1
|
Wang Z, Guo F, Fu G, Zhao Z, Kang N, Hou X, Zheng X. Predictive and prognostic value of aurora kinase A combined with tumor-infiltrating lymphocytes in medullary thyroid carcinoma. Front Oncol 2024; 14:1379420. [PMID: 38903715 PMCID: PMC11187078 DOI: 10.3389/fonc.2024.1379420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Background Aurora kinase A (AURKA) and tumor-infiltrating lymphocytes (TILs) are both known to play an essential role in tumorigenesis. However, the expression and prognostic value of the AURKA and TILs in medullary thyroid carcinoma (MTC) have not yet been investigated. Patients and methods Surgical specimens and clinical data of 137 patients diagnosed with MTC were collected. AURKA expression and TILs infiltration were quantified by immunohistochemistry and hematoxylin-eosin staining. Subsequently, the prognostic value of AURKA expression and TIL infiltration in MTC was evaluated. Results AURKA was highly expressed in patients with multifocal tumor, cervical lymph node metastasis, and an advanced TNM stage, indicating a high probability of recurrence. AURKA further exhibited a positive correlation with TILs (R = 0.44, P < 0.001). High expression of AURKA combined with a low numbers of TILs (AURKAhigh/TILslow) was identified as an independent prognostic factor for biochemical recurrence (odds ratio: 4.57, 95% confidence interval: 1.54-14.66, P < 0.01) and recurrence-free survival (hazard ratio: 3.64, 95% confidence interval: 1.52-8.71, P < 0.001). The combination of AURKA and TILs apparently improves the prognostic value for biochemical recurrence (area under the curve: 0.751) and structural recurrence (area under the curve: 0.836) of MTC. Notably, AURKAhigh/TILslow demonstrated a high value for prediction of distant or unresectable locoregional recurrence, with an overall accuracy of 86.9%. Conclusion AURKAhigh is associated with the MTC malignancy. The combination of AURKAhigh/TILslow was identified as novel independent prognostic marker in MTC, predicting incurable disease recurrence with high accuracy.
Collapse
Affiliation(s)
- Zhongyu Wang
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Fengli Guo
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Guiming Fu
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Thyroid-otolaryngology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zewei Zhao
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Ning Kang
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiukun Hou
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
2
|
Ni Z, Cong S, Li H, Liu J, Zhang Q, Wei C, Pan G, He H, Liu W, Mao A. Integration of scRNA and bulk RNA-sequence to construct the 5-gene molecular prognostic model based on the heterogeneity of thyroid carcinoma endothelial cell. Acta Biochim Biophys Sin (Shanghai) 2024; 56:255-269. [PMID: 38186223 PMCID: PMC10984871 DOI: 10.3724/abbs.2023254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/22/2023] [Indexed: 01/09/2024] Open
Abstract
Thyroid cancer (TC) is a kind of cancer with high heterogeneity, which leads to significant difference in prognosis. The prognostic molecular processes are not well understood. Cancer cells and tumor microenvironment (TME) cells jointly determine the heterogeneity. However, quite a little attention was paid to cells in the TME in the past years. In this study, we not only reveal that endothelial cells (ECs) are strongly associated with the progress of papillary thyroid cancer (PTC) using single-cell RNA-seq (scRNA-seq) data downloaded from Gene Expression Omnibus (GEO) and WGCNA, but also screen 5 crucial genes of ECs: CLDN5, ABCG2, NOTCH4, PLAT, and TMEM47. Furthermore, the 5-gene molecular prognostic model is constructed, which can predict how well a patient will do on PD-L1 blockade immunotherapy for TC and evaluate prognosis. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrates that PLAT is decreased in TC and the increase of PLAT can restrain the migratory capacity of TC cells. Meanwhile, in TC cells, PLAT suppresses VEGFa/VEGFR2-mediated human umbilical vascular endothelial cell (HUVEC) proliferation and tube formation. Totally, we construct the 5-gene molecular prognostic model from the perspective of EC and provide a new idea for immunotherapy of TC.
