1
|
Tejero A, León-Navarro DA, Martín M. Effect of Xanthohumol, a Bioactive Natural Compound from Hops, on Adenosine Pathway in Rat C6 Glioma and Human SH-SY5Y Neuroblastoma Cell Lines. Nutrients 2024; 16:1792. [PMID: 38892725 PMCID: PMC11174739 DOI: 10.3390/nu16111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Xanthohumol (Xn) is an antioxidant flavonoid mainly extracted from hops (Humulus lupulus), one of the main ingredients of beer. As with other bioactive compounds, their therapeutic potential against different diseases has been tested, one of which is Alzheimer's disease (AD). Adenosine is a neuromodulatory nucleoside that acts through four different G protein-coupled receptors: A1 and A3, which inhibit the adenylyl cyclases (AC) pathway, and A2A and A2B, which stimulate this activity, causing either a decrease or an increase, respectively, in the release of excitatory neurotransmitters such as glutamate. This adenosinergic pathway, which is altered in AD, could be involved in the excitotoxicity process. Therefore, the aim of this work is to describe the effect of Xn on the adenosinergic pathway using cell lines. For this purpose, two different cellular models, rat glioma C6 and human neuroblastoma SH-SY5Y, were exposed to a non-cytotoxic 10 µM Xn concentration. Adenosine A1 and A2A, receptor levels, and activities related to the adenosine pathway, such as adenylate cyclase, protein kinase A, and 5'-nucleotidase, were analyzed. The adenosine A1 receptor was significantly increased after Xn exposure, while no changes in A2A receptor membrane levels or AC activity were reported. Regarding 5'-nucleotidases, modulation of their activity by Xn was noted since CD73, the extracellular membrane attached to 5'-nucleotidase, was significantly decreased in the C6 cell line. In conclusion, here we describe a novel pathway in which the bioactive flavonoid Xn could have potentially beneficial effects on AD as it increases membrane A1 receptors while modulating enzymes related to the adenosine pathway in cell cultures.
Collapse
Affiliation(s)
| | - David Agustín León-Navarro
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical Sciences and Technologies, Institute of Biomedicine, IDISCAM, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain; (A.T.); (M.M.)
| | | |
Collapse
|
2
|
Feng S, Gui J, Qin B, Ye J, Zhao Q, Guo A, Sang M, Sun X. Resveratrol Inhibits VDAC1-Mediated Mitochondrial Dysfunction to Mitigate Pathological Progression in Parkinson's Disease Model. Mol Neurobiol 2024:10.1007/s12035-024-04234-0. [PMID: 38819635 DOI: 10.1007/s12035-024-04234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
An increase in α-synuclein (α-syn) levels and mutations in proteins associated with mitochondria contribute to the development of familial Parkinson's disease (PD); however, the involvement of α-syn and mitochondria in idiopathic PD remains incompletely understood. The voltage-dependent anion channel I (VDAC1) protein, which serves as a crucial regulator of mitochondrial function and a gatekeeper, plays a pivotal role in governing cellular destiny through the control of ion and respiratory metabolite flux. The ability of resveratrol (RES), which is a potent phytoalexin with antioxidant and anti-inflammatory properties, to regulate VDAC1 in PD is unknown. The objective of this study was to evaluate the role of VDAC1 in the pathological process of PD and to explore the mechanism by which resveratrol protects dopaminergic neurons by regulating VDAC1 to maintain the mitochondrial permeability transition pore (mPTP) and calcium ion balance. The effects of RES on the motor and cognitive abilities of A53T mice were evaluated by using small animal behavioral tests. Various techniques, including immunofluorescence staining, transmission electron microscopy, enzyme-linked immunoadsorption, quantitative polymerase chain reaction (PCR), and Western blotting, among others, were employed to assess the therapeutic impact of RES on neuropathy associated with PD and its potential in regulating mitochondrial VDAC1. The findings showed that RES significantly improved motor and cognitive dysfunction and restored mitochondrial function, thus reducing oxidative stress levels in A53T mice. A significant positive correlation was observed between the protein expression level of VDAC1 and mitochondrial α-syn expression, as well as disease progression, whereas no such correlation was found in VDAC2 and VDAC3. Administration of RES resulted in a significant decrease in the protein expression of VDAC1 and in the protein expression of α-syn both in vivo and in vitro. In addition, we found that RES prevents excessive opening of the mPTP in dopaminergic neurons. This may prevent the abnormal aggregation of α-syn in mitochondria and the release of mitochondrial apoptosis signals. Furthermore, the activation of VDAC1 reversed the resveratrol-induced decrease in the accumulation of α-syn in the mitochondria. These findings highlight the potential of VDAC1 as a therapeutic target for PD and identify the mechanism by which resveratrol alleviates PD-related pathology by modulating mitochondrial VDAC1.
