1
|
Magtibay K, Massé S, Nanthakumar K, Umapathy K. Effects of spatially dense adrenergic stimulation to rotor behaviour in simulated atrial sheets. Comput Biol Med 2024; 182:109195. [PMID: 39332114 DOI: 10.1016/j.compbiomed.2024.109195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Sympathetic hyperactivity via spatially dense adrenergic stimulation may create pro-arrhythmic substrates even without structural remodelling. However, the effect of sympathetic hyperactivity on arrhythmic activity, such as rotors, is unknown. Using simulations, we examined the effects of gradually increasing the spatial density of adrenergic stimulation (AS) in atrial sheets on rotors. We compared their characteristics against rotors hosted in atrial sheets with increasing spatial density of minimally conductive (MC) elements to simulate structural remodelling due to injury or disease. We generated rotors using an S1-S2 stimulation protocol. Then, we created phase maps to identify phase singularities and map their trajectory over time. We measured each rotor's duration (s), angular speed (rad/s), and spatiotemporal organization. We demonstrated that atrial sheets with increased AS spatial densities could maintain rotors longer than with MC elements (2.6 ± 0.1 s vs. 1.5 ± 0.2 s, p<0.001). Moreover, rotors have higher angular speed (70 ± 7 rads/s vs. 60 ± 15 rads/s, p<0.05) and better spatiotemporal organization (0.56 ± 0.05 vs. 0.58 ± 0.18, p<0.05) in atrial sheets with less than 25% AS elements compared to MC elements. Our findings may help elucidate electrophysiological potential alterations in atrial substrates due to sympathetic hyperactivity, particularly among individuals with autonomic derangements caused by chronic distress.
Collapse
Affiliation(s)
- Karl Magtibay
- Biomedical Signal and Image Processing Laboratory, Department of Electrical, Computer, and Biomedical Engineering, Faculty of Engineering and Architectural Science, Toronto Metropolitan University, 350 Victoria St, Toronto, M5B 2K3, ON, Canada.
| | - Stéphane Massé
- Toby Hull Cardiac Fibrillation Management, Toronto General Hospital, University Health Network, 200 Elizabeth Street, Toronto, M5G 2C4, ON, Canada.
| | - Kumaraswamy Nanthakumar
- Toby Hull Cardiac Fibrillation Management, Toronto General Hospital, University Health Network, 200 Elizabeth Street, Toronto, M5G 2C4, ON, Canada.
| | - Karthikeyan Umapathy
- Biomedical Signal and Image Processing Laboratory, Department of Electrical, Computer, and Biomedical Engineering, Faculty of Engineering and Architectural Science, Toronto Metropolitan University, 350 Victoria St, Toronto, M5B 2K3, ON, Canada.
| |
Collapse
|
2
|
Magtibay K, Massé S, Nanthakumar K, Umapathy K. Pro-arrhythmic role of adrenergic spatial densities in the human atria: An in-silico study. PLoS One 2023; 18:e0290676. [PMID: 37624832 PMCID: PMC10456151 DOI: 10.1371/journal.pone.0290676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic stress among young patients (≤ 45 years old) could result in autonomic dysfunction. Autonomic dysfunction could be exhibited via sympathetic hyperactivity, sympathetic nerve sprouting, and diffuse adrenergic stimulation in the atria. Adrenergic spatial densities could alter atrial electrophysiology and increase arrhythmic susceptibility. Therefore, we examined the role of adrenergic spatial densities in creating arrhythmogenic substrates in silico. We simulated three 25 cm2 atrial sheets with varying adrenergic spatial densities (ASD), activation rates, and external transmembrane currents. We measured their effects on spatial and temporal heterogeneity of action potential durations (APD) at 50% and 20%. Increasing ASD shortens overall APD, and maximum spatial heterogeneity (31%) is achieved at 15% ASD. The addition of a few (5% to 10%) adrenergic elements decreases the excitation threshold, below 18 μA/cm2, while ASDs greater than 10% increase their excitation threshold up to 22 μA/cm2. Increase in ASD during rapid activation increases APD50 and APD20 by 21% and 41%, respectively. Activation times of captured beats during rapid activation could change by as much as 120 ms from the baseline cycle length. Rapidly activated atrial sheets with high ASDs significantly increase temporal heterogeneity of APD50 and APD20. Rapidly activated atrial sheets with 10% ASD have a high likelihood (0.7 ± 0.06) of fragmenting otherwise uniform wavefronts due to the transient inexcitability of adrenergically stimulated elements, producing an effective functional block. The likelihood of wave fragmentation due to ASD highly correlates with the spatial variations of APD20 (ρ = 0.90, p = 0.04). Our simulations provide a novel insight into the contributions of ASD to spatial and temporal heterogeneities of APDs, changes in excitation thresholds, and a potential explanation for wave fragmentation in the human atria due to sympathetic hyperactivity. Our work may aid in elucidating an electrophysiological link to arrhythmia initiation due to chronic stress among young patients.
