1
|
Shaban AM, Ali EA, Tayel SG, Rizk SK, El Agamy DF. The antiosteoporotic effect of oxymatrine compared to testosterone in orchiectomized rats. J Orthop Surg Res 2025; 20:25. [PMID: 39780225 PMCID: PMC11714950 DOI: 10.1186/s13018-024-05344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/05/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Castration of adult male rats led to the development of osteoporosis. Oxidative stress and inflammatory factors have been identified as potential causative factors. Notably, oxymatrine (OMT) possesses potent anti-inflammatory and antioxidant activities. This study aims to elucidate the antiosteoporotic effects of OMT compared to testosterone in an orchiectomized (ORX) rat model of osteoporosis. METHODS A total of 60 Wistar male rats were divided into the following groups: control (CTRL), surgery + no orchiectomy (SHAM), ORX, ORX + testosterone, and ORX + OMT. Urinary deoxypyridinoline (DPD), calcium (Ca), and phosphorus (P), as well as serum testosterone, parathormone (PTH), alkaline phosphatase (ALP), osteocalcin, N-telopeptide of type I collagen (NTX I), tartrate resistance acid phosphatase (TRAP), and total Ca and P levels were evaluated. Bone was assessed for malondialdehyde (MDA), reduced glutathione (GSH), interleukin 6 (IL-6), Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) expression, and receptor activator of nuclear factor κB ligand/ osteoprotegerin (RANKL/OPG) ratio. Bone dual-energy X-ray absorptiometry (DEXA) scan and histological and immunohistochemical studies were performed. RESULTS Testosterone or OMT treatment ameliorated the reduced bone mineral density (BMD) and bone mineral content (BMC) in the DEXA scan and the changes in PTH and Ca levels. Compared to the ORX group, bone formation, and turnover markers were also significantly reversed in the treatment groups. Treatment with testosterone or OMT significantly reduced bone MDA, IL-6, Keap1, RANKL, and RANKL/OPG ratio, and significantly elevated bone GSH, Nrf2, and HO-1. Moreover, testosterone or OMT treatment has restored cortical bone thickness and osteocyte number and reduced bone levels of TNF-α in ORX rats. Consequently, treatment with either testosterone or OMT exhibited nearly equal therapeutic efficacy; however, neither of them could normalize the measured parameters. CONCLUSION OMT treatment showed equal efficacy compared to testosterone in ameliorating osteoporosis in ORX rats, possibly by improving some inflammatory and oxidative stress parameters.
Collapse
Affiliation(s)
- Anwaar M Shaban
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman A Ali
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia National University, Menoufia, Egypt.
| | - Sara G Tayel
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia National University, Menoufia, Egypt
| | - Sara Kamal Rizk
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Dalia F El Agamy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Medical Physiology Department, Faculty of Medicine, Menoufia National University, Menoufia, Egypt
| |
Collapse
|
2
|
Chen Y, Xiao H, Teng F, Yang A, Yang F, Chen C, Chen R, Geng B, Xia Y. IL-16 Mediates the Effect of Circulating Metabolites on Postmenopausal Osteoporosis: A Two-Step, Multivariable Mendelian Randomization Study. Biol Res Nurs 2025; 27:91-100. [PMID: 39212665 DOI: 10.1177/10998004241279934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objectives: This study aimed to explore the relationship between circulating metabolites and postmenopausal osteoporosis (PMOP) and to assess the mediating role of inflammatory factors. Methods: Utilizing summary-level data from genome-wide association studies (GWAS) and employing a Mendelian Randomization approach, a two-sample MR analysis was conducted to assess the relationship between circulating metabolites and PMOP. Additionally, a two-step MR was used to quantify the mediating impact of inflammatory factors on the effect of circulating metabolites on PMOP. Results: The results revealed a significant association between certain metabolites and the risk of PMOP, notably the ratio of free cholesterol to total lipids in very large VLDL particles (OR: 1.399, 95% CI: 1.002-1.954, p = 0.048) and IL-16 (OR: 0.773, 95% CI: 0.608-0.983, p = 0.036). IL-16 was found to partially mediate the impact of circulating metabolites on PMOP, with a mediation effect of 10.4%. Conclusion: This study underscores the crucial role of circulating metabolites and inflammatory factors in PMOP pathogenesis. A causal relationship between circulating metabolites and PMOP was established, with IL-16 mediating some effects. These findings hold promise for clinical applications in early detection, personalized medicine, and the identification of therapeutic targets for PMOP.
Collapse
Affiliation(s)
- Yi Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China
- Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Hefang Xiao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China
- Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Fei Teng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China
- Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Ao Yang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China
- Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Fei Yang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China
- Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Changshun Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China
- Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Rongjin Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China
- Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China
- Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China
- Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| |
Collapse
|
3
|
Stromsnes K, Fajardo CM, Soto-Rodriguez S, Kajander ERU, Lupu RI, Pozo-Rodriguez M, Boira-Nacher B, Font-Alberich M, Gambini-Castell M, Olaso-Gonzalez G, Gomez-Cabrera MC, Gambini J. Osteoporosis: Causes, Mechanisms, Treatment and Prevention: Role of Dietary Compounds. Pharmaceuticals (Basel) 2024; 17:1697. [PMID: 39770539 PMCID: PMC11679375 DOI: 10.3390/ph17121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis is a chronic disease that is characterized by a loss of bone density, which mainly affects the microstructure of the bones due to a decrease in bone mass, thereby making them more fragile and susceptible to fractures. Osteoporosis is currently considered one of the pandemics of the 21st century, affecting around 200 million people. Its most serious consequence is an increased risk of bone fractures, thus making osteoporosis a major cause of disability and even premature death in the elderly. In this review, we discuss its causes, the biochemical mechanisms of bone regeneration, risk factors, pharmacological treatments, prevention and the effects of diet, focusing in this case on compounds present in a diet that could have palliative and preventive effects and could be used as concomitant treatments to drugs, which are and should always be the first option. It should be noted as a concluding remark that non-pharmacological treatments such as diet and exercise have, or should have, a relevant role in supporting pharmacology, which is the recommended prescription today, but we cannot ignore that they can have a great relevance in the treatment of this disease.