Collapse
Affiliation(s)
- Shenglan Feng
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Jianjun Gui
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Bingqing Qin
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Junjie Ye
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
- Department of Clinical Laboratory, Wuhan Asia Heart Hospital, Wuhan, 430022, Hubei, China
| | - Qiang Zhao
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Ai Guo
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Ming Sang
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.
| | - Xiaodong Sun
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinsons Disease at Xiangyang No.1 Peoples Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
3
|
Zhang S, Li J, Li C, Xie X, He J, Ling F, Li B, Wu H, Li Z, Zhen J, Liu G. CD73-positive pediatric urethral mesenchymal stem-like cell-derived small extracellular vesicles stimulate angiogenesis. Regen Ther 2024; 25:77-84. [PMID: 38111468 PMCID: PMC10727923 DOI: 10.1016/j.reth.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Angiogenesis plays an important role in the repair of urethral injury, and stem cells and their secretomes can promote angiogenesis. We obtained pediatric urethral mesenchymal stem-like cells (PU-MSLCs) in an earlier study. This project studied the pro-angiogenic effect of PU-MSLC-derived small extracellular vesicles (PUMSLC-sEVs) and the underlying mechanisms. Materials and methods PUMSLCs and PUMSLC-sEVs were cultivated and identified. Then, biological methods such as the ethynyl deoxyuridine (EdU) incorporation assay, Cell Counting Kit-8 (CCK-8) assay, scratch wound assay, Transwell assay, and tube formation assay were used to study the effect of PUMSLC-sEVs on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). We explored whether the proangiogenic effect of PUMSLC-sEVs is related to CD73 and whether adenosine (ADO, a CD73 metabolite) promoted angiogenesis. GraphPad Prism 8 software was used for data analysis. Results We observed that PUMSLC-sEVs significantly promoted the proliferation, migration, and tube-forming abilities of HUVECs. PUMSLC-sEVs delivered CD73 molecules to HUVECs to promote angiogenesis. The angiogenic ability of HUVECs was enhanced after treatment with extracellular ADO produced by CD73, and PUMSLC-sEVs further promoted angiogenesis by activating Adenosine Receptor A2A (A2AR). Conclusions These observations suggest that PUMSLC-sEVs promote angiogenesis, possibly through activation of the CD73/ADO/A2AR signaling axis.
Collapse
Affiliation(s)
- Shilin Zhang
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Jierong Li
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Chunjing Li
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Xumin Xie
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Jun He
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Fengsheng Ling
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Bowei Li
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Huayan Wu
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Zhilin Li
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Jianwei Zhen
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Guoqing Liu
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| |
Collapse
|
4
|
Zhang H, Wang J, Xie F, Liu Y, Qiu M, Han Z, Ding Y, Zheng X, Yin Z, Zhang X. Identification of microRNAs implicated in modulating resveratrol-induced apoptosis in porcine granulosa cells. Front Cell Dev Biol 2023; 11:1169745. [PMID: 37250898 PMCID: PMC10211428 DOI: 10.3389/fcell.2023.1169745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that play a crucial role in the complex and dynamic network that regulates the apoptosis of porcine ovarian granulosa cells (POGCs). Resveratrol (RSV) is a nonflavonoid polyphenol compound that is involved in follicular development and ovulation. In previous study, we established a model of RSV treatment of POGCs, confirming the regulatory effect of RSV in POGCs. To investigate the miRNA-level effects of RSV on POGCs to reveal differentially expressed miRNAs, a control group (n = 3, 0 μM RSV group), a low RSV group (n = 3, 50 μM RSV group), and a high RSV group (n = 3, 100 μM RSV group) were created for small RNA-seq. In total, 113 differentially expressed miRNAs (DE-miRNAs) were identified, and a RT-qPCR analysis showed a correlation with the sequencing data. Functional annotation analysis revealed that DE-miRNAs in the LOW vs. CON group may be involved in cell development, proliferation, and apoptosis. In the HIGH vs. CON group, RSV functions were associated with metabolic processes and responses to stimuli, while the pathways were related to PI3K24, Akt, Wnt, and apoptosis. In addition, we constructed miRNA-mRNA networks related to Apoptosis and Metabolism. Then, ssc-miR-34a and ssc-miR-143-5p were selected as key miRNAs. In conclusion, this study provided an improved understanding of effects of RSV on POGCs apoptosis through the miRNA modulations. The results suggest that RSV may promote POGCs apoptosis by stimulating the miRNA expressions and provided a better understanding of the role of miRNAs combined with RSV in ovarian granulosa cell development in pigs.
Collapse
Affiliation(s)
- Huibin Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Hefei, China
| | - Jinglin Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Hefei, China
| | - Fan Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Hefei, China
| | - Yangguang Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Hefei, China
| | - Mengyao Qiu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Hefei, China
| | - Zheng Han
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Hefei, China
| | - Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Hefei, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Hefei, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Hefei, China
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Hefei, China
| |
Collapse
|