Collapse
Affiliation(s)
- Karl Magtibay
- Biomedical Signal and Image Processing Laboratory, Faculty of Engineering and Architectural Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Stéphane Massé
- Toby Hull Cardiac Fibrillation Management Laboratory, Department of Medicine/Cardiology, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- Toby Hull Cardiac Fibrillation Management Laboratory, Department of Medicine/Cardiology, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Karthikeyan Umapathy
- Biomedical Signal and Image Processing Laboratory, Department of Electrical, Computer, and Biomedical Engineering, Faculty of Engineering and Architectural Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Walther LM, Wirtz PH. Physiological reactivity to acute mental stress in essential hypertension-a systematic review. Front Cardiovasc Med 2023; 10:1215710. [PMID: 37636310 PMCID: PMC10450926 DOI: 10.3389/fcvm.2023.1215710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Objective Exaggerated physiological reactions to acute mental stress (AMS) are associated with hypertension (development) and have been proposed to play an important role in mediating the cardiovascular disease risk with hypertension. A variety of studies compared physiological reactivity to AMS between essential hypertensive (HT) and normotensive (NT) individuals. However, a systematic review of studies across stress-reactive physiological systems including intermediate biological risk factors for cardiovascular diseases is lacking. Methods We conducted a systematic literature search (PubMed) for original articles and short reports, published in English language in peer-reviewed journals in November and December 2022. We targeted studies comparing the reactivity between essential HT and NT to AMS in terms of cognitive tasks, public speaking tasks, or the combination of both, in at least one of the predefined stress-reactive physiological systems. Results We included a total of 58 publications. The majority of studies investigated physiological reactivity to mental stressors of mild or moderate intensity. Whereas HT seem to exhibit increased reactivity in response to mild or moderate AMS only under certain conditions (i.e., in response to mild mental stressors with specific characteristics, in an early hyperkinetic stage of HT, or with respect to certain stress systems), increased physiological reactivity in HT as compared to NT to AMS of strong intensity was observed across all investigated stress-reactive physiological systems. Conclusion Overall, this systematic review supports the proposed and expected generalized physiological hyperreactivity to AMS with essential hypertension, in particular to strong mental stress. Moreover, we discuss potential underlying mechanisms and highlight open questions for future research of importance for the comprehensive understanding of the observed hyperreactivity to AMS in essential hypertension.