Collapse
Affiliation(s)
- Kristine Stromsnes
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Cristian Martinez Fajardo
- Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain;
| | - Silvana Soto-Rodriguez
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Erika Ria Ulrika Kajander
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Remus-Iulian Lupu
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | | | - Balma Boira-Nacher
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
| | - Maria Font-Alberich
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Marcos Gambini-Castell
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Gloria Olaso-Gonzalez
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Maria-Carmen Gomez-Cabrera
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Juan Gambini
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| |
Collapse
|
4
|
Zhang Y, Bai J, Xiao B, Li C. BMSC-derived exosomes promote osteoporosis alleviation via M2 macrophage polarization. Mol Med 2024; 30:220. [PMID: 39563244 DOI: 10.1186/s10020-024-00904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/20/2024] [Indexed: 11/21/2024] Open
Abstract
Osteoporosis is characterized by reduced bone mass due to imbalanced bone metabolism. Exosomes derived from bone mesenchymal stem cells (BMSCs) have been shown to play roles in various diseases. This study aimed to clarify the regulatory function and molecular mechanism of BMSCs-derived exosomes in osteogenic differentiation and their potential therapeutic effects on osteoporosis. Exosomes were extracted from BMSCs. Bone marrow-derived macrophages (BMDMs) were cultured and internalized with BMSCs-derived exosomes. Real-time quantitative PCR was used to detect the expression of macrophage surface markers and tripartite motif (TRIM) family genes. BMDMs were co-cultured with human osteoblasts to assess osteogenic differentiation. Western blot was performed to analyze the ubiquitination of triggering receptor expressed on myeloid cell 1 (TREM1) mediated by TRIM25. An ovariectomized mice model was established to evaluate the role of TRIM25 and exosomes in osteoporosis. Exosomes were successfully isolated from BMSCs. BMSCs-derived exosomes upregulated TRIM25 expression, promoting M2 macrophage polarization and osteogenic differentiation. TRIM25 facilitated the ubiquitination and degradation of TREM1. Overexpression of TREM1 reversed the enhanced M2 macrophage polarization and osteogenic differentiation caused by TRIM25 overexpression. TRIM25 enhanced the protective effect of BMSCs-derived exosomes against bone loss in mice. These findings suggested that BMSCs-derived exosomes promoted osteogenic differentiation by regulating M2 macrophage polarization through TRIM25-mediated ubiquitination and degradation of TREM1. This mechanism might provide a novel approach for treating osteoporosis.
Collapse
Affiliation(s)
- Yanbin Zhang
- Department of Spine Surgery, National Center for Orthopaedics, Capital Medical University Affiliated Beijing Jishuitan Hospital, Beijing, 100035, People's Republic of China
| | - Jing Bai
- Department of Trauma and Joint, The Third Affiliated Hospital of Beijing University of Traditional Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Bin Xiao
- Department of Spine Surgery, National Center for Orthopaedics, Capital Medical University Affiliated Beijing Jishuitan Hospital, Beijing, 100035, People's Republic of China
| | - Chunyan Li
- Department of Clinial Laboratory, Capital Medical University Affiliated Beijing Jishuitan Hospital, Xinjiekou No. 31 East Street, Xicheng District, Beijing, 100035, People's Republic of China.
| |
Collapse
|
5
|
Martiniakova M, Penzes N, Biro R, Sarocka A, Kovacova V, Mondockova V, Ciernikova S, Omelka R. Sea buckthorn and its flavonoids isorhamnetin, quercetin, and kaempferol favorably influence bone and breast tissue health. Front Pharmacol 2024; 15:1462823. [PMID: 39444603 PMCID: PMC11497132 DOI: 10.3389/fphar.2024.1462823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Bone tissue and breast tissue are interrelated, as demonstrated by breast microcalcifications, breast cancer bone metastases, bone morphogenetic proteins, and Wnt signaling. In addition, osteoblasts and osteoclasts represent an important switch of tumor cell dormancy during bone metastasis. Damage to both types of tissues mentioned above is highly prevalent, especially in postmenopausal women, and manifests itself in osteoporosis and breast cancer. Sea buckthorn (Elaeagnus rhamnoides L.), a botanical drug with high antioxidant, antitumor, anti-inflammatory, immunomodulatory, and regenerative properties, has great therapeutic potential due to the unique composition of its bioactive metabolites. This review aimed to summarize the current knowledge from in vitro and in vivo studies on the effect of sea buckthorn, as well as its most widespread flavonoids isorhamnetin, quercetin, and kaempferol, on bone and breast tissue health. In vitro studies have revealed the beneficial impacts of sea buckthorn and aforementioned flavonoids on both bone health (bone remodeling, mineralization, and oxidative stress) and breast tissue health (cancer cell proliferation, apoptosis, tumor growth, and metastatic behavior). In vivo studies have documented their protective effects against disturbed bone microarchitecture and reduced bone strength in animal models of osteoporosis, as well as against tumor expansion and metastatic properties in animal xenograft models. In any case, further research and clinical trials are needed to carefully evaluate the potential therapeutic benefits of sea buckthorn and its flavonoids. Based on the available information, however, it can be concluded that these bioactive metabolites favorably affect both bone and breast tissue health.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| |
Collapse
|
6
|
Hu X, Wang Z, Wang W, Cui P, Kong C, Chen X, Lu S. Irisin as an agent for protecting against osteoporosis: A review of the current mechanisms and pathways. J Adv Res 2024; 62:175-186. [PMID: 37669714 PMCID: PMC11331170 DOI: 10.1016/j.jare.2023.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Osteoporosis is recognized as a skeletal disorder characterized by diminished bone tissue quality and density. Regular physical exercise is widely acknowledged to preserve and enhance bone health, but the detailed molecular mechanisms involved remain unclear. Irisin, a factor derived from muscle during exercise, influences bone and muscle. Since its discovery in 2012, irisin has been found to promote bone growth and reduce bone resorption, establishing a tangible link between muscle exertion and bone health. Consequently, the mechanism by which irisin prevents osteoporosis have attracted significant scientific interest. AIM OF THE REVIEW This study aims to elucidate the multifaceted relationship between exercise, irisin, and bone health. Focusing on irisin, a muscle-derived factor released during exercise, we seek to understand its role in promoting bone growth and inhibiting resorption. Through a review of current research article on irisin in osteoporosis, Our review provides a deep dive into existing research on influence of irisin in osteoporosis, exploring its interaction with pivotal signaling pathways and its impact on various cell death mechanisms and inflammation. We aim to uncover the molecular underpinnings of how irisin, secreted during exercise, can serve as a therapeutic strategy for osteoporosis. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Irisin, secreted during exercise, plays a vital role in bridging muscle function to bone health. It not only promotes bone growth but also inhibits bone resorption. Specifically, Irisin fosters osteoblast proliferation, differentiation, and mineralization predominantly through the ERK, p38, and AMPK signaling pathways. Concurrently, it regulates osteoclast differentiation and maturation via the JNK, Wnt/β-catenin and RANKL/RANK/OPG signaling pathways. This review further delves into the profound significance of irisin in osteoporosis and its involvement in diverse cellular death mechanisms, including apoptosis, autophagy, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Peng Cui
