1
|
Kuş MM, Düzenli ZB, Öztürk P, Kurutas EB. Evaluation of the relationship between serum G protein-coupled estrogen receptors (GPER-1) levels and the severity and duration of the disease in patients with androgenetic alopecia: A case-control study. Arch Dermatol Res 2024; 316:658. [PMID: 39369050 DOI: 10.1007/s00403-024-03380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 10/07/2024]
Abstract
There are studies revealing the effects of estrogen receptors alpha (α) and beta (β) on hair follicles. However, the effects of G protein-coupled estrogen receptors (GPER-1) on hair follicles have not been elucidated. This study aims to evaluate the relationship between serum GPER-1 levels and the severity and duration of the disease in patients with androgenetic alopecia (AGA). The study included 81 patients with AGA aged 18 to 50 years (22 men and 19 women with an onset of AGA more than 5 years, and 20 men and 20 women with an onset of AGA less than 5 years) and 40 healthy controls (20 men, 20 women). The mean age of participants with AGA was 29.12 ± 8.15 (18-50), and the mean age of the control group was 25.21± 4.71 (19-42). Serum GPER-1 levels were measured, and the relationship between GPER-1 levels and duration of the disease, severity of the disease, and sex was statistically evaluated. The serum level of GPER-1 was significantly higher in patients with AGA as compared to the control group (p < 0.001). A negative correlation was found between serum GPER-1 levels and the duration of the disease in both men and women (p < 0.001, r = 0.793; p < 0.001, r = 0.711, respectively). There was a significant relationship between serum GPER-1 levels and the severity of the disease in both men and women (p = 0.003; p = 0.002, respectively). Additionally, a significant difference in GPER-1 levels was noted between male and female patients with AGA (p = 0.001). However, no statistically significant relationship was identified between GPER-1 levels and estrogen levels (p = 0.097). The higher levels of GPER-1 in patients with AGA compared to the control group, and the significant relationship between GPER-1 levels and both the duration and severity of the disease, suggest an estrogen-independent role of GPER-1 in the pathogenesis of AGA. The fact that GPER-1 levels are high in the early stages of AGA when inflammation is prominent suggests that treatments targeting these receptors may be effective at this stage.
Collapse
Affiliation(s)
- Mine Müjde Kuş
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey.
| | - Zahide Beril Düzenli
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey
| | - Perihan Öztürk
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey
| | - Ergul Belge Kurutas
- Kahramanmaraş Sütçü İmam University School of Medicine, Department of Biochemistry, Kahramanmaras, 46100, Turkey
| |
Collapse
|
2
|
Lappano R, Maggiolini M, Mallet C, Jacquot Y. Commentary: harnessing the first peptidic modulator of the estrogen receptor GPER. Front Pharmacol 2024; 15:1413058. [PMID: 38751778 PMCID: PMC11094232 DOI: 10.3389/fphar.2024.1413058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Christophe Mallet
- Institut National de la Santé et de la Recherche Médicale (INSERM), NEURO-DOL Basics and Clinical Pharmacology of Pain, Université Clermont Auvergne, Clermont-Ferrand, France
- Faculty of Medicine, ANALGESIA Institute, Clermont-Ferrand, France
| | - Yves Jacquot
- Faculty of Pharmacy of Paris, Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), Centre National de la Recherche Scientifique (CNRS) UMR 8038, INSERM U1268, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Jouffre B, Acramel A, Jacquot Y, Daulhac L, Mallet C. GPER involvement in inflammatory pain. Steroids 2023; 200:109311. [PMID: 37734514 DOI: 10.1016/j.steroids.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Chronic pain is a worldwide refractory health disease that causes major financial and emotional burdens and that is devastating for individuals and society. One primary source of pain is inflammation. Current treatments for inflammatory pain are weakly effective, although they usually replace analgesics, such as opioids and non-steroidal anti-inflammatory drugs, which display serious side effects. Emerging evidence indicates that the membrane G protein-coupled estrogen receptor (GPER) may play an important role in the regulation of inflammation and pain. Herein, we focus on the consequences of pharmacological and genetic GPER modulation in different animal models of inflammatory pain. We also provide a brief overview of the putative mechanisms including the direct action of GPER on pain transmission and inflammation.