Collapse
Affiliation(s)
- Zhaoxian Ni
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Shan Cong
- Department of Laparoscopic Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116000China
| | - Hongchang Li
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Jiazhe Liu
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Qing Zhang
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Chuanchao Wei
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Gaofeng Pan
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Hui He
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Laparoscopic Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116000China
| | - Weiyan Liu
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Anwei Mao
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| |
Collapse
|
3
|
Zhang J, Zhou X, Yao F, Zhang J, Li Q. TIPARP as a prognostic biomarker and potential immunotherapeutic target in male papillary thyroid carcinoma. Cancer Cell Int 2024; 24:34. [PMID: 38233939 PMCID: PMC10795290 DOI: 10.1186/s12935-024-03223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Male patients with papillary thyroid carcinoma (PTC) tend to have poorer prognosis compared to females, partially attributable to a higher rate of lymph node metastasis (LNM). Developing a precise predictive model for LNM occurrence in male PTC patients is imperative. While preliminary predictive models exist, there is room to improve accuracy. Further research is needed to create optimized prognostic models specific to LNM prediction in male PTC cases. METHODS We conducted a comprehensive search of publicly available microarray datasets to identify candidate genes continuously upregulated or downregulated during PTC progression in male patients only. Univariate Cox analysis and lasso regression were utilized to construct an 11-gene signature predictive of LNM. TIPARP emerged as a key candidate gene, which we validated at the protein level using immunohistochemical staining. A prognostic nomogram incorporating the signature and clinical factors was developed based on the TCGA cohort. RESULTS The 11-gene signature demonstrated good discriminative performance for LNM prediction in training and validation datasets. High TIPARP expression associated with advanced stage, high T stage, and presence of LNM. A prognostic nomogram integrating the signature and clinical variables reliably stratified male PTC patients into high and low recurrence risk groups. CONCLUSIONS We identified a robust 11-gene signature and prognostic nomogram for predicting LNM occurrence in male PTC patients. We propose TIPARP as a potential contributor to inferior outcomes in males, warranting further exploration as a prognostic biomarker and immunotherapeutic target. Our study provides insights into the molecular basis for gender disparities in PTC.
Collapse
Affiliation(s)
- Jianlin Zhang
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510280, China
| | - Xumin Zhou
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510280, China
| | - Fan Yao
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510280, China
| | - JiaLi Zhang
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510280, China
| | - Qiang Li
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
4
|
Xu B, Zhang J, Chen W, Cai W. Exploring the methylation status of CFTR and PKIA genes as potential biomarkers for lung adenocarcinoma. Orphanet J Rare Dis 2023; 18:246. [PMID: 37644544 PMCID: PMC10466921 DOI: 10.1186/s13023-023-02807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND One of the most prevalent cancers in the world is lung cancer, with adenocarcinoma (LUAD) making up a significant portion of cases. According to the National Cancer Institute (NCI), there are new cases and fatality rates per 100,000 individuals as follows: New instances of lung and bronchial cancer occur annually at a rate of 50.0 per 100,000 persons. The yearly death rate for men and women is 35.0 per 100,000. DNA methylation is one of the earliest discovered and widely studied epigenetic regulatory mechanisms, and its abnormality is closely related to the occurrence and development of cancer. However, the prognostic value of DNA methylation and LUAD needs to be further explored to improve the survival prediction of LUAD patients. METHODS The transcriptome data and clinical data of LUAD were downloaded from TCGA and GEO databases, and the Illumina Human Methylation450 array (450k array) data were downloaded from the TCGA database. Firstly, the intersection of the expressed genes of the two databases is corrected, the differential analysis is performed, and the methylation data is evaluated by the MethylMix package to obtain differentially methylated genes. Independent prognostic genes were screened out using univariate and multivariate Cox regression analysis, and a methylation prognostic model was developed using univariate Cox analysis and validated with the GSE30219 dataset in the GEO database. Survival analysis between methylation high-risk and low-risk groups was performed and a methylation-based gene prognostic model was constructed. Finally, the prediction of potential drugs associated with the LUAD gene signature using Drug Sensitivity Genomics in Cancer (GDSC). RESULTS In this study, a total of 555 samples from the TCGA database and 307 samples from GSE30219 were included, and a total of 24 differential methylation driver genes were identified. Univariate and multivariate Cox regression analyzes were used to screen out independent prognostic genes, involving 2 genes: CFTR, PKIA. Survival analysis was different between the methylation high-risk group and the low-risk group, the CFTR high methylation group and the low methylation group were poor, and the opposite was true for PKIA. CONCLUSIONS Our study revealed that the methylation status of CFTR and PKIA can serve as potential prognostic biomarkers and therapeutic targets in lung cancer.