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
7
|
Zhu YW, Liu CL, Li XM, Shang Y. Quercetin induces ferroptosis by inactivating mTOR/S6KP70 pathway in oral squamous cell carcinoma. Toxicol Mech Methods 2024; 34:669-675. [PMID: 38736312 DOI: 10.1080/15376516.2024.2325989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/27/2024] [Indexed: 05/14/2024]
Abstract
Although recent studies increasingly suggest the potential anti-cancer effect of quercetin, the exact underlying mechanism remains poorly demonstrated in oral squamous cell carcinoma (oSCC). Therefore, our research explored the impacts of quercetin on the ferroptosis and mTOR/S6KP70 axis in oSCC cell lines. After treating oSCC cells with quercetin or indicated compounds and transfection with SLC7A11- or S6KP70-overexpressing plasmid, cell viability was detected by CCK-8 assay. The level of ferroptosis in oSCC cells was assessed by measuring ROS and GSH levels. The activation of mTOR/S6KP70 axis was assessed by Western blotting. Quercetin promoted ferroptosis in an mTOR/S6KP70-dependent manner to inhibit tumor growth in oSCC cells. Mechanistically, we revealed that quercetin induced lipid peroxidation and reduced GSH levels by repressing SLC7A11 expression in oSCC cells. Specifically, the effects of quercetin on ferroptosis and mTOR and S6KP70 phosphorylation were partially blocked by both mTOR agonist and S6KP70 overexpression. Moreover, mTOR inhibitor promoted ferroptosis in quercetin-treated oSCC cells. Our findings showed that ferroptosis may be a new anti-tumor mechanism of quercetin. Additionally, we identified that quercetin can target mTOR/S6KP70 cascade to inhibit the growth of oSCC cells.
Collapse
Affiliation(s)
- Ya-Wen Zhu
- Department of Stomatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, PR China
| | - Chun-Lei Liu
- Department of Dermatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, PR China
| | - Xiao-Mei Li
- Department of Stomatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, PR China
| | - Yu Shang
- Department of Stomatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, PR China
| |
Collapse
|
8
|
Gao Y, Huang A, Zhao Y, Du Y. PMAIP1 regulates autophagy in osteoblasts via the AMPK/mTOR pathway in osteoporosis. Hum Cell 2024; 37:1024-1038. [PMID: 38691334 DOI: 10.1007/s13577-024-01067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Osteoporosis (OP) is a highly prevalent disorder characterized by low bone mass that severely reduces patient quality of life. Although numerous treatments for OP have been introduced in clinic, many have side effects and high costs. Therefore, there is still an unmet need for optimal solutions. Here, raw signal analysis was used to identify potential high-risk factors for OP, and the biological functions and possible mechanisms of action (MOAs) of these factors were explored via gene set enrichment analysis (GSEA). Subsequently, molecular biological experiments were performed to verify and analyze the discovered risk factors in vitro and in vivo. PMAIP1 was identified as a potential risk factor for OP and significantly suppressed autophagy in osteoblasts via the AMPK/mTOR pathway, thereby inhibiting the proliferation and differentiation of osteoblasts. Furthermore, we constructed an ovariectomy (OVX) model of OP in rats and simultaneously applied si-PMAIP1 for in vivo interference. si-PMAIP1 upregulated the expression of LC3B and p-AMPK and downregulated the expression of p-mTOR, and these effects were reversed by the autophagy inhibitor. Micro-CT revealed that, si-PMAIP1 significantly inhibited the development of osteoporosis in OVX model rats, and this therapeutic effect was attenuated by treatment with an autophagy inhibitor. This study explored the role and mechanism of PMAIP1 in OP and demonstrated that PMAIP1 may serve as a novel target for OP treatment.
Collapse
Affiliation(s)
- Yijie Gao
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
- Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Anquan Huang
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian, Liaoning, People's Republic of China
| | - Yantao Zhao
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian, Liaoning, People's Republic of China.
| | - Yunxia Du
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.
| |
Collapse
|
9
|
Huang Y, Ye J. Association between hypertension and osteoporosis: a population-based cross-sectional study. BMC Musculoskelet Disord 2024; 25:434. [PMID: 38831414 PMCID: PMC11149290 DOI: 10.1186/s12891-024-07553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Current evidence suggests that metabolic dysregulation is inextricably linked to both hypertension and osteoporosis, but the correlation between hypertension and osteoporosis is still unclear. Therefore, in this study, we explored the correlation between hypertension and osteoporosis. METHODS A total of 37,807 participants from the National Health and Nutrition Examination Survey (1999-2010, 2013-2014, 2017-2018) were enrolled in this population-based cross-sectional study. Hypertension was considered an exposure factor and osteoporosis was considered an outcome factor. Logistic regression and subgroup analysis were used to assess the association between hypertension and osteoporosis. RESULTS A total of 2,523 participants, with a mean age of 68.65 ± 12.21 years, suffered from osteoporosis, and 86.2% were female. Participants with osteoporosis had a greater prevalence of hypertension than participants without osteoporosis (p < 0.001). Participants with hypertension also had a greater prevalence of osteoporosis than participants without hypertension (p < 0.001). Univariate logistic regression analysis indicated that hypertension was associated with osteoporosis (OR: 2.693, 95% CI: 2.480-2.924, p < 0.001). Multivariate logistic regression analysis with a fully adjusted model indicated that hypertension was strongly associated with osteoporosis (OR: 1.183, 95% CI: 1.055-1.327, p = 0.004). Subgroup analysis revealed that the associations between hypertension and osteoporosis were significant in the younger than 60 years, male sex, diabetes subgroup and hypercholesterolemia subgroup (p < 0.05). CONCLUSION Hypertension was independently associated with osteoporosis in the general population.