Collapse
Affiliation(s)
- Baptiste Jouffre
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France
| | - Alexandre Acramel
- CiTCoM, CNRS - UMR 8038, INSERM U1268, Faculty of Pharmacy of Paris, University Paris Cité, 75270 Paris Cedex 06, France; Department of Pharmacy, Institut Curie, 75248 Paris Cedex 06, France
| | - Yves Jacquot
- CiTCoM, CNRS - UMR 8038, INSERM U1268, Faculty of Pharmacy of Paris, University Paris Cité, 75270 Paris Cedex 06, France
| | - Laurence Daulhac
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France
| | - Christophe Mallet
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France.
| |
Collapse
|
4
|
Li LH, Ling DD, Lin H, Wang ZC, Sun ZR, Zhang YQ, Yang L, Zhang J, Cao H. Ovariectomy induces hyperalgesia accompanied by upregulated estrogen receptor α and protein kinase B in the rat spinal cord. Physiol Behav 2023; 271:114342. [PMID: 37673233 DOI: 10.1016/j.physbeh.2023.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/20/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Hormone supplementation is one of the common therapies for menopause-related disorders. Among different tools, the ovariectomy (OVX) rodents are widely accepted as an appropriate menopausal pain model. Our previous study has showed that OVX produces a significant pain facilitation in both acute pain and tonic pain, however, the underlying mechanisms remain unclear. In this study, we examined the effects of OVX treatment and estradiol (E2) supplementation on formalin-induced nociceptive responses, and explored the associated spinal mechanisms. Female Sprague-Dawley rats underwent bilateral OVX, and E2 supplementation was given subcutaneously from the 5th week after surgery (30 μg/day for 7 days). Our results showed that formalin-induced nociceptive behaviors did not differ between diestrus and proestrus stages of the estrous in intact rats. However, OVX exacerbated formalin-evoked inflammatory pain, especially in the late phase at 4-5 weeks but not 2 weeks post-surgery. E2 supplementation significantly reversed the OVX-triggered hyperalgesia. Double immunofluorescence staining revealed that both ERα and ERβ in the spinal dorsal horn were co-labeled with the neuronal markers, but not with markers of astrocytes or microglia. The spinal ERα (but not ERβ) expression significantly increased in the OVX group, which was reversed by E2 supplementation. Moreover, the OVX individuals showed an increased protein kinase B (AKT) level in lumbar spinal cord, and E2 supplementation diminished the AKT expression in OVX rats. Finally, intrathecal injection Wortmannin, an inhibitor for AKT signaling, effectively reduced the nociceptive behaviors in the late phase and the number of c-fos positive cells. Together, our findings indicate that E2 supplementation alleviates the OVX-induced hyperalgesia, which might be involved in spinal ERα and AKT mechanisms.
Collapse
Affiliation(s)
- Li-Hong Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, Shanghai, China
| | - Dan-Dan Ling
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, Shanghai, China
| | - Hong Lin
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhe-Chen Wang
- Department of Psychology, School of Social Development and Public Policy, Fudan University, Shanghai 200032, China
| | - Zhi-Rong Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, Shanghai, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Liu Yang
- Shanghai Dunlu Biomedical Technology Co. Ltd. Shanghai 201611, China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, Shanghai, China.
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Promising Perspectives of the Antiproliferative GPER Inverse Agonist ERα17p in Breast Cancer. Cells 2023; 12:cells12040653. [PMID: 36831322 PMCID: PMC9954065 DOI: 10.3390/cells12040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The estrogen receptor α (ERα) corresponds to a large platform in charge of the recruitment of a panel of molecules, including steroids and related heterocyclic derivatives, oligonucleotides, peptides and proteins. Its 295-311 region is particularly targeted by post-translational modifications, suggesting that it could be crucial for the control of transcription. In addition to anionic phospholipids, the ERα 295-311 fragment interacts with Ca2+-calmodulin, the heat shock protein 70 (Hsp70), ERα and possibly importins. More recently, we have demonstrated that it is prone to interacting with the G-protein-coupled estrogen receptor (GPER). In light of these observations, the pharmacological profile of the corresponding peptide, namely ERα17p, has been explored in breast cancer cells. Remarkably, it exerts apoptosis through GPER and induces a significant decrease (more than 50%) of the size of triple-negative breast tumor xenografts in mice. Herein, we highlight not only the promising therapeutic perspectives in the use of the first peptidic GPER modulator ERα17p, but also the opportunity to modulate GPER for clinical purposes.
