. Herein, we investigated the function of IAG (Lvit-IAG1) in peppermint shrimp Lysmata vittata, a species that possesses protandric simultaneous hermaphroditism (PSH) reproductive system, which is rare among crustaceans. Lvit-IAG1 was exclusively expressed in the androgenic gland. The qRT-PCR demonstrated that its mRNA expression level was relatively high at the functional male phase but decreased sharply in the subsequent euhermaphrodite phase. Both the short-term and long-term silencing experiments showed that Lvit-IAG1 negatively regulated both the gonad-inhibiting hormone (Lvit-GIH) and crustacean female sex hormone (Lvit-CFSH) expressions in the eyestalk ganglion. Besides, Lvit-IAG1 gene knockdown induced a retarded development of the appendices masculinae (AM) and male gonopores while suppressing the germ cells at the primary spermatocyte stage. Also, Lvit-IAG1 gene silencing hindered ovarian development. This in turn led to small vitellogenic oocytes and decreased expression of vitellogenin and vitellogenin receptor genes in hepatopancreas and ovarian region, respectively. Generally, this study's findings imply that Lvit-IAG1 modulated the male sexual differentiation in PSH species L. vittata, and exhibited negative feedback on Lvit-GIH and Lvit-CFSH genes expression in the species' eyestalk ganglion.
Collapse
Affiliation(s)
- Fang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Wenyuan Shi
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Haihui Ye
- College of Fisheries, Jimei University, Xiamen 361021, People's Republic of China.
| | - Chaoshu Zeng
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Zhihuang Zhu
- Fisheries Research Institute of Fujian, Xiamen 361013, People's Republic of China
| |
Collapse
|
11
|
Laphyai P, Kruangkum T, Chotwiwatthanakun C, Semchuchot W, Thaijongrak P, Sobhon P, Tsai PS, Vanichviriyakit R. Suppression of a Novel Vitellogenesis-Inhibiting Hormone Significantly Increases Ovarian Vitellogenesis in the Black Tiger Shrimp, Penaeus monodon. Front Endocrinol (Lausanne) 2021; 12:760538. [PMID: 34867802 PMCID: PMC8634883 DOI: 10.3389/fendo.2021.760538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel Crustacean Hyperglycemic Hormone-type II gene (CHH-type II) was identified and biologically characterized in a shrimp, Penaeus monodon. Based on its structure and function, this gene was named P. monodon vitellogenesis-inhibiting hormone (PemVIH). The complete cDNA sequence of PemVIH consisted of 1,022 nt with an open reading frame (ORF) of 339 nt encoding a polypeptide of 112 amino acids. It was classified as a member of the CHH-type II family based on conserved cysteine residues, a characteristically positioned glycine residue, and the absence of CHH precursor-related peptide (CPRP) domain. The deduced mature PemVIH shared the highest sequence similarities with giant river prawn sinus gland peptide A. Unlike P. monodon gonad-inhibiting hormone (PemGIH), PemVIH was expressed only in the brain and ventral nerve cord, but not the eyestalks. Whole mount immunofluorescence using a newly generated PemVIH antiserum detected positive signals in neuronal cluster 9/11 and 17 of the brain, commissural ganglion (CoG), and neuronal clusters of ventral nerve cord. The presence of PemVIH-positive neurons in CoG, a part of stomatogastric nervous system, suggested a potential mechanism for crosstalk between nutritional and reproductive signaling. The role of PemVIH in vitellogenesis was evaluated using RNA interference technique. Temporal knockdown of PemVIH in female subadults resulted in a 3-fold increase in ovarian vitellogenin expression, suggesting an inhibitory role of PemVIH in vitellogenesis. This study provided novel insight into the control of vitellogenesis and additional strategies for improving ovarian maturation in P. monodon without the current harmful practice of eyestalk ablation.