Collapse
Affiliation(s)
- Yuqing Huang
- Department of Orthopedic, Huaian Hospital of Huaian City, No.19, Shanyang Avenue, Huaian District, Huaian, 223200, China
| | - Jianya Ye
- Department of Orthopedic, Huaian Hospital of Huaian City, No.19, Shanyang Avenue, Huaian District, Huaian, 223200, China.
| |
Collapse
|
10
|
Feng Y, Dang X, Zheng P, Liu Y, Liu D, Che Z, Yao J, Lin Z, Liao Z, Nie X, Liu F, Zhang Y. Quercetin in Osteoporosis Treatment: A Comprehensive Review of Its Mechanisms and Therapeutic Potential. Curr Osteoporos Rep 2024; 22:353-365. [PMID: 38652430 DOI: 10.1007/s11914-024-00868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide a theoretical basis and insights for quercetin's clinical application in the prevention and treatment of osteoporosis (OP), analyzing its roles in bone formation promotion, bone resorption inhibition, anti-inflammation, antioxidant effects, and potential mechanisms. RECENT FINDINGS OP, a prevalent bone disorder, is marked by reduced bone mineral density and impaired bone architecture, elevating the risk of fractures in patients. The primary approach to OP management is pharmacotherapy, with quercetin, a phytochemical compound, emerging as a focus of recent interest. This natural flavonoid exerts regulatory effects on bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts and promotes bone health and metabolic equilibrium via anti-inflammatory and antioxidative pathways. Although quercetin has demonstrated significant potential in regulating bone metabolism, there is a need for further high-quality clinical studies focused on medicinal quercetin.
Collapse
Affiliation(s)
- Yanchen Feng
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pan Zheng
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yali Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Diyan Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhiying Che
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jianping Yao
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zixuan Lin
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
| | - Ziyun Liao
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xingyuan Nie
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Feixiang Liu
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China.
| | - Yunke Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, 450003, China.
| |
Collapse
|
11
|
Tanhai G, Chahardehi AM, Sohrabi MA, Afshoon M, Saberian P, Pourshams M, Ghasemi D, Motaghi SM, Arefnezhad R, Niknam Z. Ameliorative properties of quercetin in the treatment of traumatic brain injury: a mechanistic review based on underlying mechanisms. Mol Biol Rep 2024; 51:695. [PMID: 38796674 DOI: 10.1007/s11033-024-09641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability worldwide, with an estimated annual incidence of 27-69 million. TBI is a severe condition that can lead to high mortality rates and long-term cognitive, behavioral, and physical impairments in young adults. It is a significant public health concern due to the lack of effective treatments available. Quercetin, a natural flavonoid found in various fruits and vegetables, has demonstrated therapeutic potential with anti-inflammatory, antioxidant, and neuroprotective properties. Recently, some evidence has accentuated the ameliorating effects of quercetin on TBI. This review discusses quercetin's ability to reduce TBI-related damage by regulating many cellular and molecular pathways. Quercetin in vitro and in vivo studies exhibit promise in reducing inflammation, oxidative stress, apoptosis, and enhancing cognitive function post-TBI. Further clinical investigation into quercetin's therapeutic potential as a readily available adjuvant in the treatment of TBI is warranted in light of these findings. This review adds to our knowledge of quercetin's potential in treating TBI by clarifying its mechanisms of action.
Collapse
Affiliation(s)
- Golale Tanhai
- Department of Psychology and Counseling, Faculty of Humanities, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | | | | | - Maryam Afshoon
- Clinical Research Development Unit, Valiasr Educational Hospital, Abadan University of Medical Sciences, Abadan, Iran
| | - Parsa Saberian
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Pourshams
- Department of Psychiatry, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Darioush Ghasemi
- Kimia Andisheh Teb Medical and Research Laboratory Co., Tehran, Iran
| | | | | | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
12
|
Zheng J, Zheng A, Song S, Lin M, Liu T, Xu Q. Mechanism for Huanglian Jiedu Decoction-Based Therapy for MAFLD Analyzed Through Network Pharmacology and Experimental Verification. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241235604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Objective: To analyze the mechanism of Huanglian Jiedu Decoction (HLJDD) in the treatment of metabolism-associated fatty liver disease (MAFLD). Methods: The main components, targets, and pathways for treating MAFLD of HLJDD were screened through network pharmacology and molecular docking validation was done; HLJDD was used to intervene MAFLD model of rat, the levels of ALT, AST, TC, TG, GLU, HDL, and LDL were identified, HE staining was used to observe the pathological changes, lipid deposition in liver was detected by oil red O staining. MAFLD model of HepG2 (hepatocellular carcinoma cell line) was constructed by PA (palmitate-acid) incubating, and HLJDD was administered with drug-containing serum intervention, lipid droplets in HepG2 cells was observed by oil red O staining, TG and FFA of HepG2 were detected, the expressions of AMPK, mToR, and Beclin-1 were detected through Western blot. Results: Seventy components and 229 targets were obtained, and 85 targets were used to treat MAFLD, which focus on the signal passways of AMPK/mToR/PI3K-AKt/MAPK, NAFLD, autophagy-animal, insulin, etc. Molecular docking outcomes showed quercetin, kaempferol, and baicalein that were successfully docked with AMPK and mToR, and had good binding activity, compared with MAFLD group of rats, the levels of ALT, AST, TC, TG, GLU, HDL, and LDL were significantly decreased in Silybin group and each dos group of HLJDD, liver pathology and lipid deposition were significantly improved; the results in vitro experiments showed that drug-containing serum of HLJDD and Silybin could improve intracellular lipid accumulation and reduce the increase of TG and FFA levels in HepG2 cells, the therapeutic effect of HLJDD was significantly attenuated after application of AMPK inhibitor; the results of Western blot showed that HLJDD could up-regulate the protein expression of AMPK and Beclin-1,down-regulate the protein expression of mToR. Conclusion: Within process of MAFLD intervention, HLJDD could regulate AMPK-mToR signaling pathway to treat MAFLD.
