1
|
Zhang L, Shi WY, Zhang LL, Sha Y, Xu JY, Shen LC, Li YH, Yuan LX, Qin LQ. Effects of selenium-cadmium co-enriched Cardamine hupingshanensis on bone damage in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116101. [PMID: 38359653 DOI: 10.1016/j.ecoenv.2024.116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Selenium (Se) and cadmium (Cd) usually co-existed in soils, especially in areas with Se-rich soils in China. The potential health consequences for the local populations consuming foods rich in Se and Cd are unknown. Cardamine hupingshanensis (HUP) is Se and Cd hyperaccumulator plant that could be an ideal natural product to assess the protective effects of endogenous Se against endogenous Cd-caused bone damage. Male C57BL/6 mice were fed 5.22 mg/kg cadmium chloride (CdCl2) (Cd 3.2 mg/kg body weight (BW)), or HUP solutions containing Cd 3.2 mg/kg BW and Se 0.15, 0.29 or 0.50 mg/kg BW (corresponding to the HUP0, HUP1 and HUP2 groups) interventions. Se-enriched HUP1 and HUP2 significantly decreased Cd-induced femur microstructure damage and regulated serum bone osteoclastic marker levels and osteogenesis-related genes. In addition, endogenous Se significantly decreased kidney fibroblast growth factor 23 (FGF23) protein expression and serum parathyroid hormone (PTH) levels, and raised serum calcitriol (1,25(OH)2D3). Furthermore, Se also regulated gut microbiota involved in skeletal metabolism disorder. In conclusion, endogenous Se, especially with higher doses (the HUP2 group), positively affects bone formation and resorption by mitigating the damaging effects of endogenous Cd via the modulation of renal FGF23 expression, circulating 1,25(OH)2D3 and PTH and gut microbiota composition.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Wen-Yao Shi
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Li-Li Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yu Sha
- Department of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Le-Cheng Shen
- Jiangxi Center of Quality Supervision and Inspection for Selenium-enriched Products/Ganzhou General Inspection and Testing Institute, Ganzhou 341000, China
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Lin-Xi Yuan
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Xu X, Lyu J, Long P, Liu K, Wang H, Wang X, Yin Y, Yang H, Zhang X, Guo H, He M, Wu T, Yuan Y. Associations of multiple plasma metals with osteoporosis: findings from the Dongfeng-Tongji cohort. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120903-120914. [PMID: 37945958 DOI: 10.1007/s11356-023-30816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
With the aging population, osteoporosis has become a more prevalent public health issue. Existing researches have indicated significant relations of single metal exposure with osteoporosis (e.g., lead, copper, and zinc), whereas the evidence regarding the joint association of metal mixtures with osteoporosis remain limited and inconclusive. A total of 4924 participants from the Dongfeng-Tongji cohort were included in the present study. Plasma levels of 23 metals were determined by inductively coupled plasma mass spectrometry, and the presence of osteoporosis was defined as a bone mineral density T-score ≤ - 2.5. We applied stepwise regression, plasma metal score, and quantile g-computation model to evaluate the association between plasma metal mixtures and osteoporosis risk. Of the 4924 participants, the prevalence of osteoporosis was 10.9% (N = 265) in males and 27.5% (N = 684) in females. In the multiple-metals model, arsenic was positively associated with osteoporosis in males, while zinc was positively associated with osteoporosis in females. Comparing extreme quartiles, the multivariate-adjusted ORs of osteoporosis were 2.20 (95% CI, 1.29, 3.79; P-trend = 0.006) for arsenic in males and 2.16 (95% CI, 1.44, 3.23; P-trend < 0.001) for zinc in females. The plasma metal score was significantly and positively associated with a higher risk of osteoporosis, with ORs (95% CI) comparing extreme quartiles were 5.00 (95% CI, 3.36, 7.65; P-trend < 0.001) in males and 1.76 (95% CI, 1.35, 2.29; P-trend < 0.001) in females. Furthermore, the results of quantile g-computation revealed a consistent positive trend of metal mixtures with risk of osteoporosis and suggested the dominant role of arsenic in males and zinc in females, respectively. Our findings highlighted the importance of controlling metal mixtures exposure for the prevention of osteoporosis in the middle-aged and elder population. Further prospective studies in larger populations are warranted to confirm our findings.
