1
|
Ponomarenko I, Pasenov K, Churnosova M, Sorokina I, Aristova I, Churnosov V, Ponomarenko M, Reshetnikova Y, Reshetnikov E, Churnosov M. Obesity-Dependent Association of the rs10454142 PPP1R21 with Breast Cancer. Biomedicines 2024; 12:818. [PMID: 38672173 PMCID: PMC11048332 DOI: 10.3390/biomedicines12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The purpose of this work was to find a link between the breast cancer (BC)-risk effects of sex hormone-binding globulin (SHBG)-associated polymorphisms and obesity. The study was conducted on a sample of 1498 women (358 BC; 1140 controls) who, depending on the presence/absence of obesity, were divided into two groups: obese (119 BC; 253 controls) and non-obese (239 BC; 887 controls). Genotyping of nine SHBG-associated single nucleotide polymorphisms (SNP)-rs17496332 PRMT6, rs780093 GCKR, rs10454142 PPP1R21, rs3779195 BAIAP2L1, rs440837 ZBTB10, rs7910927 JMJD1C, rs4149056 SLCO1B1, rs8023580 NR2F2, and rs12150660 SHBG-was executed, and the BC-risk impact of these loci was analyzed by logistic regression separately in each group of obese/non-obese women. We found that the BC-risk effect correlated by GWAS with the SHBG-level polymorphism rs10454142 PPP1R21 depends on the presence/absence of obesity. The SHBG-lowering allele C rs10454142 PPP1R21 has a risk value for BC in obese women (allelic model: CvsT, OR = 1.52, 95%CI = 1.10-2.11, and pperm = 0.013; additive model: CCvsTCvsTT, OR = 1.71, 95%CI = 1.15-2.62, and pperm = 0.011; dominant model: CC + TCvsTT, OR = 1.95, 95%CI = 1.13-3.37, and pperm = 0.017) and is not associated with the disease in women without obesity. SNP rs10454142 PPP1R21 and 10 proxy SNPs have adipose-specific regulatory effects (epigenetic modifications of promoters/enhancers, DNA interaction with 51 transcription factors, eQTL/sQTL effects on five genes (PPP1R21, RP11-460M2.1, GTF2A1L, STON1-GTF2A1L, and STON1), etc.), can be "likely cancer driver" SNPs, and are involved in cancer-significant pathways. In conclusion, our study detected an obesity-dependent association of the rs10454142 PPP1R21 with BC in women.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (I.P.); (K.P.); (M.C.); (I.S.); (I.A.); (V.C.); (M.P.); (Y.R.); (E.R.)
| |
Collapse
|
2
|
Xu X, Xu J, Qiu M, Yu Y, Gou M, Pang Y, Li Q, Su P. A Comparative Transcriptomic Study and Key Gene Targeting of Lamprey Gonadal Immune Response. Immunol Invest 2024; 53:241-260. [PMID: 38078455 DOI: 10.1080/08820139.2023.2289070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The mammalian testis and ovary possess special immunocompetence, which is central to provide protection against pathogens. However, the innate immune responses to immune challenges in lamprey gonads are poorly understood. In this study, we extracted RNA from testis and ovary tissues of lampreys at 0 hour, 8 hours and 17 days after lipopolysaccharides (LPS) stimulation and performed transcriptome sequencing. While the transcriptome profiles of the two tissues were different for the most part, genes LIP, LECT2, LAL2, GRN, ITLN, and C1q were found to be the most significantly up-regulated genes in both. Quantitative Real-time PCR (qRT-PCR) analysis confirmed that these genes were upregulated after stimulation. Furthermore, immunohistochemical staining showed that these genes in lamprey gonads are expressed in high quantities and have a specific distribution. Taken together, our results suggest that these genes could play an essential role in response of the gonads to LPS induction. This research establishes a basis for investigating the immune mechanism of vertebrate gonads and presents a fresh concept for gaining insight into the evolutionary development of jawless vertebrates.