Collapse
Affiliation(s)
- Jixian Zheng
- Traditonal Chinese Medicine department, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Hainan Medical University, Haikou, China
| | - Anni Zheng
- Traditonal Chinese Medicine department, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Hainan Medical University, Haikou, China
| | - Sufei Song
- Hainan Medical University, Haikou, China
| | - Mengyu Lin
- Hainan Medical University, Haikou, China
| | - Tao Liu
- Traditonal Chinese Medicine department, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Hainan Medical University, Haikou, China
| | - Qiuling Xu
- Traditonal Chinese Medicine department, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Hainan Medical University, Haikou, China
| |
Collapse
|
13
|
Ma Y, Li J, Mai J, Guo H, Ding L, Li J, Xiao J, Li M, Fang W, Zhang S, Xu L, Wang H. Ginsenoside Rb2 exhibits therapeutic value for male osteoporosis in orchiectomy mice by suppressing osteoclastogenesis and modulating NF-κB/MAPK signaling pathways. Food Funct 2024; 15:1583-1597. [PMID: 38240189 DOI: 10.1039/d3fo04334g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Osteoporosis (OP) is a systemic disorder characterized by decreased bone mass as well as deteriorated microarchitecture. Although OP in men is common, it has received much less attention than that in women. Ginseng, a famous traditional herb in Asia, is used to strengthen and repair bones by invigorating vital bioenergy and maintaining body homeostasis in dietary intake and clinical applications. However, there is currently no study investigating the impact of ginseng and its active compounds on male osteoporosis. In this study, RNA sequencing and bioinformatic analysis were conducted to reveal the influence of Ginsenoside-Rb2 on RAW264.7 cells and its underlying signaling pathways. The potential anti-osteoporosis effects of Rb2 as well as its molecular mechanisms were elucidated in RAW264.7 cells and BMMs by TRAP staining, F-actin belt staining, qRT-PCR and WB. Moreover, orchiectomy (ORX) was utilized to demonstrate the influence of Rb2 on bone mass loss in vivo by micro-CT scanning, and H&E, TRAP, and IHC staining. The results suggested that Rb2 suppressed osteoclastogenesis and mitigated bone loss in orchiectomy mice through NF-κB/MAPK signaling pathways. These findings indicate that ginseng as well as its active component Rb2 have potential therapeutic value in the management of osteoporosis in men.
Collapse
Affiliation(s)
- Yanhuai Ma
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianliang Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou First People's Hospital, Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Jiale Mai
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Foshan Hospital of Chinese Medicine, Eighth Clinical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Huizhi Guo
- Department of Spine Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingli Ding
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinglan Li
- Department of Spine Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiacong Xiao
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihua Fang
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuncong Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangliang Xu
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun District, Guangzhou, 510405, China
| | - Haibin Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun District, Guangzhou, 510405, China
| |
Collapse
|
14
|
Dai X, Liu Y, Liu T, Zhang Y, Wang S, Xu T, Yin J, Shi H, Ye Z, Zhu R, Gao J, Dong G, Zhao D, Gao S, Wang X, Prentki M, Brὂmme D, Wang L, Zhang D. SiJunZi decoction ameliorates bone quality and redox homeostasis and regulates advanced glycation end products/receptor for advanced glycation end products and WNT/β-catenin signaling pathways in diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117167. [PMID: 37716489 DOI: 10.1016/j.jep.2023.117167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE SiJunZi decoction (SJZD), one of the traditional Chinese medicine formulas, has been clinically and traditionally used to improve glucose and lipid metabolism and promote bone remodeling. AIM OF THE STUDY To study the actions and mechanisms of SJZD on bone remodeling in a type 2 diabetes mouse model. MATERIALS AND METHODS Diabetic mice generated with a high-fat diet (HFD) and streptozotocin (STZ) were subjected to SJZD treatment for 8 weeks. Blood glucose and lipid profile, redox status and bone metabolism were determined by ELISA or biochemical assays. Bone quality was evaluated by micro-CT, three-point bending assay and Fourier transform infrared spectrum (FTIR). Bone histomorphometry alterations were evaluated by Hematoxylin-Eosin (H&E), tartrate resistant acid phosphatase (TRAP) staining and Safranin O-fast green staining. The expressions of superoxide dismutase 1 (SOD1), advanced glycation end products (AGEs), receptor for advanced glycosylation end products (RAGE), phosphorylated nuclear factor kappa-B (p-NF-κB), NF-κB, cathepsin K, semaphorin 3A (Sema3A), insulin-like growth factor 1 (IGF1), p-GSK-3β, (p)-β-catenin, Runt-related transcription factor 2 (Runx2) and Cyclin D1 in the femurs and/or tibias were examined by Western blot or immunohistochemical staining. The main constituents in the SJZD aqueous extract were characterized by a HPLC/MS. RESULTS SJZD intervention improved glucose and lipid metabolism and preserved bone quality in the diabetic mice, in particular glucose tolerance, lipid profile, bone microarchitecture, strength and material composition. SJZD administration to diabetic mice preserved redox homeostasis in serum and bone marrow, and prevented an increase in AGEs, RAGE, p-NF-κB/NF-κB, cathepsin K, p-GSK-3β, p-β-catenin expressions and a decrease in Sema3A, IGF1, β-catenin, Runx2 and Cyclin D1 expressions in tibias and/or femurs. Thirteen compounds were identified in SJZD aqueous extract, including astilbin, liquiritin apioside, ononin, ginsenoside Re, Rg1, Rb1, Rb2, Ro, Rb3, Rd, notoginsenoside R2, glycyrrhizic acid, and licoricesaponin B2. CONCLUSIONS SJZD ameliorates bone quality in diabetic mice possibly via maintaining redox homeostasis. The mechanism governing these alterations are possibly related to effects on the AGEs/RAGE and Wnt/β-catenin signaling pathways. SJZD may offer a novel source of drug candidates for the prevention and treatment of type 2 diabetes and osteoporosis.
Collapse
Affiliation(s)
- Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yueyi Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zimengwei Ye
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ruyuan Zhu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Junfeng Gao
- The Scientific Research Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Guangtong Dong
- Department of Chinese Medicine Formulas, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dandan Zhao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xinxiang Wang
- The Scientific Research Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Marc Prentki
- Departments of Nutrition and Biochemistry and Montreal Diabetes Research Center, CRCHUM and Université de Montréal, Montréal, QC, Canada.
| | - Dieter Brὂmme
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
15
|
Deng TT, Ding WY, Lu XX, Zhang QH, Du JX, Wang LJ, Yang MN, Yin Y, Liu FJ. Pharmacological and mechanistic aspects of quercetin in osteoporosis. Front Pharmacol 2024; 15:1338951. [PMID: 38333006 PMCID: PMC10851760 DOI: 10.3389/fphar.2024.1338951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Osteoporosis (OP) is a bone disease associated with increasing age. Currently, the most common medications used to treat OP are anabolic agents, anti-resorptive agents, and medications with other mechanisms of action. However, many of these medications have unfavorable adverse effects or are not intended for long-term use, potentially exerting a severe negative impact on a patient's life and career and placing a heavy burden on families and society. There is an urgent need to find new drugs that can replace these and have fewer adverse effects. Quercetin (Que) is a common flavonol in nature. Numerous studies have examined the therapeutic applications of Que. However, a comprehensive review of the anti-osteoporotic effects of Que has not yet been conducted. This review aimed to describe the recent studies on the anti-osteoporotic effects of Que, including its biological, pharmacological, pharmacokinetic, and toxicological properties. The outcomes demonstrated that Que could enhance OP by increasing osteoblast differentiation and activity and reducing osteoclast differentiation and activity via the pathways of Wnt/β-catenin, BMP/SMAD/RUNX2, OPG/RANKL/RANK, ERK/JNK, oxidative stress, apoptosis, and transcription factors. Thus, Que is a promising novel drug for the treatment of OP.
