1
|
Ju LS, Morey T, Gravenstein N, Setlow B, Seubert CN, Martynyuk AE. Effects of Cohabitation on Neurodevelopmental Outcomes in Rats Discordant for Neonatal Exposure to Sevoflurane. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100359. [PMID: 39282654 PMCID: PMC11400603 DOI: 10.1016/j.bpsgos.2024.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 09/19/2024] Open
Abstract
Background Having a sibling with autism spectrum disorder is a risk factor for autism spectrum disorder. We used a rat model in which the general anesthetic sevoflurane (SEVO) induces autism spectrum disorder-like neurodevelopmental abnormalities to test whether they can be transmitted via cohabitation. Methods Male rat pups from several litters were mixed and randomized to 3 new litter types: SEVO-exposed (SEVO), SEVO-unexposed (control), and equal numbers of SEVO-exposed and SEVO-unexposed (MIXED). After weaning, rats in experiment 1 were housed with littermates in SEVO, control, and MIXED (MIXED-exposed and MIXED-unexposed) pairs. In experiment 2, MIXED-exposed and MIXED-unexposed rats were paired with an unfamiliar naïve cagemate. Corticosterone levels, gene expression, central inflammatory markers (experiment 1), and behavior and corticosterone levels (experiment 2) were assessed in adulthood. Results In experiment 1, compared with control rats, SEVO rats exhibited abnormalities in the hypothalamic-pituitary-adrenal axis, inflammatory markers, oxytocin, arginine vasopressin, and DNA methylation systems. Almost all these measures in MIXED-exposed and MIXED-unexposed rats were statistically indistinguishable from and similar to those in SEVO or control rats, with most measures in MIXED rats being similar to those in SEVO rats. Experiment 2 showed that pairing with unfamiliar, naïve rats after weaning caused MIXED-unexposed and MIXED-exposed rats' behavior to be no different from that of control and SEVO rats, respectively; however, the 2 groups of MIXED rats also did not differ from each other. Conclusions These findings suggest that neurodevelopmental abnormalities can be transmitted to otherwise healthy individuals through interactions during cohabitation; however, subsequent pairing with unfamiliar, naïve cohabitants may weaken this interaction effect.
Collapse
Affiliation(s)
- Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Timothy Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Nikolaus Gravenstein
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Barry Setlow
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, Florida
| | - Christoph N Seubert
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Anatoly E Martynyuk
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
2
|
Ju LS, Morey TE, Seubert CN, Martynyuk AE. Intergenerational Perioperative Neurocognitive Disorder. BIOLOGY 2023; 12:biology12040567. [PMID: 37106766 PMCID: PMC10135810 DOI: 10.3390/biology12040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
Accelerated neurocognitive decline after general anesthesia/surgery, also known as perioperative neurocognitive disorder (PND), is a widely recognized public health problem that may affect millions of patients each year. Advanced age, with its increasing prevalence of heightened stress, inflammation, and neurodegenerative alterations, is a consistent contributing factor to the development of PND. Although a strong homeostatic reserve in young adults makes them more resilient to PND, animal data suggest that young adults with pathophysiological conditions characterized by excessive stress and inflammation may be vulnerable to PND, and this altered phenotype may be passed to future offspring (intergenerational PND). The purpose of this narrative review of data in the literature and the authors' own experimental findings in rodents is to draw attention to the possibility of intergenerational PND, a new phenomenon which, if confirmed in humans, may unravel a big new population that may be affected by parental PND. In particular, we discuss the roles of stress, inflammation, and epigenetic alterations in the development of PND. We also discuss experimental findings that demonstrate the effects of surgery, traumatic brain injury, and the general anesthetic sevoflurane that interact to induce persistent dysregulation of the stress response system, inflammation markers, and behavior in young adult male rats and in their future offspring who have neither trauma nor anesthetic exposure (i.e., an animal model of intergenerational PND).
