1
|
Song J, Chen Y, Chen Y, Qiu M, Xiang W, Ke B, Fang X. DKK3 promotes renal fibrosis by increasing MFF-mediated mitochondrial dysfunction in Wnt/β-catenin pathway-dependent manner. Ren Fail 2024; 46:2343817. [PMID: 38682264 PMCID: PMC11060011 DOI: 10.1080/0886022x.2024.2343817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) lacks effective treatments and renal fibrosis (RF) is one of CKD's outcomes. Dickkopf 3 (DKK3) has been identified as an agonist in CKD. However, the underlying mechanisms of DKK3 in CKD are not fully understood. METHODS H2O2-treated HK-2 cells and ureteric obstruction (UUO) mice were used as RF models. Biomarkers, Masson staining, PAS staining, and TUNEL were used to assess kidney function and apoptosis. Oxidative stress and mitochondria function were also evaluated. CCK-8 and flow cytometry were utilized to assess cell viability and apoptosis. Western blotting, IHC, and qRT-PCR were performed to detect molecular expression levels. Immunofluorescence was applied to determine the subcellular localization. Dual luciferase assay, MeRIP, RIP, and ChIP were used to validate the m6A level and the molecule interaction. RESULTS DKK3 was upregulated in UUO mouse kidney tissue and H2O2-treated HK-2 cells. Knockdown of DKK3 inhibited oxidative stress, maintained mitochondrial homeostasis, and alleviated kidney damage and RF in UUO mice. Furthermore, DKK3 silencing suppressed HK-2 cell apoptosis, oxidative stress, and mitochondria fission. Mechanistically, DKK3 upregulation was related to the high m6A level regulated by METTL3. DKK3 activated TCF4/β-catenin and enhanced MFF transcriptional expression by binding to its promoter. Overexpression of MFF reversed in the inhibitory effect of DKK3 knockdown on cell damage. CONCLUSION Upregulation of DKK3 caused by m6A modification activated the Wnt/β-catenin pathway to increase MFF transcriptional expression, leading to mitochondrial dysfunction and oxidative stress, thereby promoting RF progression.
Collapse
Affiliation(s)
- Jianling Song
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Yanxia Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Yan Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Minzi Qiu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Wenliu Xiang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| |
Collapse
|
2
|
Riedel R, Pérez-Amodio S, Cabo-Zabala L, Velasco-Ortega E, Maymó J, Gil J, Monsalve-Guil L, Ortiz-Garcia I, Pérez-Pérez A, Sánchez-Margalet V, Jiménez-Guerra A. Influence of the Surface Topography of Titanium Dental Implants on the Behavior of Human Amniotic Stem Cells. Int J Mol Sci 2024; 25:7416. [PMID: 39000523 PMCID: PMC11242699 DOI: 10.3390/ijms25137416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The dental implant surface plays a crucial role in osseointegration. The topography and physicochemical properties will affect the cellular functions. In this research, four distinct titanium surfaces have been studied: machined acting (MACH), acid etched (AE), grit blasting (GBLAST), and a combination of grit blasting and subsequent acid etching (GBLAST + AE). Human amniotic mesenchymal (hAMSCs) and epithelial stem cells (hAECs) isolated from the amniotic membrane have attractive stem-cell properties. They were cultured on titanium surfaces to analyze their impact on biological behavior. The surface roughness, microhardness, wettability, and surface energy were analyzed using interferometric microscopy, Vickers indentation, and drop-sessile techniques. The GBLAST and GBLAST + AE surfaces showed higher roughness, reduced hydrophilicity, and lower surface energy with significant differences. Increased microhardness values for GBLAST and GBLAST + AE implants were attributed to surface compression. Cell viability was higher for hAMSCs, particularly on GBLAST and GBLAST + AE surfaces. Alkaline phosphatase activity enhanced in hAMSCs cultured on GBLAST and GBLAST + AE surfaces, while hAECs showed no mineralization signals. Osteogenic gene expression was upregulated in hAMSCs on GBLAST surfaces. Moreover, α2 and β1 integrin expression enhanced in hAMSCs, suggesting a surface-integrin interaction. Consequently, hAMSCs would tend toward osteoblastic differentiation on grit-blasted surfaces conducive to osseointegration, a phenomenon not observed in hAECs.
Collapse
Affiliation(s)
- Rodrigo Riedel
- Departament Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, 4° Piso, Buenos Aires 1428, Argentina; (R.R.); (J.M.)