Collapse
Affiliation(s)
- Bowen Xu
- Xuzhou Central Hospital, Xuzhou, Jiangsu, 221000, China
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, 264000, China
| | - Jingang Zhang
- Weihai Second Hospital affiliated to Qingdao University, Weihai, Shandong, 264200, China
| | - Weigang Chen
- Xuzhou Central Hospital, Xuzhou, Jiangsu, 221000, China.
| | - Wei Cai
- Xuzhou Central Hospital, Xuzhou, Jiangsu, 221000, China.
| |
Collapse
|
5
|
Li H, Lan H, Li M, Pu X, Guo Y. A new molecular subclassification and in silico predictions for diagnosis and prognosis of papillary thyroid cancer by alternative splicing profile. Front Pharmacol 2023; 14:1119789. [PMID: 36950012 PMCID: PMC10025316 DOI: 10.3389/fphar.2023.1119789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Papillary thyroid cancer (PTC) is the most common endocrine malignancy. However, different PTC variants reveal high heterogeneity at histological, cytological, molecular and clinicopathological levels, which complicates the precise diagnosis and management of PTC. Alternative splicing (AS) has been reported to be potential cancer biomarkers and therapeutic targets. Method: Here, we aim to find a more sophisticated molecular subclassification and characterization for PTC by integrating AS profiling. Based on six differentially expressed alternative splicing (DEAS) events, a new molecular subclassification was proposed to reclassify PTC into three new groups named as Cluster0, Cluster1 and Cluster2 respectively. Results: An in silico prediction was performed for accurate recognition of new groups with the average accuracy of 91.2%. Moreover, series of analyses were implemented to explore the differences of clinicopathology, molecular and immune characteristics across them. It suggests that there are remarkable differences among them, but Cluster2 was characterized by poor prognosis, higher immune heterogeneity and more sensitive to anti-PD1 therapy. The splicing correlation networks proved the complicated regulation relationships between AS events and splicing factors (SFs). An independent prognostic indicator for PTC overall survival (OS) was established. Finally, three compounds (orantinib, tyrphostin-AG-1295 and AG-370) were discovered to be the potential therapeutic agents. Discussion: Overall, the six DEAS events are not only potential biomarkers for precise diagnosis of PTC, but also the probable prognostic predictors. This research would be expected to highlight the effect of AS events on PTC characterization and also provide new insights into refining precise subclassification and improving medical therapy for PTC patients.
Collapse
|
6
|
Identification and Validation of a Prognostic Signature Based on Methylation Profiles and Methylation-Driven Gene DAB2 as a Prognostic Biomarker in Differentiated Thyroid Carcinoma. DISEASE MARKERS 2022; 2022:1686316. [DOI: 10.1155/2022/1686316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Recurrence is the major death cause of differentiated thyroid carcinoma (DTC), and a better understanding of recurrence risk at early stage may lead to make the optimal medical decision to improve patients’ prognosis. The 2015 American Thyroid Association (ATA) risk stratification system primary based on clinic-pathologic features is the most commonly used to describe the initial risk of persistent/recurrent disease. Besides, multiple prognostics models based on multigenes expression profiles have been developed to predict the recurrence risk of DTC patients. Recent evidences indicated that aberrant DNA methylation is involved in the initiation and progression of DTC and can be useful biomarkers for clinical diagnosis and prognosis prediction of DTC. Therefore, there is a need for integrating gene methylation feature to assess the recurrence risk of DTC. Gene methylation profile from The Cancer Genome Atlas (TCGA) was used to construct a recurrence risk model of DTC by successively performed univariate Cox regression, LASSO regression, and multivariate Cox regression. Two Gene Expression Omnibus (GEO) methylation cohorts of DTC were utilized to validate the predictive value of the methylation profiles model as external cohort by receiver operating characteristic (ROC) curve and survival analysis. Besides, CCK-8, colony-formation assay, transwell, and scratch-wound assay were used to investigate the biological significance of critical gene in the model. In our study, we constructed and validated a prognostic signature based on methylation profiles of SPTA1, APCS, and DAB2 and constructed a nomogram based on the methylation-related model, age, and AJCC_T stage that could provide evidence for the long-term treatment and management of DTC patients. Besides, in vitro experiments showed that DAB2 inhibited proliferation, colony-formation, and migration of BCPAP cells and the gene set enrichment analysis and immune infiltration analysis showed that DAB2 may promote antitumor immunity in DTC. In conclusion, promoter hypermethylation and loss expression of DAB2 in DTC may be a biomarker of unfavorable prognosis and poor response to immune therapy.