Collapse
Affiliation(s)
- Phaivit Laphyai
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanapong Kruangkum
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Charoonroj Chotwiwatthanakun
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Academic and Curriculum Division, Nakhonsawan Campus, Mahidol University, Nakhonsawan, Thailand
| | - Wanita Semchuchot
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
| | - Prawporn Thaijongrak
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhonpathom, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pei-San Tsai
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| | - Rapeepun Vanichviriyakit
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- *Correspondence: Rapeepun Vanichviriyakit,
| |
Collapse
|
12
|
Christie AE, Rivera CD, Call CM, Dickinson PS, Stemmler EA, Hull JJ. Multiple transcriptome mining coupled with tissue specific molecular cloning and mass spectrometry provide insights into agatoxin-like peptide conservation in decapod crustaceans. Gen Comp Endocrinol 2020; 299:113609. [PMID: 32916171 PMCID: PMC7747469 DOI: 10.1016/j.ygcen.2020.113609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022]
Abstract
Over the past decade, in silico genome and transcriptome mining has led to the identification of many new crustacean peptide families, including the agatoxin-like peptides (ALPs), a group named for their structural similarity to agatoxin, a spider venom component. Here, analysis of publicly accessible transcriptomes was used to expand our understanding of crustacean ALPs. Specifically, transcriptome mining was used to investigate the phylogenetic/structural conservation, tissue localization, and putative functions of ALPs in decapod species. Transcripts encoding putative ALP precursors were identified from one or more members of the Penaeoidea (penaeid shrimp), Sergestoidea (sergestid shrimps), Caridea (caridean shrimp), Astacidea (clawed lobsters and freshwater crayfish), Achelata (spiny/slipper lobsters), and Brachyura (true crabs), suggesting a broad, and perhaps ubiquitous, conservation of ALPs in decapods. Comparison of the predicted mature structures of decapod ALPs revealed high levels of amino acid conservation, including eight identically conserved cysteine residues that presumably allow for the formation of four identically positioned disulfide bridges. All decapod ALPs are predicted to have amidated carboxyl-terminals. Two isoforms of ALP appear to be present in most decapod species, one 44 amino acids long and the other 42 amino acids in length, both likely generated by alternative splicing of a single gene. In carideans, a gene or terminal exon duplication appears to have occurred, with alternative splicing producing four ALPs, two 44 and two 42 amino acid isoforms. The identification of ALP precursor-encoding transcripts in nervous system-specific transcriptomes (e.g., Homarus americanus brain, eyestalk ganglia, and cardiac ganglion assemblies, finding confirmed using RT-PCR) suggests that members of this peptide family may serve as locally-released and/or hormonally-delivered neuromodulators in decapods. Their detection in testis- and hepatopancreas-specific transcriptomes suggests that members of the ALP family may also play roles in male reproduction and innate immunity/detoxification.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Cindy D Rivera
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Catherine M Call
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA.
| |
Collapse
|
13
|
Chen HY, Toullec JY, Lee CY. The Crustacean Hyperglycemic Hormone Superfamily: Progress Made in the Past Decade. Front Endocrinol (Lausanne) 2020; 11:578958. [PMID: 33117290 PMCID: PMC7560641 DOI: 10.3389/fendo.2020.578958] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Early studies recognizing the importance of the decapod eyestalk in the endocrine regulation of crustacean physiology-molting, metabolism, reproduction, osmotic balance, etc.-helped found the field of crustacean endocrinology. Characterization of putative factors in the eyestalk using distinct functional bioassays ultimately led to the discovery of a group of structurally related and functionally diverse neuropeptides, crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), gonad-inhibiting hormone (GIH) or vitellogenesis-inhibiting hormone (VIH), and mandibular organ-inhibiting hormone (MOIH). These peptides, along with the first insect member (ion transport peptide, ITP), constitute the original arthropod members of the crustacean hyperglycemic hormone (CHH) superfamily. The presence of genes encoding the CHH-superfamily peptides across representative ecdysozoan taxa has been established. The objective of this review is to, aside from providing a general framework, highlight the progress made during the past decade or so. The progress includes the widespread identification of the CHH-superfamily peptides, in particular in non-crustaceans, which has reshaped the phylogenetic profile of the superfamily. Novel functions have been attributed to some of the newly identified members, providing exceptional opportunities for understanding the structure-function relationships of these peptides. Functional studies are challenging, especially for the peptides of crustacean and insect species, where they are widely expressed in various tissues and usually pleiotropic. Progress has been made in deciphering the roles of CHH, ITP, and their alternatively spliced counterparts (CHH-L, ITP-L) in the regulation of metabolism and ionic/osmotic hemostasis under (eco)physiological, developmental, or pathological contexts, and of MIH in the stimulation of ovarian maturation, which implicates it as a regulator for coordinating growth (molt) and reproduction. In addition, experimental elucidation of the steric structure and structure-function relationships have given better understanding of the structural basis of the functional diversification and overlapping among these peptides. Finally, an important finding was the first-ever identification of the receptors for this superfamily of peptides, specifically the receptors for ITPs of the silkworm, which will surely give great impetus to the functional study of these peptides for years to come. Studies regarding recent progress are presented and synthesized, and prospective developments remarked upon.