Collapse
|
6
|
Identification of a human estrogen receptor α tetrapeptidic fragment with dual antiproliferative and anti-nociceptive action. Sci Rep 2023; 13:1326. [PMID: 36693877 PMCID: PMC9873809 DOI: 10.1038/s41598-023-28062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
The synthetic peptide ERα17p (sequence: PLMIKRSKKNSLALSLT), which corresponds to the 295-311 region of the human estrogen receptor α (ERα), induces apoptosis in breast cancer cells. In mice and at low doses, it promotes not only the decrease of the size of xenografted triple-negative human breast tumors, but also anti-inflammatory and anti-nociceptive effects. Recently, we have shown that these effects were due to its interaction with the seven-transmembrane G protein-coupled estrogen receptor GPER. Following modeling studies, the C-terminus of this peptide (sequence: NSLALSLT) remains compacted at the entrance of the GPER ligand-binding pocket, whereas its N-terminus (sequence: PLMI) engulfs in the depth of the same pocket. Thus, we have hypothesized that the PLMI motif could support the pharmacological actions of ERα17p. Here, we show that the PLMI peptide is, indeed, responsible for the GPER-dependent antiproliferative and anti-nociceptive effects of ERα17p. By using different biophysical approaches, we demonstrate that the NSLALSLT part of ERα17p is responsible for aggregation. Overall, the tetrapeptide PLMI, which supports the action of the parent peptide ERα17p, should be considered as a hit for the synthesis of new GPER modulators with dual antiproliferative and anti-nociceptive actions. This study highlights also the interest to modulate GPER for the control of pain.
Collapse
|
7
|
Zaman R, Islam RA, Chowdhury EH. Evolving therapeutic proteins to precisely kill cancer cells. J Control Release 2022; 351:779-804. [DOI: 10.1016/j.jconrel.2022.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|
8
|
Choi Y, Min HY, Hwang J, Jo YH. Magel2 knockdown in hypothalamic POMC neurons innervating the medial amygdala reduces susceptibility to diet-induced obesity. Life Sci Alliance 2022; 5:5/11/e202201502. [PMID: 36007929 PMCID: PMC9418835 DOI: 10.26508/lsa.202201502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Hyperphagia and obesity profoundly affect the health of children with Prader-Willi syndrome (PWS). The Magel2 gene among the genes in the Prader-Willi syndrome deletion region is expressed in proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC). Knockout of the Magel2 gene disrupts POMC neuronal circuits and functions. Here, we report that loss of the Magel2 gene exclusively in ARCPOMC neurons innervating the medial amygdala (MeA) causes a reduction in body weight in both male and female mice fed with a high-fat diet. This anti-obesity effect is associated with an increased locomotor activity. There are no significant differences in glucose and insulin tolerance in mice without the Magel2 gene in ARCPOMC neurons innervating the MeA. Plasma estrogen levels are higher in female mutant mice than in controls. Blockade of the G protein-coupled estrogen receptor (GPER), but not estrogen receptor-α (ER-α), reduces locomotor activity in female mutant mice. Hence, our study provides evidence that knockdown of the Magel2 gene in ARCPOMC neurons innervating the MeA reduces susceptibility to diet-induced obesity with increased locomotor activity through activation of central GPER.
Collapse
Affiliation(s)
- Yuna Choi
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY, USA.,Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA
| | - Hyeon-Young Min
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY, USA.,Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA
| | - Jiyeon Hwang
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY, USA.,Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA
| | - Young-Hwan Jo
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY, USA .,Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, NY, USA
| |
Collapse
|
9
|
Acramel A, Jacquot Y. Deciphering of a Putative GPER Recognition Domain in ERα and ERα36. Front Endocrinol (Lausanne) 2022; 13:943343. [PMID: 35846328 PMCID: PMC9279910 DOI: 10.3389/fendo.2022.943343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Alexandre Acramel
- CiTCoM laboratory, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8038, Institut National de la Santé et de la Recherche Médicale (INSERM) U1268, Faculty of Pharmacy of Paris, Université Paris Cité, Paris, France
- Department of Pharmacy, Institut Curie, Paris, France
| | - Yves Jacquot
- CiTCoM laboratory, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8038, Institut National de la Santé et de la Recherche Médicale (INSERM) U1268, Faculty of Pharmacy of Paris, Université Paris Cité, Paris, France
- *Correspondence: Yves Jacquot,
| |
Collapse
|