Collapse
|
7
|
Li C, Yuan Q, Xu G, Yang Q, Hou J, Zheng L, Wu G. A seven-autophagy-related gene signature for predicting the prognosis of differentiated thyroid carcinoma. World J Surg Oncol 2022; 20:129. [PMID: 35459137 PMCID: PMC9034603 DOI: 10.1186/s12957-022-02590-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/07/2022] [Indexed: 12/20/2022] Open
Abstract
Background Numerous studies have implicated autophagy in the pathogenesis of thyroid carcinoma. This investigation aimed to establish an autophagy-related gene model and nomogram that can help predict the overall survival (OS) of patients with differentiated thyroid carcinoma (DTHCA). Methods Clinical characteristics and RNA-seq expression data from TCGA (The Cancer Genome Atlas) were used in the study. We also downloaded autophagy-related genes (ARGs) from the Gene Set Enrichment Analysis website and the Human Autophagy Database. First, we assigned patients into training and testing groups. R software was applied to identify differentially expressed ARGs for further construction of a protein-protein interaction (PPI) network for gene functional analyses. A risk score-based prognostic risk model was subsequently developed using univariate Cox regression and LASSO-penalized Cox regression analyses. The model’s performance was verified using Kaplan-Meier (KM) survival analysis and ROC curve. Finally, a nomogram was constructed for clinical application in evaluating the patients with DTHCA. Finally, a 7-gene prognostic risk model was developed based on gene set enrichment analysis. Results Overall, we identified 54 differentially expressed ARGs in patients with DTHCA. A new gene risk model based on 7-ARGs (CDKN2A, FGF7, CTSB, HAP1, DAPK2, DNAJB1, and ITPR1) was developed in the training group and validated in the testing group. The predictive accuracy of the model was reflected by the area under the ROC curve (AUC) values. Univariate and multivariate Cox regression analysis indicated that the model could independently predict the prognosis of patients with THCA. The constrained nomogram derived from the risk score and age also showed high prediction accuracy. Conclusions Here, we developed a 7-ARG prognostic risk model and nomogram for differentiated thyroid carcinoma patients that can guide clinical decisions and individualized therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02590-6.
Collapse
Affiliation(s)
- Chengxin Li
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qianqian Yuan
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Gaoran Xu
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qian Yang
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinxuan Hou
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lewei Zheng
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
8
|
Li HN, Zhang HM, Li XR, Wang J, Xu T, Li SY, Dong ML, Wang G, Cui XQ, Yang X, Wu YL, Liao XH, Du YY. MiR-205-5p/GGCT Attenuates Growth and Metastasis of Papillary Thyroid Cancer by Regulating CD44. Endocrinology 2022; 163:6537106. [PMID: 35213720 PMCID: PMC8944316 DOI: 10.1210/endocr/bqac022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/23/2022]
Abstract
Papillary thyroid cancer (PTC) remains the most common endocrine malignancy, despite marked achieves in recent decades, and the mechanisms underlying the pathogenesis and progression for PTC are incompletely elucidated. Accumulating evidence show that γ-glutamylcyclotransferase (GGCT), an enzyme participating in glutathione homeostasis and is elevated in multiple types of tumors, represents an attractive therapeutic target. Using bioinformatics, immunohistochemistry, qRT-PCR, and Western blot assays, we found that GGCT expression was upregulated in PTC and correlated with more aggressive clinicopathological characteristics and worse prognosis. GGCT knockdown inhibited the growth and metastasis ability of PTC cells both in vitro and in vivo and reduced the expression of mesenchymal markers (N-cadherin, CD44, MMP2, and MMP9) while increasing epithelial marker (E-cadherin) in PTC cells. We confirmed binding of microRNA-205-5p (miR-205-5p) on the 3'-UTR regions of GGCT by dual-luciferase reporter assay and RNA-RNA pull-down assay. Delivery of miR-205-5p reversed the pro-malignant capacity of GGCT both in vitro and in vivo. Lastly, we found that GGCT interacted with and stabilized CD44 in PTC cells by co-immunoprecipitation and immunohistochemistry assays. Our findings illustrate a novel signaling pathway, miR-205-5p/GGCT/CD44, that involves in the carcinogenesis and progression of PTC. Development of miR-205-mimics or GGCT inhibitors as potential therapeutics for PTC may have remarkable applications.