Collapse
Affiliation(s)
- Ling-Sha Ju
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Timothy E Morey
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Christoph N Seubert
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Anatoly E Martynyuk
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
- Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Ju LS, Zhu J, Brant JO, Morey TE, Gravenstein N, Seubert CN, Vasilopoulos T, Setlow B, Martynyuk AE. Intergenerational Perioperative Neurocognitive Disorder in Young Adult Male Rats with Traumatic Brain Injury. Anesthesiology 2023; 138:388-402. [PMID: 36637480 PMCID: PMC10411496 DOI: 10.1097/aln.0000000000004496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND The authors tested the hypothesis that the effects of traumatic brain injury, surgery, and sevoflurane interact to induce neurobehavioral abnormalities in adult male rats and in their offspring (an animal model of intergenerational perioperative neurocognitive disorder). METHODS Sprague-Dawley male rats (assigned generation F0) underwent a traumatic brain injury on postnatal day 60 that involved craniectomy (surgery) under 3% sevoflurane for 40 min followed by 2.1% sevoflurane for 3 h on postnatal days 62, 64, and 66 (injury group). The surgery group had craniectomy without traumatic brain injury, whereas the sevoflurane group had sevoflurane only. On postnatal day 90, F0 males and control females were mated to generate offspring (assigned generation F1). RESULTS Acutely, F0 injury rats exhibited the greatest increases in serum corticosterone and interleukin-1β and -6, and activation of the hippocampal microglia. Long-term, compared to controls, F0 injury rats had the most exacerbated corticosterone levels at rest (mean ± SD, 2.21 ± 0.64 vs. 7.28 ± 1.95 ng/ml, n = 7 - 8; P < 0.001) and 10 min after restraint (133.12 ± 33.98 vs. 232.83 ± 40.71 ng/ml, n = 7 - 8; P < 0.001), increased interleukin-1β and -6, and reduced expression of hippocampal glucocorticoid receptor (Nr3c1; 0.53 ± 0.08 fold change relative to control, P < 0.001, n = 6) and brain-derived neurotrophic factor genes. They also exhibited greater behavioral deficiencies. Similar abnormalities were evident in their male offspring, whereas F1 females were not affected. The reduced Nr3c1 expression in F1 male, but not female, hippocampus was accompanied by corresponding Nr3c1 promoter hypermethylated CpG sites in F0 spermatozoa and F1 male, but not female, hippocampus. CONCLUSIONS These findings in rats suggest that young adult males with traumatic brain injury are at an increased risk of developing perioperative neurocognitive disorder, as are their unexposed male but not female offspring. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Ling-Sha Ju
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, Florida
| | - Jiepei Zhu
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, Florida
| | - Jason O Brant
- Department of Biostatistics, University of Florida, College of Medicine, Gainesville, Florida
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, Florida
| | - Nikolaus Gravenstein
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, Florida
| | - Christoph N Seubert
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, Florida
| | - Terrie Vasilopoulos
- Departments of Anesthesiology, Orthopedic Surgery and Sports Medicine, University of Florida, College of Medicine, Gainesville, Florida
| | - Barry Setlow
- Department of Psychiatry and the McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida
| | - Anatoly E Martynyuk
- Department of Anesthesiology and the McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida
| |
Collapse
|
4
|
Fu N, Wang Y, Zhu R, Li N, Zeng S, Miao M, Yang Y, Sun M, Zhang J. Bicuculline and Bumetanide Attenuate Sevoflurane-Induced Impairment of Myelination and Cognition in Young Mice. ACS Chem Neurosci 2023; 14:1146-1155. [PMID: 36802490 DOI: 10.1021/acschemneuro.2c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Sevoflurane (Sevo) is one of the most commonly used general anesthetics for infants and young children. We investigated whether Sevo impairs neurological functions, myelination, and cognition via the γ-aminobutyric acid A receptor (GABAAR) and Na+-K+-2Cl- cotransporter (NKCC1) in neonatal mice. On postnatal days 5-7, mice were exposed to 3% Sevo for 2 h. On postnatal day 14, mouse brains were dissected, and oligodendrocyte precursor cell line level lentivirus knockdown of GABRB3, immunofluorescence, and transwell migration assays were performed. Finally, behavioral tests were conducted. Multiple Sevo exposure groups exhibited increased neuronal apoptosis levels and decreased neurofilament protein levels in the mouse cortex compared with the control group. Sevo exposure inhibited the proliferation, differentiation, and migration of the oligodendrocyte precursor cells, thereby affecting their maturation process. Electron microscopy revealed that Sevo exposure reduced myelin sheath thickness. The behavioral tests showed that multiple Sevo exposures induced cognitive impairment. GABAAR and NKCC1 inhibition provided protection against Sevo-induced neurotoxicity and cognitive dysfunction. Thus, bicuculline and bumetanide can protect against Sevo-induced neuronal injury, myelination impairment, and cognitive dysfunction in neonatal mice. Furthermore, GABAAR and NKCC1 may be mediators of Sevo-induced myelination impairment and cognitive dysfunction.