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, 4th Floor, Buenos Aires 1428, Argentina
| | - Soledad Pérez-Amodio
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Cataluña, 08195 Sant Cugat del Vallés, Spain;
| | - Laura Cabo-Zabala
- Sección de Inmunología, Hospital Regional Universitario de Malaga, Instituto de Investigacion Biomédica de Malaga (IBIMA), 29590 Málaga, Spain;
| | - Eugenio Velasco-Ortega
- Department of Stomatology, Faculty of Dentistry, University of Seville, 41004 Sevilla, Spain; (E.V.-O.); (I.O.-G.); (A.J.-G.)
| | - Julieta Maymó
- Departament Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, 4° Piso, Buenos Aires 1428, Argentina; (R.R.); (J.M.)
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, 4th Floor, Buenos Aires 1428, Argentina
| | - Javier Gil
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Cataluña, 08195 Sant Cugat del Vallés, Spain;
| | - Loreto Monsalve-Guil
- Department of Stomatology, Faculty of Dentistry, University of Seville, 41004 Sevilla, Spain; (E.V.-O.); (I.O.-G.); (A.J.-G.)
| | - Iván Ortiz-Garcia
- Department of Stomatology, Faculty of Dentistry, University of Seville, 41004 Sevilla, Spain; (E.V.-O.); (I.O.-G.); (A.J.-G.)
| | - Antonio Pérez-Pérez
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuán 4, 41009 Sevilla, Spain; (A.P.-P.); (V.S.-M.)
| | - Victor Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuán 4, 41009 Sevilla, Spain; (A.P.-P.); (V.S.-M.)
| | - Alvaro Jiménez-Guerra
- Department of Stomatology, Faculty of Dentistry, University of Seville, 41004 Sevilla, Spain; (E.V.-O.); (I.O.-G.); (A.J.-G.)
| |
Collapse
|
3
|
Zhivodernikov IV, Kirichenko TV, Markina YV, Postnov AY, Markin AM. Molecular and Cellular Mechanisms of Osteoporosis. Int J Mol Sci 2023; 24:15772. [PMID: 37958752 PMCID: PMC10648156 DOI: 10.3390/ijms242115772] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Osteoporosis is a widespread systemic disease characterized by a decrease in bone mass and an imbalance of the microarchitecture of bone tissue. Experimental and clinical studies devoted to investigating the main pathogenetic mechanisms of osteoporosis revealed the important role of estrogen deficiency, inflammation, oxidative stress, cellular senescence, and epigenetic factors in the development of bone resorption due to osteoclastogenesis, and decreased mineralization of bone tissue and bone formation due to reduced function of osteoblasts caused by apoptosis and age-depended differentiation of osteoblast precursors into adipocytes. The current review was conducted to describe the basic mechanisms of the development of osteoporosis at molecular and cellular levels and to elucidate the most promising therapeutic strategies of pathogenetic therapy of osteoporosis based on articles cited in PubMed up to September 2023.
Collapse
Affiliation(s)
| | | | - Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia; (I.V.Z.); (T.V.K.); (A.Y.P.); (A.M.M.)
| | | | | |
Collapse
|
4
|
Bu X, Wang J, Yin Z, Pan W, Liu L, Jin H, Liu Q, Zheng L, Sun H, Gao Y, Ping B. Human Amniotic Mesenchymal Stem Cells Alleviate aGVHD after allo-HSCT by Regulating Interactions between Gut Microbiota and Intestinal Immunity. Stem Cell Rev Rep 2023:10.1007/s12015-023-10522-4. [PMID: 36870009 PMCID: PMC10366239 DOI: 10.1007/s12015-023-10522-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation poses one of the most vexing challenges. Gut microbiota dysbiosis can proceed aGVHD and mesenchymal stem cells (MSCs) have promising therapeutic potential for aGVHD. However, whether hAMSCs affect the gut microbiota during aGVHD mitigation remains unknown. Accordingly, we sought to define the effects and underlying mechanisms of human amniotic membrane-derived MSCs (hAMSCs) regulating the gut microbiota and intestinal immunity in aGVHD. By establishing humanized aGVHD mouse models and hAMSCs treatment, we found that hAMSCs significantly ameliorated aGVHD symptoms, reversed the immune imbalance of T cell subsets and cytokines, and restored intestinal barrier. Moreover, the diversity and composition of gut microbiota were improved upon treatment with hAMSCs. Spearman's correlation analysis showed that there was a correlation between the gut microbiota and tight junction proteins, immune cells as well as cytokines. Our research suggested that hAMSCs alleviated aGVHD by promoting gut microbiota normalization and regulating the interactions between the gut microbiota and intestinal barrier, immunity.