Collapse
Affiliation(s)
- Xiangting Xu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jing Xu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- Functional laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mingyue Qiu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yang Yu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- Department of Urology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
3
|
Zheng A, Bai J, Ha Y, Yu Y, Fan Y, Liang M, Lu Y, Shen Z, Luo B, Jie W. Integrated analysis of the relation to tumor immune microenvironment and predicted value of Stonin1 gene for immune checkpoint blockage and targeted treatment in kidney renal clear cell carcinoma. BMC Cancer 2023; 23:135. [PMID: 36759775 PMCID: PMC9912524 DOI: 10.1186/s12885-023-10616-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Stonin1 (STON1) is an endocytic protein but its role in cancer remains unclear. Here, we investigated the immune role of STON1 in kidney renal clear cell carcinoma (KIRC). METHODS We undertook bioinformatics analyses of the expression and clinical significance of STON1 in KIRC through a series of public databases, and the role of STON1 in the tumor microenvironment and the predictive value for immunotherapy and targeted treatment in KIRC were identified with R packages. STON1 expression was validated in clinical KIRC tissues as well as in KIRC and normal renal tubular epithelial cells. RESULTS Through public databases, STON1 mRNA was found to be significantly downregulated in KIRC compared with normal controls, and decreased STON1 was related to grade, TNM stage, distant metastasis and status of KIRC patients. Compared with normal controls, STON1 was found to be downregulated in KIRC tissues and cell lines. Furthermore, OncoLnc, Kaplan-Meier, and GEPIA2 analyses also suggested that KIRC patients with high STON1 expression had better overall survival. The high STON1 group with enriched immune cells had a more favorable prognosis than the low STON1 group with decreased immune cells. Single sample Gene Set Enrichment Analysis and Gene Set Variation Analysis indicated that STON1 creates an immune non-inflamed phenotype in KIRC. Moreover, STON1 was positively associated with mismatch repair proteins and negatively correlated with tumor mutational burden. Furthermore, Single sample Gene Set Enrichment Analysis algorithm and Pearson analysis found that the low STON1 group was more sensitive to immune checkpoint blockage whereas the high STON1 group was relatively suitable for targeted treatment. CONCLUSIONS Decreased STON1 expression in KIRC leads to clinical progression and poor survival. Mechanically, low STON1 expression is associated with an aberrant tumor immune microenvironment. Low STON1 is likely to be a favorable indicator for immunotherapy response but adverse indicator for targeted therapeutics in KIRC.
Collapse
Affiliation(s)
- Axiu Zheng
- grid.410560.60000 0004 1760 3078Department of Pathology, School of Basic Medicine Sciences; Pathology Diagnosis and Research Center of Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023 PR China ,Department of Pathology, Shanghai Dongfang Hospital, Shanghai, 200120 PR China
| | - Jianrong Bai
- grid.410560.60000 0004 1760 3078Department of Pathology, School of Basic Medicine Sciences; Pathology Diagnosis and Research Center of Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023 PR China
| | - Yanping Ha
- grid.410560.60000 0004 1760 3078Department of Pathology, School of Basic Medicine Sciences; Pathology Diagnosis and Research Center of Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023 PR China
| | - Yaping Yu
- grid.443397.e0000 0004 0368 7493Department of Oncology of the First Affliated Hospital; Oncology Institute, Hainan Medical University, Haikou, 571199 PR China
| | - Yonghao Fan
- grid.443397.e0000 0004 0368 7493Department of Oncology of the First Affliated Hospital; Oncology Institute, Hainan Medical University, Haikou, 571199 PR China
| | - Meihua Liang
- grid.410560.60000 0004 1760 3078Department of Pathology, School of Basic Medicine Sciences; Pathology Diagnosis and Research Center of Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023 PR China
| | - Yanda Lu
- grid.443397.e0000 0004 0368 7493Department of Oncology of the First Affliated Hospital; Oncology Institute, Hainan Medical University, Haikou, 571199 PR China
| | - Zhihua Shen
- Department of Pathology, School of Basic Medicine Sciences; Pathology Diagnosis and Research Center of Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023, PR China.
| | - Botao Luo
- Department of Pathology, School of Basic Medicine Sciences; Pathology Diagnosis and Research Center of Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023, PR China.
| | - Wei Jie
- Department of Pathology, School of Basic Medicine Sciences; Pathology Diagnosis and Research Center of Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023, PR China. .,Department of Oncology of the First Affliated Hospital; Oncology Institute, Hainan Medical University, Haikou, 571199, PR China.
| |
Collapse
|