Collapse
Affiliation(s)
- Xuedan Xu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junrui Lyu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Yin
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Dongfeng Central Hospital, Hubei University of Medicine, Shiyan, 442008, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Li R, Qu H, Xu J, Yang H, Chen J, Zhang L, Yan J. Association between dietary intake of α-tocopherol and cadmium related osteoporosis in population ≥ 50 years. J Bone Miner Metab 2023:10.1007/s00774-023-01418-x. [PMID: 37036532 DOI: 10.1007/s00774-023-01418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023]
Abstract
INTRODUCTION To analyze the association between α-tocopherol intake and cadmium (Cd) exposure and osteoporosis in population ≥ 50 years. MATERIALS AND METHODS Sociodemographic data, physical examination, and laboratory indicators including serum Cd level and dietary α-tocopherol intake of 8459 participants were extracted from the National Health and Nutrition Examination Survey (NHANES) database in this cross-sectional study. The associations between α-tocopherol intake, serum Cd levels and osteoporosis were evaluated using univariate and multivariate logistic regression analyses, with the estimated value (β), odds ratios (ORs) and 95% confidence intervals (CIs). We further explored the impact of α-tocopherol intake on Cd exposure and the bone mineral density (BMD) in total femur and femur neck. RESULTS A total of 543 old adults suffered from osteoporosis. The serum Cd level (0.52 μg/L vs. 0.37 μg/L) and α-tocopherol intake (5.28 mg vs. 6.50 mg) were statistical different in osteoporosis group and non-osteoporosis group, respectively. High level of Cd exposure was related to the increased risk of osteoporosis [OR = 1.60, 95% CI (1.15-2.21)]. In the total femur, α-tocopherol intake may improve the loss of BMD that associated with Cd exposure [β = - 0.047, P = 0.037]. Moreover, high α-tocopherol intake combined with low Cd exposure [OR = 0.54, 95% CI (0.36-0.81)] was linked to the decreased risk of osteoporosis comparing with low α-tocopherol intake combined with high Cd exposure. CONCLUSION High α-tocopherol intake may improve the Cd-related osteoporosis and loss of BMD that could provide some dietary reference for prevention of osteoporosis in population ≥ 50 years old.
Collapse
Affiliation(s)
- Renjia Li
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Clinical Nutrition, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, People's Republic of China.
| | - Hai Qu
- Department of Intensive Care Unit, Yan'an Hospital of Kunming City, Kunming, 650051, Yunnan, People's Republic of China
| | - Jinwei Xu
- Department of Police Sports and Actual Combat Teaching, Yunnan Police Officer Academy, Kunming, 650223, Yunnan, People's Republic of China
| | - Huiqin Yang
- Department of Orthopedic, Yan'an Hospital of Kunming City, Kunming, 650051, Yunnan, People's Republic of China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jiuming Yan
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Risk of Environmental Chemicals on Bone Fractures Is Independent of Low Bone Mass in US Adults: Insights from 2017 to 2018 NHANES. Metabolites 2023; 13:metabo13030346. [PMID: 36984786 PMCID: PMC10053128 DOI: 10.3390/metabo13030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
(1) Objective: To assess the association of environmental chemical factors with osteopenia and/or bone fractures. (2) Methods: All data were extracted from the National Health and Nutrition Survey (NHANES) 2017–2018 of American adults aged 20–59 years old; invalid data were excluded based on dual-energy X-ray absorptiometry. For the ultimate valid data set, multivariate logistic regression models were applied to evaluate the association of environmental chemical factors with osteopenia and bone fractures. (3) Results: The valid dataset was obtained from 2640 individuals, who completed a questionnaire of demographic characteristics. Urinary manganese and monomethylarsonic acid were positively associated with osteopenia in American adults, but not bone fracture. However, several environmental factors (e.g., arsenous acid, arsenocholine, dimethylarsinic acid, and 2-thioxothiazolidine-4-carboxylic acid) did not affect bone mineral density, but were significantly associated with bone fracture. (4) Conclusions: Multiple environmental chemical factors significantly affect bone mass or fracture risk. However, the risk of environmental chemical factors on fractures is independent of osteopenia in US Adults. The influence of environmental chemical factors on bone quality should be considered and monitored.
Collapse
|