1
|
Du R, Shi X, Chen F, Wang L, Liang H, Hu G. Corticotropin-Releasing Hormone: A Novel Stimulator of Somatolactin in Teleost Pituitary Cells. Cells 2023; 12:2770. [PMID: 38132090 PMCID: PMC10741825 DOI: 10.3390/cells12242770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Corticotropin-releasing hormone (CRH) is known for its crucial role in the stress response system, which could induce pituitary adrenocorticotropic hormone (ACTH) secretion to promote glucocorticoid release in the adrenal gland. However, little is known about other pituitary actions of CRH in teleosts. Somatolactin is a fish-specific hormone released from the neurointermediate lobe (NIL) of the posterior pituitary. A previous study has reported that ACTH was also located in the pituitary NIL region. Interestingly, our present study found that CRH could significantly induce two somatolactin isoforms' (SLα and SLβ) secretion and synthesis in primary cultured grass carp pituitary cells. Pharmacological analysis further demonstrated that CRH-induced pituitary somatolactin expression was mediated by the AC/cAMP/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK-II pathways. Finally, transcriptomic analysis showed that both SLα and SLβ should play an important role in the regulation of lipid metabolism in primary cultured hepatocytes. These results indicate that CRH is a novel stimulator of somatolactins in teleost pituitary cells, and somatolactins may participate in the stress response by regulating energy metabolism.
Collapse
Affiliation(s)
- Ruixin Du
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (R.D.); (X.S.); (F.C.); (L.W.)
| | - Xuetao Shi
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (R.D.); (X.S.); (F.C.); (L.W.)
| | - Feng Chen
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (R.D.); (X.S.); (F.C.); (L.W.)
| | - Li Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (R.D.); (X.S.); (F.C.); (L.W.)
| | - Hongwei Liang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (R.D.); (X.S.); (F.C.); (L.W.)
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, The Chinese Academy of Fisheries Sciences, Wuhan 430223, China
| | - Guangfu Hu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (R.D.); (X.S.); (F.C.); (L.W.)
| |
Collapse
|
2
|
Xie Y, Xiao K, Cai T, Shi X, Zhou L, Du H, Yang J, Hu G. Neuropeptides and hormones in hypothalamus-pituitary axis of Chinese sturgeon (Acipenser sinensis). Gen Comp Endocrinol 2023; 330:114135. [PMID: 36181879 DOI: 10.1016/j.ygcen.2022.114135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/25/2022] [Accepted: 09/25/2022] [Indexed: 12/14/2022]
Abstract
The hypothalamus and pituitary serve as important neuroendocrine center, which is able to secrete a variety of neuropeptides and hormones to participate in the regulation of reproduction, growth, stress and feeding in fish. Chinese sturgeon is a basal vertebrate lineage fish with a special evolutionary status, but the information on its neuroendocrine system is relatively scarce. Using the transcriptome data on the hypothalamus-pituitary axis of Chinese sturgeon as reference, we found out 46 hypothalamus neuropeptide genes, which were involved in regulation of reproduction, growth, stress and feeding. The results of sequence alignment showed that the neuroendocrine system of Chinese sturgeon evolves slowly, which confirms that Chinese sturgeon is a species with a slow phenotypic evolution rate. In addition, we also isolated six pituitary hormones genes from Chinese sturgeon, including reproductive hormones: follicle-stimulating homone (FSH) and luteinizing hormone (LH), growth-related hormones: growth hormone (GH)/prolactin (PRL)/somatolactin (SL), and stress-related hormone gene: proopiomelanocortin (POMC). Similar to teleost, immunostaining localization analysis in Chinese sturgeon pituitary showed that LH and FSH were located in the pituitary proximal pars distalis, SL was located in the pituitary rostral pars distalis, and POMC was located in the pituitary pars intermedia and pituitary rostral pars distalis. This study will give a contribution to enrich our information on the neuroendocrine system in Chinese sturgeon.
Collapse
Affiliation(s)
- Yunyi Xie
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Kan Xiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Tianyi Cai
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Xuetao Shi
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Lingling Zhou
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Hejun Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Jing Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Guangfu Hu
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
3
|
Li W, Du R, Xia C, Zhang H, Xie Y, Gao X, Ouyang Y, Yin Z, Hu G. Novel pituitary actions of GnRH in teleost: The link between reproduction and feeding regulation. Front Endocrinol (Lausanne) 2022; 13:982297. [PMID: 36303873 PMCID: PMC9595134 DOI: 10.3389/fendo.2022.982297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH), as a vital hypothalamic neuropeptide, was a key regulator for pituitary luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the vertebrate. However, little is known about the other pituitary actions of GnRH in teleost. In the present study, two GnRH variants (namely, GnRH2 and GnRH3) and four GnRH receptors (namely, GnRHR1, GnRHR2, GnRHR3, and GnRHR4) had been isolated from grass carp. Tissue distribution displayed that GnRHR4 was more highly detected in the pituitary than the other three GnRHRs. Interestingly, ligand-receptor selectivity showed that GnRHR4 displayed a similar and high binding affinity for grass carp GnRH2 and GnRH3. Using primary culture grass carp pituitary cells as model, we found that both GnRH2 and GnRH3 could not only significantly induce pituitary reproductive hormone gene (GtHα, LHβ, FSHβ, INHBa, secretogranin-2) mRNA expression mediated by AC/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK-II pathways but also reduce dopamine receptor 2 (DRD2) mRNA expression via the Ca2+/CaM/CaMK-II pathway. Interestingly, GnRH2 and GnRH3 could also stimulate anorexigenic peptide (POMCb, CART2, UTS1, NMBa, and NMBb) mRNA expression via AC/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK-II pathways in grass carp pituitary cells. In addition, food intake could significantly induce brain GnRH2 mRNA expression. These results indicated that GnRH should be the coupling factor to integrate the feeding metabolism and reproduction in teleost.
Collapse
Affiliation(s)
- Wei Li
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ruixin Du
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chuanhui Xia
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Huiying Zhang
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yunyi Xie
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xiaowen Gao
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yu Ouyang
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Zhan Yin, ; Guangfu Hu,
| | - Guangfu Hu
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Zhan Yin, ; Guangfu Hu,
| |
Collapse
|