1
|
Vuillemin V, Guerini H, Thévenin F, Sibileau E, Corcos G, Khaled W, Zeitoun F, Morvan G. Bone Tissue in Magnetic Resonance Imaging: Contribution of New Zero Echo Time Sequences. Semin Musculoskelet Radiol 2023; 27:411-420. [PMID: 37748464 DOI: 10.1055/s-0043-1770771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The introduction of new ultrashort and zero echo time (ZTE) sequences is revolutionizing magnetic resonance imaging (MRI) and optimizing patient management. These sequences acquire signals in tissues with very short T2: mineralized bone, cortical bone, and calcium deposits. They can be added to a classic MRI protocol. ZTE MRI provides computed tomography-like contrast for bone.
Collapse
|
2
|
Athertya JS, Akers J, Sedaghat S, Wei Z, Moazamian D, Dwek S, Thu M, Jang H. Detection of iron oxide nanoparticle (IONP)-labeled stem cells using quantitative ultrashort echo time imaging: a feasibility study. Quant Imaging Med Surg 2023; 13:585-597. [PMID: 36819276 PMCID: PMC9929408 DOI: 10.21037/qims-22-654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/17/2022] [Indexed: 01/12/2023]
Abstract
Background In this study, we investigated the feasibility of quantitative ultrashort echo time (qUTE) magnetic resonance (MR) imaging techniques in the detection and quantification of iron oxide nanoparticle (IONP)-labeled stem cells. Methods A stem cell phantom containing multiple layers of unlabeled or labeled stem cells with different densities was prepared. The phantom was imaged with quantitative UTE (qUTE) MR techniques [i.e., UTE-T1 mapping, UTE-T2* mapping, and UTE-based quantitative susceptibility mapping (UTE-QSM)] as well as with a clinical T2 mapping sequence on a 3T clinical MR system. For T1 mapping, a variable flip angle (VFA) method based on actual flip angle imaging (AFI) technique was utilized. For T2* mapping and UTE-QSM, multiple images with variable, interleaved echo times including UTE images and gradient recalled echo (GRE) images were used. For UTE-QSM, the phase information from the multi-echo images was utilized and processed using a QSM framework based on the morphology-enabled dipole inversion (MEDI) algorithm. The qUTE techniques were also evaluated in an ex vivo experiment with a mouse injected with IONP-labeled stem cells. Results In the phantom experiment, the parameters estimated with qUTE techniques showed high linearity with respect to the density of IONP-labeled stem cells (R2>0.99), while the clinical T2 parameter showed impaired linearity (R2=0.87). In the ex vivo mouse experiment, UTE-T2* mapping and UTE-QSM showed feasibility in the detection of injected stem cells with high contrast, whereas UTE-T1 and UTE-T2* showed limited detection. Overall, UTE-QSM demonstrated the best contrast of all, with other methods being subjected more to a confounding factor due to different magnetic susceptibilities of various types of neighboring tissues, which creates inhomogeneous contrast that behaves similar to IONP. Conclusions In this study, we evaluated the feasibility of a series of qUTE imaging techniques as well as conventional T2 mapping for the detection of IONP-labeled stem cells in vitro and ex vivo. UTE-QSM performed superior amongst other qUTE techniques as well as conventional T2 mapping in detecting stem cells with high contrast.
Collapse
Affiliation(s)
- Jiyo S. Athertya
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | | | - Sam Sedaghat
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Sophia Dwek
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Mya Thu
- VisiCELL Medical Inc., San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
3
|
Lombardi AF, Guma M, Chung CB, Chang EY, Du J, Ma YJ. Ultrashort echo time magnetic resonance imaging of the osteochondral junction. NMR IN BIOMEDICINE 2023; 36:e4843. [PMID: 36264245 PMCID: PMC9845195 DOI: 10.1002/nbm.4843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Osteoarthritis is a common chronic degenerative disease that causes pain and disability with increasing incidence worldwide. The osteochondral junction is a dynamic region of the joint that is associated with the early development and progression of osteoarthritis. Despite the substantial advances achieved in the imaging of cartilage and application to osteoarthritis in recent years, the osteochondral junction has received limited attention. This is primarily related to technical limitations encountered with conventional MR sequences that are relatively insensitive to short T2 tissues and the rapid signal decay that characterizes these tissues. MR sequences with ultrashort echo time (UTE) are of great interest because they can provide images of high resolution and contrast in this region. Here, we briefly review the anatomy and function of cartilage, focusing on the osteochondral junction. We also review basic concepts and recent applications of UTE MR sequences focusing on the osteochondral junction.
Collapse
Affiliation(s)
- Alecio F. Lombardi
- Department of Radiology, University of California San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, CA, United States
| | - Monica Guma
- Research Service, Veterans Affairs San Diego Healthcare System, CA, United States
- Department of Medicine, University of California San Diego, CA, United States
| | - Christine B. Chung
- Department of Radiology, University of California San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, CA, United States
| | - Eric Y. Chang
- Department of Radiology, University of California San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, CA, United States
| | - Jiang Du
- Department of Radiology, University of California San Diego, CA, United States
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, CA, United States
| |
Collapse
|
4
|
Ma Y, Jang H, Jerban S, Chang EY, Chung CB, Bydder GM, Du J. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. APPLIED PHYSICS REVIEWS 2022; 9:041303. [PMID: 36467869 PMCID: PMC9677812 DOI: 10.1063/5.0086459] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California 92037, USA
| | | | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Jiang Du
- Author to whom correspondence should be addressed:. Tel.: (858) 246-2248, Fax: (858) 246-2221
| |
Collapse
|
5
|
Afsahi AM, Sedaghat S, Moazamian D, Afsahi G, Athertya JS, Jang H, Ma YJ. Articular Cartilage Assessment Using Ultrashort Echo Time MRI: A Review. Front Endocrinol (Lausanne) 2022; 13:892961. [PMID: 35692400 PMCID: PMC9178905 DOI: 10.3389/fendo.2022.892961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 01/05/2023] Open
Abstract
Articular cartilage is a major component of the human knee joint which may be affected by a variety of degenerative mechanisms associated with joint pathologies and/or the aging process. Ultrashort echo time (UTE) sequences with a TE less than 100 µs are capable of detecting signals from both fast- and slow-relaxing water protons in cartilage. This allows comprehensive evaluation of all the cartilage layers, especially for the short T2 layers which include the deep and calcified zones. Several ultrashort echo time (UTE) techniques have recently been developed for both morphological imaging and quantitative cartilage assessment. This review article summarizes the current catalog techniques based on UTE Magnetic Resonance Imaging (MRI) that have been utilized for such purposes in the human knee joint, such as T1, T2∗ , T1ρ, magnetization transfer (MT), double echo steady state (DESS), quantitative susceptibility mapping (QSM) and inversion recovery (IR). The contrast mechanisms as well as the advantages and disadvantages of these techniques are discussed.
Collapse
Affiliation(s)
- Amir Masoud Afsahi
- Department of Radiology, University of California San Diego, San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Sam Sedaghat
- Department of Radiology, University of California San Diego, San Diego, CA, United States
| | - Dina Moazamian
- Department of Radiology, University of California San Diego, San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Ghazaleh Afsahi
- Department of Biotechnology Research, BioSapien, San Diego, CA, United States
| | - Jiyo S. Athertya
- Department of Radiology, University of California San Diego, San Diego, CA, United States
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, San Diego, CA, United States
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, San Diego, CA, United States
- *Correspondence: Ya-Jun Ma,
| |
Collapse
|