Collapse
Affiliation(s)
- Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Hui-Min Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People’s Republic of China
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Jun Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People’s Republic of China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Department of Obstetrics and Gynecology, Cancer Biology research center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Shu-Yu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Meng-Lu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Xiao-Qing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Xue Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Yong-Lin Wu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
| | - Xing-Hua Liao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People’s Republic of China
- Correspondence: Xing-Hua Liao, Ph.D., College of Life Science and Health, Wuhan University of Science and Technology, People’s Republic of China.
| | - Ya-Ying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430030, People’s Republic of China
- Correspondence: Ya-Ying Du, M.D., Ph.D., Surgeon of Department of Thyroid and Breast Surgery, Tongji Hospital, Deputy Dean for Clinical Affairs, Laboratory of Thyroid and Breast Surgery, People’s Republic of China.
| |
Collapse
|
9
|
Wu M, Ou-yang DJ, Wei B, Chen P, Shi QM, Tan HL, Huang BQ, Liu M, Qin ZE, Li N, Hu HY, Huang P, Chang S. A Prognostic Model of Differentiated Thyroid Cancer Based on Up-Regulated Glycolysis-Related Genes. Front Endocrinol (Lausanne) 2022; 13:775278. [PMID: 35528004 PMCID: PMC9072639 DOI: 10.3389/fendo.2022.775278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE This study aims to identify reliable prognostic biomarkers for differentiated thyroid cancer (DTC) based on glycolysis-related genes (GRGs), and to construct a glycolysis-related gene model for predicting the prognosis of DTC patients. METHODS We retrospectively analyzed the transcriptomic profiles and clinical parameters of 838 thyroid cancer patients from 6 public datasets. Single factor Cox proportional risk regression analysis and Least Absolute Shrinkage and Selection Operator (LASSO) were applied to screen genes related to prognosis based on 2528 GRGs. Then, an optimal prognostic model was developed as well as evaluated by Kaplan-Meier and ROC curves. In addition, the underlying molecular mechanisms in different risk subgroups were also explored via The Cancer Genome Atlas (TCGA) Pan-Cancer study. RESULTS The glycolysis risk score (GRS) outperformed conventional clinicopathological features for recurrence-free survival prediction. The GRS model identified four candidate genes (ADM, MKI67, CD44 and TYMS), and an accurate predictive model of relapse in DTC patients was established that was highly correlated with prognosis (AUC of 0.767). In vitro assays revealed that high expression of those genes increased DTC cancer cell viability and invasion. Functional enrichment analysis indicated that these signature GRGs are involved in remodelling the tumour microenvironment, which has been demonstrated in pan-cancers. Finally, we generated an integrated decision tree and nomogram based on the GRS model and clinicopathological features to optimize risk stratification (AUC of the composite model was 0.815). CONCLUSIONS The GRG signature-based predictive model may help clinicians provide a prognosis for DTC patients with a high risk of recurrence after surgery and provide further personalized treatment to decrease the chance of relapse.