Collapse
Affiliation(s)
- Ningning Fu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Ruilou Zhu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Ningning Li
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shuang Zeng
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mengrong Miao
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yitian Yang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
5
|
Yang Z, Tong Y, Brant JO, Li N, Ju LS, Morey TE, Gravenstein N, Setlow B, Zhang J, Martynyuk AE. Dexmedetomidine Diminishes, but Does Not Prevent, Developmental Effects of Sevoflurane in Neonatal Rats. Anesth Analg 2022; 135:877-887. [PMID: 35759382 PMCID: PMC9481710 DOI: 10.1213/ane.0000000000006125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Sevoflurane (SEVO) increases neuronal excitation in neonatal rodent brains through alteration of gamma aminobutyric acid (GABA)(A) receptor signaling and increases corticosterone release. These actions may contribute to mechanisms that initiate the anesthetic's long-term neuroendocrine and neurobehavioral effects. Dexmedetomidine (DEX), a non-GABAergic α2-adrenergic receptor agonist, is likely to counteract SEVO-induced neuronal excitation. We investigated how DEX pretreatment may alter the neurodevelopmental effects induced by SEVO in neonatal rats. METHODS Postnatal day (P) 5 Sprague-Dawley male rats received DEX (25 µg/kg, intraperitoneal) or vehicle before exposure to 2.1% SEVO for 6 hours (the DEX + SEVO and SEVO groups, respectively). Rats in the DEX-only group received DEX without exposure to SEVO. A subcohort of P5 rats was used for electroencephalographic and serum corticosterone measurements. The remaining rats were sequentially evaluated in the elevated plus maze on P80, prepulse inhibition of the acoustic startle response on P90, Morris water maze (MWM) starting on P100, and for corticosterone responses to physical restraint for 30 minutes on P120, followed by assessment of epigenomic DNA methylation patterns in the hippocampus. RESULTS Acutely, DEX depressed SEVO-induced electroencephalogram-detectable seizure-like activity (mean ± SEM, SEVO versus DEX + SEVO, 33.1 ± 5.3 vs 3.9 ± 5.3 seconds, P < .001), but it exacerbated corticosterone release (SEVO versus DEX + SEVO, 169.935 ± 20.995 versus 280.853 ± 40.963 ng/mL, P = .043). DEX diminished, but did not fully abolish, SEVO-induced corticosterone responses to restraint (control: 11625.230 ± 877.513, SEVO: 19363.555 ± 751.325, DEX + SEVO: 15012.216 ± 901.706, DEX-only: 12497.051 ± 999.816; F[3,31] = 16.878, P < .001) and behavioral deficiencies (time spent in the target quadrant of the MWM: control: 31.283% ± 1.722%, SEVO: 21.888% ± 2.187%, DEX + SEVO: 28.617% ± 1.501%, DEX-only: 31.339% ± 3.087%; F[3,67] = 3.944, P = .012) in adulthood. Of the 391 differentially methylated genes in the SEVO group, 303 genes in the DEX + SEVO group had DNA methylation patterns that were not different from those in the control group (ie, they were normal). DEX alone did not cause acute or long-term functional abnormalities. CONCLUSIONS This study suggests that the ability of DEX to depress SEVO-induced neuronal excitation, despite increasing corticosterone release, is sufficient to weaken mechanisms leading to long-term neuroendocrine/neurobehavioral abnormalities. DEX may prevent changes in DNA methylation in the majority of genes affected by SEVO, epigenetic modifications that could predict abnormalities in a wide range of functions.