Collapse
Affiliation(s)
- Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junhui Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weifeng Pan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Liping Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haitao Sun
- Department of Laboratory Medicine Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Munoz-Torres JR, Martínez-González SB, Lozano-Luján AD, Martínez-Vázquez MC, Velasco-Elizondo P, Garza-Veloz I, Martinez-Fierro ML. Biological properties and surgical applications of the human amniotic membrane. Front Bioeng Biotechnol 2023; 10:1067480. [PMID: 36698632 PMCID: PMC9868191 DOI: 10.3389/fbioe.2022.1067480] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
The amniotic membrane (AM) is the inner part of the placenta. It has been used therapeutically for the last century. The biological proprieties of AM include immunomodulatory, anti-scarring, anti-microbial, pro or anti-angiogenic (surface dependent), and tissue growth promotion. Because of these, AM is a functional tissue for the treatment of different pathologies. The AM is today part of the treatment for various conditions such as wounds, ulcers, burns, adhesions, and skin injury, among others, with surgical resolution. This review focuses on the current surgical areas, including gynecology, plastic surgery, gastrointestinal, traumatology, neurosurgery, and ophthalmology, among others, that use AM as a therapeutic option to increase the success rate of surgical procedures. Currently there are articles describing the mechanisms of action of AM, some therapeutic implications and the use in surgeries of specific surgical areas, this prevents knowing the therapeutic response of AM when used in surgeries of different organs or tissues. Therefore, we described the use of AM in various surgical specialties along with the mechanisms of action, helping to improve the understanding of the therapeutic targets and achieving an adequate perspective of the surgical utility of AM with a particular emphasis on regenerative medicine.
Collapse
|
6
|
Oloff LM, Wilhelm I, Vora NS. Orthobiologic Use in Sports Injuries. Clin Podiatr Med Surg 2023; 40:169-179. [PMID: 36368841 DOI: 10.1016/j.cpm.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Orthobiologics have gained much popularity in recent years but there has not been a large amount of clinical evidence to support their use. In the limited research that has been published, they have been shown to be effective and safe. They can assist in earlier return to activity with the avoidance of surgery. They can also augment current surgical practice to aid in healing and return to sport with few complications. With new medical innovation, there is unfortunately a higher cost for these products. The use of orthobiologics will only grow and so will the need for high-level clinical evidence.
Collapse
Affiliation(s)
- Lawrence M Oloff
- Saint Mary's Medical Center, 450 Stanyan Street, San Francisco, CA 94117, USA.
| | - Isaac Wilhelm
- Saint Mary's Medical Center, 450 Stanyan Street, San Francisco, CA 94117, USA
| | - Nishit S Vora
- 1501 Trousdale Drive, Suite 115, Burlingame, CA 94010, USA
| |
Collapse
|
7
|
Sun Y, Wang TE, Hu Q, Zhang W, Zeng Y, Lai X, Zhang L, Shi M. Systematic comparation of the biological and transcriptomic landscapes of human amniotic mesenchymal stem cells under serum-containing and serum-free conditions. Stem Cell Res Ther 2022; 13:490. [PMID: 36195964 PMCID: PMC9530421 DOI: 10.1186/s13287-022-03179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Human amniotic mesenchymal stem cells (hAMSCs) are splendid cell sources for clinical application in the administration of numerous refractory and relapse diseases. Despite the preferable prospect of serum-free (SF) condition for cell product standardization and pathogenic contamination remission, yet the systematic and detailed impact upon hAMSCs at both cellular and transcriptomic levels is largely obscure. Methods For the purpose, we preconditioned hAMSCs under serum-containing (SC) and SF medium for 48 h and compared the biological signatures and biofunctions from the view of cell morphology, immunophenotypes, multi-lineage differentiation in vitro, cell vitality, cytokine expression, and immunosuppressive effect upon the subpopulations of T lymphocytes, together with the PI3K-AKT-mTOR signaling reactivation upon cell vitality. Meanwhile, we took advantage of RNA-SEQ and bioinformatic analyses to verify the gene expression profiling and genetic variation spectrum in the indicated hAMSCs. Results Compared with those maintained in SC medium, hAMSCs pretreated in SF conditions manifested conservation in cell morphology, immunophenotypes, adipogenic differentiation, and immunosuppressive effect upon the proliferation and activation of most of the T cell subpopulations, but with evaluated cytokine expression (e.g., TGF-β1, IDO1, NOS2) and declined osteogenic differentiation and cell proliferation as well as proapoptotic and apoptotic cells. The declined proliferation in the SF group was efficiently rescued by PI3K-AKT-mTOR signaling reactivation. Notably, hAMSCs cultured in SF and SC conditions revealed similarities in gene expression profiling and variations in genetic mutation at the transcriptome level. Instead, based on the differentially expressed genes and variable shear event analyses, we found those genes were mainly involved in DNA synthesis-, protein metabolism-, and cell vitality-associated biological processes and signaling pathways (e.g., P53, KRAS, PI3K-Akt-mTOR). Conclusions Collectively, our data revealed the multifaceted cellular and molecular properties of hAMSCs under SC and SF conditions, which suggested the feasibility of serum-free culture for the preferable preparation of standardized cell products for hAMSC drug development and clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03179-2.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China.,Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, 650118, China
| | - Ti-Er Wang
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China
| | - Qianwen Hu
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China
| | - Wenxia Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yun Zeng
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China.