Collapse
Affiliation(s)
- Ting-Ting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Yu Ding
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, China
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xi-Xue Lu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qing-Hao Zhang
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jin-Xin Du
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li-Juan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mei-Na Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Ying Yin
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fan-Jie Liu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
16
|
Cao N, Shou Z, Xiao Y, Liu P. Efficacy and Possible Mechanisms of Astragali Radix and its Ingredients in Animal Models of Osteoporosis: A Preclinical Review and Metaanalysis. Curr Drug Targets 2024; 25:135-148. [PMID: 38213165 DOI: 10.2174/0113894501275292231220062838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Astragali Radix (AR) has a long history as a traditional Chinese medicine for anti-osteoporosis (OP) treatment. The aim of the study was to explore the effect and optimal regimens of AR and its main ingredients (IAR) in OP treatment. METHODS Eligible animal studies were searched in seven databases (PubMed, Web of Science, MEDLINE, SciELO Citation Index, Cochrane Library, China National Knowledge Infrastructure and Wanfang). The primary outcomes were bone metabolic indices. The secondary outcome measure was the anti-OP mechanism of IAR. RESULTS 21 studies were enrolled in the study. The primary findings of the present article illustrated that IAR could significantly increase the bone mineral density (BMD), bone volume over the total volume, trabecular number, trabecular thickness, bone maximum load and serum calcium, while trabecular separation and serum C-terminal telopeptide of type 1 collagen were remarkably decreased (P < 0.05). In subgroup analysis, the BMD in the long treatment group (≥ 10 weeks) showed better effect size than the short treatment group (< 10 weeks) (P < 0.05). Modeling methods and animal sex were factors affecting serum alkaline phosphatase and osteocalcin levels. CONCLUSION The findings suggest the possibility of developing IAR as a drug for the treatment of OP. IAR with longer treatment time may achieve better effects regardless of animal strain and age.
Collapse
Affiliation(s)
- Ning Cao
- Pharmacy Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Zhangxuan Shou
- Pharmacy Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Yi Xiao
- HD Biosciences (A WuXi company) Pharma Tech, Shanghai 201201, China
| | - Puqing Liu
- Pharmacy Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, China
| |
Collapse
|
17
|
Wu J, Chen J, Yu X, You Y. The potential pharmacological mechanism of prunetin against osteoporosis: transcriptome analysis, molecular docking, and experimental approaches. Toxicol Mech Methods 2024; 34:46-56. [PMID: 37642288 DOI: 10.1080/15376516.2023.2253305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Prunetin is an O-methylated isoflavone, known for its beneficial properties. However, its specific pharmacological effects in the treatment of osteoporosis (OP) remain poorly understood. This study aims to elucidate the mechanisms underlying the antiosteoporotic effects of prunetin through a combination of bioinformatics analysis and cell experiments. METHODS We gathered predicted targets of prunetin from various online platforms. Differential expression analysis of mRNAs in patients with OP was conducted using the Limma package, based on the GSE35959 dataset. A PPI network diagram was visualized and analyzed using Cytoscape 3.7.2 software. Molecular docking was employed to assess the binding affinity between ligands and receptors, and selected key genes were further validated through cell experiments. RESULTS A total of 4062 differentially expressed genes (DEGs) were identified from the GSE35959 dataset. Among these, 58 genes were found to overlap with the targets of prunetin, indicating their potential as therapeutic targets. The enrichment analysis indicated these targets were mainly enriched in MAPK, FoxO, and mTOR signaling pathways. The molecular docking analysis demonstrated that prunetin exhibited strong binding activity with the core targets. Furthermore, cell experiments revealed that prunetin effectively reversed the expression levels of ALB, ESR1, PTGS2, and FGFR1 mRNA in MC3T3-E1 cells treated with dexamethasone (DEX). CONCLUSION Our research revealed the multi-pathway and multi-target features of prunetin in treating OP, shedding light on the potential mechanisms underlying the effectiveness of prunetin against OP. These findings serve as a theoretical foundation for future drug development in this field.
Collapse
Affiliation(s)
- Jing Wu
- Department of Acupuncture, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Jiangxi Province, P.R. China
| | - Jiali Chen
- Nursing Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi Province, P.R. China
| | - Xijing Yu
- Department of Acupuncture, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Jiangxi Province, P.R. China
| | - Yujuan You
- Department of Anesthesia and Perioperative Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, P.R. China
| |
Collapse
|
18
|
Wang Y, Han X, Shi J, Liao Z, Zhang Y, Li Y, Jiang M, Liu M. Distinct Metabolites in Osteopenia and Osteoporosis: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:4895. [PMID: 38068753 PMCID: PMC10708105 DOI: 10.3390/nu15234895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
Multiple studies have indicated that distinct metabolites are involved in the occurrence and development of osteopenia (ON) and osteoporosis (OP); however, these metabolites in OP and ON have not yet been classified and standardized. This systematic review and meta-analysis included 21 articles aiming to investigate the distinct metabolites in patients with ON and OP. The quality of the included articles was generally high; seventeen studies had >7 stars, and the remaining four received 6 stars. This systematic review showed that three metabolites (phosphatidylcholine (PC) (lipid metabolites), galactose (carbohydrate metabolites), and succinic acid (other metabolites)) increased, four (glycylglycine (gly-gly), cystine (amino acids), sphingomyelin (SM) (lipid metabolites) and glucose (carbohydrate metabolites)) decreased, and five (glutamine, hydroxyproline, taurine (amino acids), lysophosphatidylcholine (LPC) (lipid metabolites), and lactate (other metabolites)) had conflicting directions in OP/ON. The results of the meta-analysis show that gly-gly (MD = -0.77, 95%CI -1.43 to -0.11, p = 0.02) and cystine (MD = -5.52, 95%CI -7.35 to -3.68, p < 0.00001) decreased in the OP group compared with the healthy control group. Moreover, LPC (MD = 1.48, 95%CI 0.11 to 2.86, p = 0.03) increased in the OP group compared with the healthy control group. These results indicate that distinct metabolites were associated with ON and OP, which could be considered a predictor for OP.