Collapse
Affiliation(s)
- Lisa-Marie Walther
- Biological Work and Health Psychology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Petra H. Wirtz
- Biological Work and Health Psychology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
4
|
de Oliveira ACF, Brito VGB, Ramos GHADS, Werlang MLC, Fiais GA, Dornelles RCM, Antoniali C, Nakamune ACMS, Fakhouri WD, Chaves-Neto AH. Analysis of salivary flow rate, biochemical composition, and redox status in orchiectomized spontaneously hypertensive rats. Arch Oral Biol 2023; 152:105732. [PMID: 37257259 DOI: 10.1016/j.archoralbio.2023.105732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE This study aimed to analyze the salivary flow rate, biochemical composition, and redox status in orchiectomized spontaneously hypertensive rats (SHR) compared to normotensive Wistar rats. DESIGN Thirty-two young adult male SHR and Wistar (3-months-old) rats were randomly distributed into four groups; either castrated bilaterally (ORX) or underwent fictitious surgery (SHAM) as Wistar-SHAM, Wistar-ORX, SHR-SHAM, and SHR-ORX. Two months beyond castration, pilocarpine-induced salivary secretion was collected from 5-month-old rats to analyze salivary flow rate, pH, buffer capacity, total protein, amylase, calcium, phosphate, sodium, potassium, chloride, thiobarbituric acid reactive substances (TBARs), carbonyl protein, nitrite, and total antioxidant capacity. RESULTS The salivary flow rate was higher in the Wistar-ORX compared to the Wistar-SHAM group, while remaining similar between the SHR-SHAM and SHR-ORX groups. ORX did not affect pH and salivary buffer capacity in both strains. However, salivary total protein and amylase were significantly reduced in the Wistar-ORX and SHR-ORX compared to the respective SHAM groups. In both ORX groups, salivary total antioxidant capacity and carbonylated protein were increased, while lipid oxidative damage (TBARs) and nitrite concentration were higher only in the Wistar-ORX than in the Wistar-SHAM group. In the Wistar-ORX and SHR-ORX, the salivary calcium, phosphate, and chloride were increased while no change was detected in the SHAM groups. Only salivary buffering capacity, calcium, and chloride in the SHR-ORX adjusted to values similar to Wistar-SHAM group. CONCLUSION Hypertensive phenotype mitigated the orchiectomy-induced salivary dysfunction, since the disturbances were restricted to alterations in the salivary biochemical composition and redox state.
Collapse
Affiliation(s)
| | - Victor Gustavo Balera Brito
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | | | - Matheus Lima Cypriano Werlang
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Gabriela Alice Fiais
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Rita Cássia Menegati Dornelles
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Cristina Antoniali
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação em Ciência Odontológica, School of Dentistry, Araçatuba, São Paulo, Brazil
| | | | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio Hernandes Chaves-Neto
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação em Ciência Odontológica, School of Dentistry, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
5
|
Walther LM, von Känel R, Zuccarella-Hackl C, Wirtz PH. Hyperreactivity of Salivary Alpha-Amylase to Acute Psychosocial Stress and Norepinephrine Infusion in Essential Hypertension. Biomedicines 2022; 10:1762. [PMID: 35885066 PMCID: PMC9312828 DOI: 10.3390/biomedicines10071762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
It is unknown whether the observed general physiological hyperreactivity to acute psychosocial stress in essential hypertension also extends to salivary alpha-amylase (sAA), a surrogate sympathetic nervous system marker. Here, we investigated sAA reactivity to acute psychosocial stress in essential hypertensive males (HT) as compared to normotensive controls (NT). To shed light on underlying mechanisms, we moreover tested for sAA reactivity following a standardized norepinephrine (NE) infusion. We hypothesized that both acute psychosocial stress and an NE infusion of similar duration would lead to greater sAA reactivity in HT than in NT. In the stress study, we examined sAA reactivity to 15 min of acute psychosocial stress induced by the Trier Social Stress Test (TSST) in 19 HT and 23 NT up to 40 min after stress. In the infusion study, 20 HT and 22 NT received a standardized NE infusion (5 μg/mL/min) over 15 min mimicking NE release in reaction to acute psychosocial stress. HT exhibited greater sAA reactivity to the TSST as compared to NT (p = 0.049, ηp2 = 0.08, f = 0.29). In reaction to the standardized NE infusion, HT showed higher sAA reactivity as compared to NT (p = 0.033, ηp2 = 1.00, f = 0.33). Our findings suggest stress-induced sAA hyperreactivity in essential hypertension that seems to be at least in part mediated by a higher reactivity to a standardized amount of NE in HT. With respect to clinical implications, sAA stress reactivity may serve as a noninvasive marker indicative of early cardiovascular risk.
Collapse
Affiliation(s)
- Lisa-Marie Walther
- Biological Work and Health Psychology, Department of Psychology, University of Konstanz, 78464 Konstanz, Germany;
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Roland von Känel
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (R.v.K.); (C.Z.-H.)
| | - Claudia Zuccarella-Hackl
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (R.v.K.); (C.Z.-H.)
| | - Petra H. Wirtz
- Biological Work and Health Psychology, Department of Psychology, University of Konstanz, 78464 Konstanz, Germany;
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|