Collapse
Affiliation(s)
- Hsiang-Yin Chen
- Department of Aquaculture, National Penghu University of Science and Technology, Magong, Taiwan
| | - Jean-Yves Toullec
- Sorbonne Université, Faculté des Sciences, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - Chi-Ying Lee
- Graduate Program of Biotechnology and Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
14
|
Jayasankar V, Tomy S, Wilder MN. Insights on Molecular Mechanisms of Ovarian Development in Decapod Crustacea: Focus on Vitellogenesis-Stimulating Factors and Pathways. Front Endocrinol (Lausanne) 2020; 11:577925. [PMID: 33123094 PMCID: PMC7573297 DOI: 10.3389/fendo.2020.577925] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/18/2020] [Indexed: 01/20/2023] Open
Abstract
Vitellogenesis in crustaceans is an energy-consuming process. Though the underlying mechanisms of ovarian maturation in decapod Crustacea are still unclear, evidence indicates the process to be regulated by antagonistically-acting inhibitory and stimulating factors specifically originating from X-organ/sinus gland (XO/SG) complex. Among the reported neuromediators, neuropeptides belonging to the crustacean hyperglycemic hormone (CHH)-family have been studied extensively. The structure and dynamics of inhibitory action of vitellogenesis-inhibiting hormone (VIH) on vitellogenesis have been demonstrated in several species. Similarly, the stimulatory effects of other neuropeptides of the CHH-family on crustacean vitellogenesis have also been validated. Advancement in transcriptomic sequencing and comparative genome analysis has led to the discovery of a large number of neuromediators, peptides, and putative peptide receptors having pleiotropic and novel functions in decapod reproduction. Furthermore, differing research strategies have indicated that neurotransmitters and steroid hormones play an integrative role by stimulating neuropeptide secretion, thus demonstrating the complex intertwining of regulatory factors in reproduction. However, the molecular mechanisms by which the combinatorial effect of eyestalk hormones, neuromediators and other factors coordinate to regulate ovarian maturation remain elusive. These multifunctional substances are speculated to control ovarian maturation possibly via the autocrine/paracrine pathway by acting directly on the gonads or by indirectly exerting their stimulatory effects by triggering the release of a putative gonad stimulating factor from the thoracic ganglion. Acting through receptors, they possibly affect levels of cyclic nucleotides (cAMP and cGMP) and Ca2+ in target tissues leading to the regulation of vitellogenesis. The "stimulatory paradox" effect of eyestalk ablation on ovarian maturation continues to be exploited in commercial aquaculture operations, and is outweighed by the detrimental physiological effects of this procedure. In this regard, the development of efficient alternatives to eyestalk ablation based on scientific knowledge is a necessity. In this article, we focus principally on the signaling pathways of positive neuromediators and other factors regulating crustacean reproduction, providing an overview of their proposed receptor-mediated stimulatory mechanisms, intracellular signaling, and probable interaction with other hormonal signals. Finally, we provide insight into future research directions on crustacean reproduction as well as potential applications of such research to aquaculture technology development.
Collapse
Affiliation(s)
- Vidya Jayasankar
- Marine Biotechnology Division, Madras Research Centre, ICAR-Central Marine Fisheries Research Institute, Chennai, India
| | - Sherly Tomy
- Genetics and Biotechnology Unit, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Marcy N. Wilder
- Fisheries Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
- *Correspondence: Marcy N. Wilder
| |
Collapse
|
15
|
Sun S, Zhu M, Pan F, Feng J, Li J. Identifying Neuropeptide and G Protein-Coupled Receptors of Juvenile Oriental River Prawn ( Macrobrachium nipponense) in Response to Salinity Acclimation. Front Endocrinol (Lausanne) 2020; 11:623. [PMID: 33013701 PMCID: PMC7506046 DOI: 10.3389/fendo.2020.00623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Neuropeptides and their G protein-coupled receptors (GPCRs) from the central nervous system regulate the physiological responses of crustaceans. However, in crustaceans, our knowledge regarding GPCR expression patterns and phylogeny is limited. Thus, the present study aimed to analyze the eyestalk transcriptome of the oriental river prawn Macrobrachium nipponense in response to salinity acclimation. We obtained 162,250 unigenes after de novo assembly, and 1,392 and 1,409 differentially expressed genes were identified in the eyestalk of prawns in response to low and high salinity, respectively. We used combinatorial bioinformatic analyses to identify M. nipponense genes encoding GPCRs and neuropeptides. The mRNA levels of seven neuropeptides and one GPCR were validated in prawns in response to salinity acclimation using quantitative real-time reverse transcription polymerase chain reaction. A total of 148 GPCR-encoding transcripts belonging to three classes were identified, including 77 encoding GPCR-A proteins, 52 encoding GPCR-B proteins, and 19 encoding other GPCRs. The results increase our understanding of molecular basis of neural signaling in M. nipponense, which will promote further research into salinity acclimation of this crustacean.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- *Correspondence: Shengming Sun
| | - Mengru Zhu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
| | - Fangyan Pan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Jianbin Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|