Collapse
Affiliation(s)
- Yuhe Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Jingru Shi
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Zeqi Liao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Yuanyue Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Yuanyuan Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Meijie Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
19
|
Rowe AA, Issioui Y, Johnny B, Wert KJ. Murine Orchiectomy and Ovariectomy to Reduce Sex Hormone Production. J Vis Exp 2023:10.3791/64379. [PMID: 38047564 PMCID: PMC10868640 DOI: 10.3791/64379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Sex hormone signaling plays a critical role in multiple organ systems as well as in the progression of various diseases, including neurodegenerative disease. The manipulation of sex hormone levels in the murine model system allows for the study of their impact on organs/tissues and within disease progression. Orchiectomy - the surgical removal of the testes - and ovariectomy - the surgical removal of the ovaries - provide a method to deplete the endogenous sex hormones so that the precise hormone levels can be provided through drug or other delivery methods. Here, we provide rapid and minimally invasive methods for both orchiectomy and ovariectomy in the murine model system for the reduction of sex hormones. This protocol details the surgical preparation and excision of the testes through the scrotal sac, and excision of the ovaries via two incisions in the right and left lateral dorsum.
Collapse
Affiliation(s)
- Ashley A Rowe
- Department of Ophthalmology, UT Southwestern Medical Center
| | - Yacine Issioui
- Department of Ophthalmology, UT Southwestern Medical Center
| | | | - Katherine J Wert
- Department of Ophthalmology, UT Southwestern Medical Center; Department of Molecular Biology, UT Southwestern Medical Center; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center;
| |
Collapse
|
20
|
Xue C, Luo H, Wang L, Deng Q, Kui W, Da W, Chen L, Liu S, Xue Y, Yang J, Li L, Du W, Shi Q, Li X. Aconine attenuates osteoclast-mediated bone resorption and ferroptosis to improve osteoporosis via inhibiting NF-κB signaling. Front Endocrinol (Lausanne) 2023; 14:1234563. [PMID: 38034017 PMCID: PMC10682992 DOI: 10.3389/fendo.2023.1234563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Osteoporosis (OP), a prevalent public health concern primarily caused by osteoclast-induced bone resorption, requires potential therapeutic interventions. Natural compounds show potential as therapeutics for postmenopausal OP. Emerging evidence from in vitro osteoclastogenesis assay suggests that aconine (AC) serves as an osteoclast differentiation regulator without causing cytotoxicity. However, the in vivo functions of AC in various OP models need clarification. To address this, we administered intraperitoneal injections of AC to ovariectomy (OVX)-induced OP mice for 8 weeks and found that AC effectively reversed the OP phenotype of OVX mice, leading to a reduction in vertebral bone loss and restoration of high bone turnover markers. Specifically, AC significantly suppressed osteoclastogenesis in vivo and in vitro by decreasing the expression of osteoclast-specific genes such as NFATc1, c-Fos, Cathepsin K, and Mmp9. Importantly, AC can regulate osteoclast ferroptosis by suppressing Gpx4 and upregulating Acsl4, which is achieved through inhibition of the phosphorylation of I-κB and p65 in the NF-κB signaling pathway. These findings suggest that AC is a potential therapeutic option for managing OP by suppressing NF-κB signaling-mediated osteoclast ferroptosis and formation.
Collapse
Affiliation(s)
- Chunchun Xue
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan Luo
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Libo Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Deng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyun Kui
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Da
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuang Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongpeng Xue
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiafan Yang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxing Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenlan Du
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofeng Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Li M, Tang H, Hu Y, Li S, Kang P, Chen B, Li S, Zhang M, Wang H, Huo S. Integrating network pharmacology and experimental verification strategies to reveal the active ingredients and molecular mechanism of Tenghuang Jiangu Capsule against osteoporosis. Heliyon 2023; 9:e19812. [PMID: 37809453 PMCID: PMC10559171 DOI: 10.1016/j.heliyon.2023.e19812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Tenghuang Jiangu Capsule (THJGC) is a Chinese herbal formula used for the treatment of osteoporosis and osteoarthritis in China, but its mechanism for treating osteoporosis is not clear. The aim of this study was to investigate the therapeutic effect of THJGC on osteoporosis and its intrinsic mechanism through network pharmacology and experimental validation. Drugs and potential targets were obtained from several reliable databases through network pharmacology, and these targets were integrated and analyzed using bioinformatics and molecular docking strategies. Quercetin, lignans and kaempferol were identified as key components, and the key targets included Akt1, MAPKs, and CASP3. Subsequently, UPLC-MS/MS analysis confirmed the presence of components in THJGC for the treatment of osteoporosis. In addition, using ex vivo and in vivo models, it was confirmed that THJGC inhibited H2O2-induced ROS generation and apoptosis, and reduced OVX-induced bone loss in a mouse model of osteoporosis. Our data suggest that THJGC has antioxidant, bone formation-promoting, bone resorption-inhibiting, and MC3T3-E1 apoptosis-reducing effects, and thus has anti-osteoporotic properties. In conclusion, it may be a promising pharmacologic adjuvant treatment for osteoporosis.
