1
|
Xi Y, Cao YL, Tao LY, Gao SZ, Jin ZR, Cheng JX, Jiang H, Zhang Z. A global perspective: characteristics of infertility-related randomized clinical trials. Andrology 2024; 12:1324-1335. [PMID: 38231194 DOI: 10.1111/andr.13596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/09/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND Infertility is a prevalent global condition, and emerging reproductive technologies may enhance its evaluation and treatment. Understanding the current features of randomized clinical trials in infertility is crucial for improving study design and ensuring the translation of results for patient benefits. OBJECTIVES To investigate the primary characteristics of randomized clinical trials related to infertility and areas where require improvement. MATERIALS AND METHODS We conducted a search on the International Clinical Trials Registry platform for eligible infertility trials between 2003 and 2022. The distribution ratio of various characteristics uploaded by infertility-related studies on the platform was analyzed and compared according to sex and registration year. RESULTS Out of the total trials, 85.3% (1,906) included only women, 8.6% (192) included only men, and 6.1% (136) included couples. The majority of retrieved trials followed a parallel arm design (91.0%) and were non-industry-funded (92.2%), with a median planned sample size of 131 patients (interquartile range 75-270). Among these trials, 54.5% (1,217) were conducted in Asia. The most common primary purpose of infertility-related trials was treatment (88.8%), with over half of the investigated interventions focusing on medication (57.9%). DISCUSSION Asia is the leading region for research, and the drug therapy is still widely used and updated. However, support care for infertile couples has also received some preference. Areas that require improvement and promotion include addressing male infertility and focusing on underserved regions like Africa. The results also highlight deficiencies in trial registration and masking methods, emphasizing the need for better regulation and facilitation of infertility trials in the post-COVID-19 era. CONCLUSION Based on the current status of infertility RCT studies, greater attention should be paid to infertile men and populations in underdeveloped regions like Africa in future studies, together with a standardized registration and implementation procedures.
Collapse
Affiliation(s)
- Yu Xi
- Department of Urology, Peking University Third Hospital, Beijing, China
- Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - Ya-Lei Cao
- Department of Urology, Peking University Third Hospital, Beijing, China
- Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - Li-Yuan Tao
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Song-Zhan Gao
- Department of Andrology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zi-Run Jin
- Department of Urology, Peking University Third Hospital, Beijing, China
- Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - Jian-Xing Cheng
- Department of Urology, Peking University Third Hospital, Beijing, China
- Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - Hui Jiang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
| | - Zhe Zhang
- Department of Urology, Peking University Third Hospital, Beijing, China
- Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
Moon RJ, Reginster JY, Al-Daghri NM, Thiyagarajan JA, Beaudart C, Bruyère O, Burlet N, Chandran M, da Silva MC, Conaghan PG, Dere WH, Diez-Perez A, Hadji P, Halbout P, Hiligsmann M, Kanis JA, McCloskey EV, Ormarsdottir S, Prieto-Alhambra D, Radermecker RP, Rizzoli R, Al-Saleh Y, Silverman SL, Simon LS, Thomasius F, van Staa T, Laslop A, Cooper C, Harvey NC. Real-world evidence: new opportunities for osteoporosis research. Recommendations from a Working Group from the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Osteoporos Int 2023; 34:1283-1299. [PMID: 37351614 PMCID: PMC10382414 DOI: 10.1007/s00198-023-06827-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 06/24/2023]
Abstract
This narrative review summarises the recommendations of a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) for the conduct and reporting of real-world evidence studies with a focus on osteoporosis research. PURPOSE Vast amounts of data are routinely generated at every healthcare contact and activity, and there is increasing recognition that these real-world data can be analysed to generate scientific evidence. Real-world evidence (RWE) is increasingly used to delineate the natural history of disease, assess real-life drug effectiveness, understand adverse events and in health economic analysis. The aim of this work was to understand the benefits and limitations of this type of data and outline approaches to ensure that transparent and high-quality evidence is generated. METHODS A ESCEO Working Group was convened in December 2022 to discuss the applicability of RWE to osteoporosis research and approaches to best practice. RESULTS This narrative review summarises the agreed recommendations for the conduct and reporting of RWE studies with a focus on osteoporosis research. CONCLUSIONS It is imperative that research using real-world data is conducted to the highest standards with close attention to limitations and biases of these data, and with transparency at all stages of study design, data acquisition and curation, analysis and reporting to increase the trustworthiness of RWE study findings.
Collapse
Affiliation(s)
- Rebecca J Moon
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, SO16 6YD, UK
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jean-Yves Reginster
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Ageing, Liège, Belgium
- Division of Epidemiology, Public Health and Health Economics, University of Liège, Liège, Belgium
| | - Nasser M Al-Daghri
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Charlotte Beaudart
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Ageing, Liège, Belgium
- Division of Epidemiology, Public Health and Health Economics, University of Liège, Liège, Belgium
| | - Olivier Bruyère
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Ageing, Liège, Belgium
- Division of Epidemiology, Public Health and Health Economics, University of Liège, Liège, Belgium
| | - Nansa Burlet
- Division of Epidemiology, Public Health and Health Economics, University of Liège, Liège, Belgium
| | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | | | - Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds, UK
| | - Willard H Dere
- Department of Internal Medicine, Utah Center for Clinical and Translational Science, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Adolfo Diez-Perez
- Department of Internal Medicine, Hospital del Mar-IMIM, Autonomous University of Barcelona and CIBERFES, Instituto Carlos III, Barcelona, Spain
| | - Peyman Hadji
- Frankfurt Centre for Bone Health, Frankfurt, Germany
- Philipps University of Marburg, Hesse, Germany
| | | | - Mickaël Hiligsmann
- Department of Health Services Research, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - John A Kanis
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
| | - Eugene V McCloskey
- MRC Versus Arthritis Centre for Integrated Research in Musculoskeletal Ageing, University of Sheffield, Sheffield, UK
- Mellanby Centre for Musculoskeletal Research, Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | | | - Daniel Prieto-Alhambra
- Pharmaco- and Device Epidemiology, Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Régis P Radermecker
- Department of Clinical Pharmacology, Diabetes, Nutrition and Metabolic Disorders, CHU Liege, Liege, Belgium
| | - René Rizzoli
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Yousef Al-Saleh
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City, Riyadh, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | | | | | - Tjeerd van Staa
- Centre for Health Informatics, University of Manchester, Manchester, UK
| | - Andrea Laslop
- Scientific Office, Austrian Medicines and Medical Devices Agency, Vienna, Austria
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- National Institute for Health Research (NIHR) Musculoskeletal Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, SO16 6YD, UK.
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
3
|
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244:108383. [PMID: 36933702 DOI: 10.1016/j.pharmthera.2023.108383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Denmark, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|