Collapse
Affiliation(s)
- Zhengbo Yang
- From the Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Yuanyuan Tong
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | | | - Ningtao Li
- From the Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Nikolaus Gravenstein
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
- McKnight Brain Institute
| | - Barry Setlow
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, Florida
| | - Jiaqiang Zhang
- From the Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anatoly E Martynyuk
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
- McKnight Brain Institute
| |
Collapse
|
6
|
Zeng S, Zhu R, Wang Y, Yang Y, Li N, Fu N, Sun M, Zhang J. Role of GABA A receptor depolarization-mediated VGCC activation in sevoflurane-induced cognitive impairment in neonatal mice. Front Cell Neurosci 2022; 16:964227. [PMID: 36176629 PMCID: PMC9514857 DOI: 10.3389/fncel.2022.964227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background In neonatal mice, anesthesia with sevoflurane depolarizes the GABA Type A receptor (GABAAR), which leads to cognitive impairment. Calcium accumulation in neurons can lead to neurotoxicity. Voltage-gated calcium channels (VGCCs) can increase intracellular calcium concentration under isoflurane and hypoxic conditions. The underlying mechanisms remain largely unknown. Methods Six-day-old mice were anesthetized with 3% sevoflurane for 2 h/day for 3 days. The Y-Maze, new object recognition (NOR) test, the Barnes maze test, immunoassay, immunoblotting, the TUNEL test, and Golgi-Cox staining were used to assess cognition, calcium concentration, inflammatory response, GABAAR activation, VGCC expression, apoptosis, and proliferation of hippocampal nerve cells in mice and HT22 cells. Results Compared with the control group, mice in the sevoflurane group had impaired cognitive function. In the sevoflurane group, the expression of Gabrb3 and Cav1.2 in the hippocampal neurons increased (p < 0.01), the concentration of calcium ions increased (p < 0.01), inflammatory reaction and apoptosis of neurons increased (p < 0.01), the proliferation of neurons in the DG area decreased (p < 0.01), and dendritic spine density decreased (p < 0.05). However, the inhibition of Gabrb3 and Cav1.2 alleviated cognitive impairment and reduced neurotoxicity. Conclusions Sevoflurane activates VGCCs by inducing GABAAR depolarization, resulting in cognitive impairment. Activated VGCCs cause an increase in intracellular calcium concentration and an inflammatory response, resulting in neurotoxicity and cognitive impairment.
Collapse
Affiliation(s)
- Shuang Zeng
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Ruilou Zhu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yitian Yang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ningning Li
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Ningning Fu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Sun M, Xie Z, Zhang J, Leng Y. Mechanistic insight into sevoflurane-associated developmental neurotoxicity. Cell Biol Toxicol 2022; 38:927-943. [PMID: 34766256 PMCID: PMC9750936 DOI: 10.1007/s10565-021-09677-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
With the development of technology, more infants receive general anesthesia for surgery, other interventions, or clinical examination at an early stage after birth. However, whether general anesthetics can affect the function and structure of the developing infant brain remains an important, complex, and controversial issue. Sevoflurane is the most-used anesthetic in infants, but this drug is potentially neurotoxic. Short or single exposure to sevoflurane has a weak effect on cognitive function, while long or repeated exposure to general anesthetics may cause cognitive dysfunction. This review focuses on the mechanisms by which sevoflurane exposure during development may induce long-lasting undesirable effects on the brain. We review neural cell death, neural cell damage, impaired assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects as important mechanisms for sevoflurane-induced developmental neurotoxicity. More advanced technologies and methods should be applied to determine the underlying mechanism(s) and guide prevention and treatment of sevoflurane-induced neurotoxicity. 1. We discuss the mechanisms underlying sevoflurane-induced developmental neurotoxicity from five perspectives: neural cell death, neural cell damage, assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects.