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, 650118, China.
| | - Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China. .,Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, 230031, Anhui, China. .,Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
| | - Mingxia Shi
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China.
| |
Collapse
|
8
|
Liu N, Bowen CM, Shoja MM, Castro de Pereira KL, Dongur LP, Saad A, Russell WK, Broderick TC, Fair JH, Fagg WS. Comparative Analysis of Co-Cultured Amniotic Cell-Conditioned Media with Cell-Free Amniotic Fluid Reveals Differential Effects on Epithelial–Mesenchymal Transition and Myofibroblast Activation. Biomedicines 2022; 10:biomedicines10092189. [PMID: 36140291 PMCID: PMC9495976 DOI: 10.3390/biomedicines10092189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Myofibroblast activation is a cellular response elicited by a variety of physiological or pathological insults whereby cells initiate a coordinated response intended to eradicate the insult and then revert back to a basal state. However, an underlying theme in various disease states is persistent myofibroblast activation that fails to resolve. Based on multiple observations, we hypothesized that the secreted factors harvested from co-culturing amniotic stem cells might mimic the anti-inflammatory state that cell-free amniotic fluid (AF) elicits. We optimized an amnion epithelial and amniotic fluid cell co-culture system, and tested this hypothesis in the context of myofibroblast activation. However, we discovered that co-cultured amniotic cell conditioned media (coACCM) and AF have opposing effects on myofibroblast activation: coACCM activates the epithelial–mesenchymal transition (EMT) and stimulates gene expression patterns associated with myofibroblast activation, while AF does the opposite. Intriguingly, extracellular vesicles (EVs) purified from AF are necessary and sufficient to activate EMT and inflammatory gene expression patterns, while the EV-depleted AF potently represses these responses. In summary, these data indicate that coACCM stimulates myofibroblast activation, while AF represses it. We interpret these findings to suggest that coACCM, AF, and fractionated AF represent unique biologics that elicit different cellular responses that are correlated with a wide variety of pathological states, and therefore could have broad utility in the clinic and the lab.