Collapse
Affiliation(s)
- Miao Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hongyu Tang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Joint Orthopaedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuanhao Hu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Songtao Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Pan Kang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Baihao Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shaocong Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Meng Zhang
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Joint Orthopaedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shaochuan Huo
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, No.6001, North Ring Road, Futian District, Shenzhen City, Guangdong Province, 518048, China
| |
Collapse
|
22
|
Integrating Untargeted and Targeted Metabolomics Coupled with Pathway Analysis Reveals Muscle Disorder in Osteoporosis on Orchiectomized Mice. Molecules 2023; 28:molecules28062512. [PMID: 36985483 PMCID: PMC10051496 DOI: 10.3390/molecules28062512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Most osteoporosis (OP) fracture accidents in men are due not only to a low BMD but also because of unhealthy muscle support. However, there has been a limited number of reports about how muscle metabolism is disturbed by OP in males. In this work, a pathway analysis based on metabolomic research was carried out to fill this gap. A classical orchiectomy procedure was adapted to create an OP animal model. A micro-CT and pathological section were applied for a bone and muscle phenotype assessment and a pathology analysis. UPLC-Q-TOF/MS and UPLC-QQQ-MS/MS were applied to measure metabolites in skeletal muscle samples among groups. In total, 31 significantly differential metabolites were detected by comparing healthy models and OP animals, and 7 representative metabolites among the 31 significantly differential metabolites were identified and validated experimentally by UPLC-QQQ-MS/MS (xanthine, L-phenylalanine, choline, hypoxanthine, L-tryptophan, succinic acid, and L-tyrosine). An ingenuity pathway analysis (IPA) analysis revealed significantly enriched pathways involved in inflammation, oxidative stress, and necrosis. To our best knowledge, this is the first study to investigate early muscle disorder processes in Cases of OP at a metabolic level, facilitating early intervention and protection from OP fractures for aged men.
Collapse
|
23
|
Hua Z, Dai S, Li S, Wang J, Peng H, Rong Y, Yu H, Liu M. Deciphering the protective effect of Buzhong Yiqi Decoction on osteoporotic fracture through network pharmacology and experimental validation. J Orthop Surg Res 2023; 18:86. [PMID: 36737821 PMCID: PMC9898002 DOI: 10.1186/s13018-023-03545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/15/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Osteoporotic fracture (OPF) is one of the most common skeletal diseases in an aging society. The Chinese medicine formula Buzhong Yiqi Decoction (BZYQD) is commonly used for treating OPF. However, the essential bioactive compounds and the underlying molecular mechanisms that promote fracture repair remain unclear. METHODS We used network pharmacology and experimental animal validation to address this issue. First, 147 bioactive BZYQD compounds and 32 target genes for treating OPF were screened and assessed. A BZYQD-bioactive compound-target gene-disease network was constructed using the Cytoscape software. Functional enrichment showed that the candidate target genes were enriched in oxidative stress- and inflammation-related biological processes and multiple pathways, including nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways. Furthermore, an OPF rat model was established and treated with BZYQD. RESULTS The results revealed that BZYQD ameliorated OPF characteristics, including femoral microarchitecture, biomechanical properties, and histopathological changes, in a dose-dependent manner. Results of enzyme-linked immunosorbent assay showed that BZYQD reduced the serum's pro-inflammatory cytokines [Tumor necrosis factor-alpha (TNF-α), Interleukin (IL)-1β, and IL-6] and improved oxidative stress-related factors [glutathione (GSH) and superoxide dismutase (SOD)]. BZYQD significantly decreased the protein expression of NF-κB in OPF rat femurs, suppressed NF-κB activation, and activated the nuclear factor-erythroid factor 2-related factor (Nrf2)/heme oxygenase 1 (HO-1) and p38 MAPK as well ERK pathways. CONCLUSIONS Our results suggest that BZYQD could improve inflammation and oxidative stress during fracture repair by suppressing NF-κB and activating Nrf2/MAPK signaling pathways.
Collapse
Affiliation(s)
- Zhen Hua
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Shijie Dai
- grid.268505.c0000 0000 8744 8924College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang China
| | - Shaoshuo Li
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Jianwei Wang
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Hongcheng Peng
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Yi Rong
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Hao Yu
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Mingming Liu
- Department of Orthopedics, The Second People's Hospital of Lianyungang, 41 Hailian East Road, Haizhou District, Lianyungang, 222006, Jiangsu Province, China.
| |
Collapse
|
24
|
Zhang Z, Fang J, Sun D, Zheng Y, Liu X, Li H, Hu Y, Liu Y, Zhang M, Liu W, Zhang X, Liu X. Study on the Mechanism of Radix Astragali against Renal Aging Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6987677. [PMID: 36561604 PMCID: PMC9767736 DOI: 10.1155/2022/6987677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022]
Abstract
Radix Astragali is widely used in the traditional Chinese medicine with the effect of antiaging. The purpose of this study is to explore the main active ingredients and targets of Radix Astragali against renal aging by network pharmacology and further to verify the mechanism of the main active ingredients in vitro. TCMSP, ETCM, and TCMID databases were used to screen active ingredients of Radix Astragali. Targets of active ingredients were predicted using BATMAN-TCM and cross validated using kidney aging-related genes obtained from GeneCards and NCBI database. Pathways enrichment and protein-protein interaction (PPI) analysis were performed on core targets. Additionally, a pharmacological network was constructed based on the active ingredients-targets-pathways. HK-2 cell was treated with D-galactose to generate a cell model of senescence. CCK-8 and β-galactosidase were used to detect the effect of Radix Astragali active components on cell proliferation and aging. ELISA was used to detect the expression of senescence-associated secreted protein (TGF-β and IL-6) in the cell culture supernatant. Western blot was used to detect the expression of key proteins in the SIRT1/p53 pathway. Five active ingredients (Astragaloside I, II, III, IV and choline) were identified from Radix Astragali, and all these active ingredients target a total of 128 genes. Enrichment analysis showed these genes were implicated in 153 KEGG pathways, including the p53, FoxO, and AMPK pathway. 117 proteins and 572 interactions were found in PPI network. TP53 and SIRT1 were two hub genes in PPI network, which interacted with each other. The pharmacological network showed that the five main active ingredients target on some coincident genes, including TP53 and SIRT1. These targeted genes were involved in the p53, FoxO, and AMPK pathway. Proliferation of HK-2 cells was increased by Astragaloside IV treatment compared with that of the D-Gal treatment group. However, the proliferation of the SA-β-gal positive cells were inhibited. The expression of TGF-β and IL-6 in the D-Gal group was higher than that in the normal group, and the treatment of Astragaloside IV could significantly reduce the expression of TGF-β and IL-6. The expression of SIRT1 in the Astragaloside IV group was higher than that in the D-Gal group. However, the expression of p53 and p21 was less in the Astragaloside IV group than that in the D-Gal group. This study suggested that Astragaloside IV is an important active ingredient of Radix Astragali in the treatment of kidney aging via the SITR1-p53 pathway.
Collapse
Affiliation(s)
- Ziyuan Zhang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Dalin Sun
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yaqin Zheng
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Xinhui Liu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Hui Li
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yaling Hu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yuxiang Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Mingyu Zhang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Wenyuan Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Xiaodong Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Xuejun Liu
- Department of Geriatrics, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| |
Collapse
|