2. Tau phosphorylation, IL-6, and mitochondrial dysfunction could interact with each other to cause a nerve damage loop.
3. miRNAs and lncRNAs are associated with sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Mingyang Sun
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China 730000 ,Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China 450003
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China 450003
| | - Yufang Leng
- Day Surgery Center, The First Hospital of Lanzhou University, Lanzhou, Gansu People’s Republic of China 730000
| |
Collapse
|
8
|
Martynyuk AE, Ju LS, Morey TE. The potential role of stress and sex steroids in heritable effects of sevoflurane. Biol Reprod 2021; 105:735-746. [PMID: 34192761 DOI: 10.1093/biolre/ioab129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Most surgical procedures require general anesthesia, which is a reversible deep sedation state lacking all perception. The induction of this state is possible because of complex molecular and neuronal network actions of general anesthetics (GAs) and other pharmacological agents. Laboratory and clinical studies indicate that the effects of GAs may not be completely reversible upon anesthesia withdrawal. The long-term neurocognitive effects of GAs, especially when administered at the extremes of ages, are an increasingly recognized health concern and the subject of extensive laboratory and clinical research. Initial studies in rodents suggest that the adverse effects of GAs, whose actions involve enhancement of GABA type A receptor activity (GABAergic GAs), can also extend to future unexposed offspring. Importantly, experimental findings show that GABAergic GAs may induce heritable effects when administered from the early postnatal period to at least young adulthood, covering nearly all age groups that may have children after exposure to anesthesia. More studies are needed to understand when and how the clinical use of GAs in a large and growing population of patients can result in lower resilience to diseases in the even larger population of their unexposed offspring. This minireview is focused on the authors' published results and data in the literature supporting the notion that GABAergic GAs, in particular sevoflurane, may upregulate systemic levels of stress and sex steroids and alter expressions of genes that are essential for the functioning of these steroid systems. The authors hypothesize that stress and sex steroids are involved in the mediation of sex-specific heritable effects of sevoflurane.
Collapse
Affiliation(s)
- Anatoly E Martynyuk
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
9
|
Wang HLV, Forestier S, Corces VG. Exposure to sevoflurane results in changes of transcription factor occupancy in sperm and inheritance of autism. Biol Reprod 2021; 105:705-719. [PMID: 33982067 DOI: 10.1093/biolre/ioab097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
One in 54 children in the U.S. is diagnosed with Autism Spectrum Disorder (ASD). De novo germline and somatic mutations cannot account for all cases of ASD, suggesting that epigenetic alterations triggered by environmental exposures may be responsible for a subset of ASD cases. Human and animal studies have shown that exposure of the developing brain to general anesthetic (GA) agents can trigger neurodegeneration and neurobehavioral abnormalities but the effects of general anesthetics on the germ line have not been explored in detail. We exposed pregnant mice to sevoflurane during the time of embryonic development when the germ cells undergo epigenetic reprogramming and found that more than 38% of the directly exposed F1 animals exhibit impairments in anxiety and social interactions. Strikingly, 44-47% of the F2 and F3 animals, which were not directly exposed to sevoflurane, show the same behavioral problems. We performed ATAC-seq and identified more than 1200 differentially accessible sites in the sperm of F1 animals, 69 of which are also present in the sperm of F2 animals. These sites are located in regulatory regions of genes strongly associated with ASD, including Arid1b, Ntrk2, and Stmn2. These findings suggest that epimutations caused by exposing germ cells to sevoflurane can lead to ASD in the offspring, and this effect can be transmitted through the male germline inter and trans-generationally.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA 30322, USA
| | - Samantha Forestier
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA 30322, USA
| |
Collapse
|