Collapse
Affiliation(s)
- Naiyou Liu
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Charles M. Bowen
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mohammadali M. Shoja
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Laxmi Priya Dongur
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Antonio Saad
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas Christopher Broderick
- Merakris Therapeutics, RTP Frontier, Research Triangle Park, NC 27709, USA
- Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Jeffrey H. Fair
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William Samuel Fagg
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Merakris Therapeutics, RTP Frontier, Research Triangle Park, NC 27709, USA
- Correspondence: ; Tel.: +1-(409)-772-2412; Fax: +1-(409)-747-7364
| |
Collapse
|
9
|
Naeem A, Gupta N, Naeem U, Khan MJ, Elrayess MA, Cui W, Albanese C. A comparison of isolation and culture protocols for human amniotic mesenchymal stem cells. Cell Cycle 2022; 21:1543-1556. [PMID: 35412950 PMCID: PMC9291641 DOI: 10.1080/15384101.2022.2060641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The successful translation of mesenchymal stem cells (MSCs) from bench to bedside is predicated upon their regenerative capabilities and immunomodulatory potential. Many challenges still exist in making MSCs a viable and cost-effective therapeutic option, due in part to the challenges of sourcing MSCs from adult tissues and inconsistencies in the characterization of MSCs. In many cases, adult MSC collection is an invasive procedure, and ethical concerns and age-related heterogeneity further complicate obtaining adult tissue derived MSCs at the scales needed for clinical applications. Alternative adult sources, such as post-partum associated tissues, offer distinct advantages to overcome these challenges. However, successful therapeutic applications rely on the efficient ex-vivo expansion of the stem cells while avoiding any culture-related phenotypic alterations, which requires optimized and standardized isolation, culture, and cell preservation methods. In this review, we have compared the isolation and culture methods for MSCs originating from the human amniotic membrane (hAMSCs) of the placenta to identify the elements that support the extended subculture potential of hAMSCs without compromising their immune-privileged, pluripotent regenerative potential.Abbreviations:AM: Human amniotic membrane; ASCs: Adipose tissue-derived stem cells; BM-MSCs: Bone marrow-mesenchymal stem cells; DMEM: Dulbecco's modified eagle medium; DT: Doubling time; EMEM: Eagle's modified essential medium; ESCM: Embryonic stem cell markers; ESCs: Embryonic stem cells; hAECs: Human amniotic epithelial cells; hAMSCs: Human amniotic mesenchymal stem cells; HLA: Human leukocyte antigen; HM: Hematopoietic markers; IM: Immunogenicity markers; MHC: Major histocompatibility complex; MSCs: Mesenchymal stem cells; MCSM: Mesenchymal cell surface markers; Nanog: NANOG homeobox; Oct: Octamer binding transcription factor 4; P: Passage; PM: Pluripotency markers; STRO-1: Stromal precursor antigen-1; SCP: Subculture potential; Sox-2: Sry-related HMG box gene 2; SSEA-4: Stage-specific embryonic antigen; TRA: Tumor rejection antigen.
Collapse
Affiliation(s)
- Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Health Research Governance Department, Ministry of Public Health, Qatar
| | - Nikita Gupta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Usra Naeem
- Department of Health Professional Technology, University of Lahore, Pakistan
| | | | - Mohamed A Elrayess
- Omics, Biomedical Research Center, Qatar University, Doha, Qatar.,Research and Graduate Studies, College of Pharmacy, Qu Health, Qatar University, Doha, Qatar
| | - Wanxing Cui
- Cell Therapy Manufacturing Facility, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Radiology, Georgetown University Medical Center, Washington, DC, USA.,Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
10
|
Hazarika K, Malik K, Adhyapok A, Debnath S. Lyophilised amniotic membrane in intraoral surgical defects: A prospective clinical study. Ann Maxillofac Surg 2022; 12:5-10. [PMID: 36199459 PMCID: PMC9527846 DOI: 10.4103/ams.ams_152_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction: The incidence of infection and scarring in intraoral raw wounds are decreased when wounds are grafted with biological materials. The favourable results of many studies about amniotic membrane in wound healing inspired us to investigate the effects of lyophilised amniotic membrane in intaoral surgical defects. The aim of this study was to evaluate the healing of oral mucosal defects after application of lyophilised amniotic membrane (AM). Methods: Fifteen patients with oral precancerous lesions were included in this study. Lyophilised amniotic membrane was applied to the intraoral surgical defect, after wide excision of the lesion. The effectiveness of the lyophilised AM was evaluated by scoring the following parameters operability, haemostatic status, pain, feeding situation, epithelialisation, change in mouth opening, mucosal suppleness and safety. Results: The lyophilised amniotic membrane has been found to be effective in this study after evaluation of the parameters. No infection or allergic reaction was noticed after application of the lyophilised amniotic membrane in intraoral surgical defects. Discussion: In our study, the size and site of the surgical defect influenced the scar contracture so we suggest lyophilised AM may not prevent scarring for extensive surgical defects. All other findings regarding the effectiveness of lyophilised amniotic membrane in oral wound healing are in accordance with the findings of other studies conducted on hyperdry and cryopreserved AM. Conclusion: Within the limitations of the study, the results showed that the lyophilised amniotic membrane is a cost effective material for immediate coverage of the intraoral surgical defects.