Collapse
Affiliation(s)
- Min Wu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Deng-jie Ou-yang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Bo Wei
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Pei Chen
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Qi-man Shi
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Hai-long Tan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Bo-qiang Huang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Mian Liu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Zi-en Qin
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Ning Li
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Hui-yu Hu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Peng Huang, ; Shi Chang,
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Clinical Research Center for Thyroid Disease in Hunan Province, Xiangya Hospital, Changsha, China
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Xiangya Hospital, Changsha, China
- *Correspondence: Peng Huang, ; Shi Chang,
| |
Collapse
|
10
|
He Z, Xin Z, Peng Y, Zhao H, Fang X. Construction of competing endogenous RNA interaction network as prognostic markers in metastatic melanoma. PeerJ 2021; 9:e12143. [PMID: 34616613 PMCID: PMC8449535 DOI: 10.7717/peerj.12143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
Malignant melanoma (MM) is a malignant tumor originating from melanocytes, with high aggressiveness, high metastasis and extremely poor prognosis. MM accounts for 4% of skin cancers and 80% of mortality, and the median survival of patients with metastatic melanoma is only about 6 months, with a five-year survival rate of less than 10%. In recent years, the incidence of melanoma has gradually increased and has become one of the serious diseases that endanger human health. Competitive endogenous RNA (ceRNA) is the main model of the mechanism by which long chain non-coding RNAs (lncRNAs) play a regulatory role in the disease. LncRNAs can act as a "sponge", competitively attracting small RNAs (micoRNAs; miRNAs), thus interfering with miRNA function, and affect the expression of target gene messenger RNAs (mRNAs), ultimately promoting tumorigenesis and progression. Bioinformatics analysis can identify potentially prognostic and therapeutically relevant differentially expressed genes in MM, finding lncRNAs, miRNAs and mRNAs that are interconnected through the ceRNA network, providing further insight into gene regulation and prognosis of metastatic melanoma. Weighted co-expression networks were used to identify lncRNA and mRNA modules associated with the metastatic phenotype, as well as the co-expression genes contained in the modules. A total of 17 lncRNAs, six miRNAs, and 11 mRNAs were used to construct a ceRNA interaction network that plays a regulatory role in metastatic melanoma patients. The prognostic risk model was used as a sorter to classify the survival prognosis of melanoma patients. Four groups of ceRNA interaction triplets were finally obtained, which miR-3662 might has potential implication for the treatment of metaststic melanoma patients, and futher experiments confirmed the regulating relationship and phenotype of this assumption. This study provides new targets to regulate metastatic process, predict metastatic potential and indicates that the miR-3662 can be used in the treatment of melanoma.
Collapse
Affiliation(s)
- Zan He
- Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China.,Medical School of Chinese People's Liberation Army, Beijing, China
| | - Zijuan Xin
- Beijing Institute of Genomics/China National Center for Bioinformation, Chinese Academy of Science, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yongfei Peng
- Beijing Institute of Genomics/China National Center for Bioinformation, Chinese Academy of Science, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Zhao
- Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China.,Medical School of Chinese People's Liberation Army, Beijing, China
| | - Xiangdong Fang
- Beijing Institute of Genomics/China National Center for Bioinformation, Chinese Academy of Science, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Luo W, Liu Q, Chen X, Liu H, Quan B, Lu J, Zhang K, Wang X. FXYD6 Regulates Chemosensitivity by Mediating the Expression of Na+/K+-ATPase α1 and Affecting Cell Autophagy and Apoptosis in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9986376. [PMID: 34212047 PMCID: PMC8208849 DOI: 10.1155/2021/9986376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/24/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE Chemoresistance is a challenge of improving chemotherapeutic efficacy and prolonging survival time for patients with colorectal cancer (CRC); it is the major cause of frequent recurrence, rapid metastasis, and poor prognosis for CRC patients. FXYD6 is a regulator of Na+/K+-ATPase which is depressed in chemoresistant CRC patients. However, the biological roles of FXYD6 on regulating chemoresistance in CRC are still unclear. METHODS GSE3964 and GSE69657 from GEO DataSets were used to analyze the relationship of genes and chemoresistance. The FXYD6 expression level was detected by western blotting and real-time PCR and also analyzed from TCGA DataSet. To investigate the functional role of FXYD6 and ATP-α1, FXYD6 and ATP-α1 functional cell models were constructed. Drug sensitivity and cell proliferation were performed by MTT assay. Autophagy and apoptosis were conducted by autophagy fluorescence analysis and flow cytometric analysis, respectively. Autophagy and apoptosis markers were tested by western blotting. RESULTS FXYD6 was downregulated in CRC resistant patients and irinotecan- (Iri-) resistant SW620 cells (SW620/Iri). FXYD6 silence inhibited cell apoptosis and enhanced prosurvival autophagy, whereas FXYD6 overexpression produced the opposite effect which alleviated the drug resistance to irinotecan and oxaliplatin of CRC cells. FXYD6 regulates chemosensitivity by mediating the expression of Na+/K+-ATPase α1 and affecting cell autophagy and apoptosis in colorectal cancer. CONCLUSION FXYD6 functions as a chemosensitivity regulator which may predict the curative effect of chemotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Wen Luo
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| | - Qingan Liu
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| | - Xinwen Chen
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| | - Haijun Liu
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| | - Bin Quan
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| | - Jinli Lu
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| | - Ke Zhang
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| | - Xiangling Wang
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| |
Collapse
|