Collapse
|
11
|
Deng Z, Zhou J, Mu X, Gu J, Li X, Shao Q, Li J, Yang C, Han G, Zhao J, Xia Y. Regulatory T Cells Improved the Anti-cirrhosis Activity of Human Amniotic Mesenchymal Stem Cell in the Liver by Regulating the TGF-β-Indoleamine 2,3-Dioxygenase Signaling. Front Cell Dev Biol 2021; 9:737825. [PMID: 34712665 PMCID: PMC8545991 DOI: 10.3389/fcell.2021.737825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a progression stage of chronic liver disease, while current therapies cannot cure or attune cirrhosis effectively. Human amniotic mesenchymal stromal cell (hAMSC) presented immunoregulatory and tissue repairability of multiple illnesses. Regulatory T cells (Treg) had been proved to be functional in reducing immune cell activity. We showed that co-infusion of hAMSC and Treg prevented mild liver fibrosis comparing with hAMSC or Treg alone group. In vitro study indicated that the addition of Treg or the supernatant of Treg improved the hepatocyte growth factor (HGF) secreting and cell differentiation ability of hAMSC. Reduction of TGF-β significantly decreased the HGF secreting and differentiation of hAMSC. Multiple signal neutralizers were added to the culture to understand further the mechanism, which showed that 1-MT, the suppressor of Indoleamine 2,3-dioxygenase (IDO), was involved in the effect of TGF-β in regulating hAMSC. Depletion of TGF-β or IDO signaling successfully abolished the effect of Treg in improving hAMSC's function both in vitro and vivo. Finally, our result indicated that Treg improved the function of hAMSC by regulating the TGF-β-IDO signaling and co-infusion of hAMSC and Treg provided a promising approach for treating liver cirrhosis.
Collapse
Affiliation(s)
- Zhenhua Deng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Xiaoxin Mu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Xiangyu Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Qing Shao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Jinyang Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Chao Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Guoyong Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Jie Zhao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Liver Cancer Institute, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Gao Y, Li W, Bu X, Xu Y, Cai S, Zhong J, Du M, Sun H, Huang L, He Y, Hu X, Liu Q, Jin H, Wang Q, Ping B. Human Amniotic Mesenchymal Stem Cells Inhibit aGVHD by Regulating Balance of Treg and T Effector Cells. J Inflamm Res 2021; 14:3985-3999. [PMID: 34429630 PMCID: PMC8378934 DOI: 10.2147/jir.s323054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background Acute graft versus host disease (aGVHD) remains a leading cause of transplant-related mortality following allogeneic haematopoietic cell transplantation (allo-HCT). Human amniotic mesenchymal stem cells (hAMSCs) are a novel mesenchymal stem cells (MSCs), which have stronger proliferation and immunomodulatory ability compared with bone marrow mesenchymal stem cells (BM-MSCs). Besides, as the amniotic membrane is often treated as medical waste after delivery, hAMSCs can be obtained conveniently and noninvasively. The aim of this study was to explore the therapeutic efficacy and underlying mechanisms of hAMSCs transplantation for the humanized aGVHD mouse model. Methods We established a humanized aGVHD mouse model by transplanting human peripheral blood mononuclear cells (PBMCs) into NOD-PrkdcscidIL2rγnull (NPG) mice, human amniotic membrane collected from discarded placenta of healthy pregnant women after delivery and hAMSCs were extracted from amniotic membrane and expanded in vitro. Mice were divided into untreated group (Control), aGVHD group (aGVHD), and hAMSCs treatment group (aGVHD+hAMSCs), the hAMSCs labeled with GFP were administered to aGVHD mice to explore the homing ability of hAMSCs. T effector and regulatory T cells (Tregs) levels and cytokines of each group in target organs were detected by flow cytometry and cytometric bead array (CBA), respectively. Results We successfully established a humanized aGVHD mouse model using NPG mice. The hAMSCs have the ability to inhibit aGVHD in this mouse model through reduced villous blunting and lymphocyte infiltration of the gut while reducing inflammatory edema, tissue destruction and lymphocyte infiltration into the parenchyma of the liver and lung. hAMSCs suppressed CD3+CD4+ T and CD3+CD8+ T cell expression and increased the proportion of Tregs, and besides, hAMSCs can reduce the levels of IL-17A, INF-γ, and TNF in aGVHD target organs. Conclusion The NPG murine environment was capable of activating human T cells to produce aGVHD pathology to mimic aGVHD as in humans. The hAMSCs controlled aGVHD by decreasing inflammatory cytokine secretion within target organs by modulating the balance of Tregs and T effector cells in humanized mice.
Collapse
Affiliation(s)
- Ya Gao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Weiru Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ying Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shengchun Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jinman Zhong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Meixue Du
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Haitao Sun
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yongjian He
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Qian Wang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China.,Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Baohong Ping
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| |
Collapse
|