1
|
Huang L, Ma L, Zhu Q, Wang H, She G, Shi W, Mu L. Visualizing Endoplasmic Reticulum Stress and Autophagy in Alzheimer's Model Cells by a Peroxynitrite-Responsive AIEgen Fluorescent Probe. ACS Chem Neurosci 2025; 16:223-231. [PMID: 39763175 DOI: 10.1021/acschemneuro.4c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Endoplasmic reticulum (ER) stress and autophagy (ER-phagy) occurring in nerve cells are crucial physiological processes closely associated with Alzheimer's disease (AD). Visualizing the two processes is paramount to advance our understanding of AD pathologies. Among the biomarkers identified, peroxynitrite (ONOO-) emerges as a key molecule in the initiation and aggravation of ER stress and ER-phagy, highlighting its significance in the underlying mechanisms of the two processes. In this work, we designed and synthesized an innovative ONOO--responsive AIEgen-based fluorescent probe (DHQM) with the ability to monitor ER stress and ER-phagy in AD model cells. DHQM demonstrated excellent aggregation-induced emission (AIE) properties, endowing it with outstanding ability for washing-free intracellular imaging. Meanwhile, it exhibited high sensitivity, remarkable selectivity to ONOO-, and exceptional ER-targeting ability. The probe was successfully applied for fluorescence imaging of ER ONOO- fluctuations to assess the ER stress status in aluminum-induced AD model cells. Our findings revealed that aluminum-induced ferroptosis, a regulated cell death process, was pivotal in the excessive ONOO- production, which in turn activated and exacerbated ER stress. Furthermore, the aluminum-stimulated ER-phagy was observed utilizing DHQM, which might be crucial in inhibiting ferroptosis and mitigating aberrant ER stress. Overall, this study not only offers valuable insights into the pathological mechanisms of AD at the ER level but also opens new potential therapeutic avenues targeting these pathways.
Collapse
Affiliation(s)
- Lushan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyi Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qichen Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyuan Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Chen L, Chen M, Xie Y, Zhang Y, Mo S, He Y, Liang T, Liao Y, Huang R, Huang G, Han C, Pham TTH. 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione mediates the effect of ROS-enhanced PI3K/Akt/mTOR pathway on autophagy in breast cancer. FEBS Open Bio 2024. [PMID: 39648951 DOI: 10.1002/2211-5463.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024] Open
Abstract
Several studies have suggested a potential antitumor effect of 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD). To further understand the mechanism of action of this compound, we investigated its effect on the phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. We show that DMDD application significantly inhibited the proliferation of breast cancer cell lines MDA-MB-231 and ER-α positive MCF-7. Furthermore, DMDD application resulted in increased intracellular reactive oxygen species (ROS) levels, apoptosis and autophagy, whereas it downregulated the expression of PI3K, Akt and mTOR mRNA and proteins, and increased the expression of LC3II/I and p62 proteins. In a mouse breast cancer xenograft model, DMDD inhibited tumor growth. Expression analyses suggest that ROS levels were higher in DMDD treated tumor tissues, whereas immunohistochemical analyses suggest that apoptotic cells were more prevalent in the DMDD treated group compared to the control group. Taken together, our results suggest that the molecular mechanism of action of DMDD may involve the enhancement of breast cancer autophagy through the PI3K/Akt/mTOR signaling pathway by mediating ROS expression.
Collapse
Affiliation(s)
- Linqian Chen
- Guangxi Medical University School of Pharmacy, Nanning, China
| | - Meifeng Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Xie
- Guangxi Medical University School of Pharmacy, Nanning, China
| | - Yuyan Zhang
- Guilin Medical College School of Pharmacy, Guilin, China
| | - Shutian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongfei He
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tianyi Liang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Renbin Huang
- Guangxi Medical University School of Pharmacy, Nanning, China
| | - Guodong Huang
- Zhuang & Yao Medicine Research and Development Center, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Thi Thai Hoa Pham
- Zhuang & Yao Medicine Research and Development Center, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
3
|
Wang R, Geng J. The melatonin-FTO-ATF4 signaling pathway protects granulosa cells from cisplatin-induced chemotherapeutic toxicity by suppressing ferroptosis. J Assist Reprod Genet 2024; 41:3503-3516. [PMID: 39388020 PMCID: PMC11707222 DOI: 10.1007/s10815-024-03276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
PURPOSE In cisplatin-induced premature ovarian failure (POF) mice, granulosa cells showed a high level of ferroptosis. Previous research has indicated that the fat mass and obesity-associated protein/activating transcription factor 4 (FTO/ATF4) axis was involved in the regulation of ferroptosis. The purpose of this study was to explore the role of the FTO/ATF4 axis in cisplatin-induced ferroptosis in granulosa cell. METHODS The extent of ferroptosis was assessed by transmission electron microscopy (TEM) and ROS, GPX, GSH, and MDA assays. Western blotting was used to evaluate the protein expression levels of ferroptosis-related molecules. Ferroptosis activator and inhibitor were also used. RESULTS We found that ferroptosis increased in a concentration-dependent manner in cisplatin-induced injured granulosa cells, accompanied by the downregulation of FTO. In addition, gain- and loss-of-function studies showed that FTO affects ferroptosis in injured cells by regulating ATF4 expression. Ferrostatin-1 inhibited the effect of FTO downregulation on injured granulosa cells ferroptosis, and erastin reversed the protective effect of FTO on ferroptosis in injured granulosa cells. Finally, melatonin was used, and we found that melatonin reduced ferroptosis in cisplatin-induced injured granulosa cells by upregulating FTO expression. CONCLUSION Our study demonstrated that cisplatin induced granulosa cell ferroptosis by downregulating the expression of FTO. ATF4 was identified as a downstream target of FTO, and overexpression of ATF4 reversed the effects of decreased FTO on ferroptosis. Additionally, melatonin mitigates the cytotoxic effects of cisplatin by upregulating FTO expression. The melatonin-FTO-ATF4 signaling pathway plays a vital role in the treatment of cisplatin-induced POF.
Collapse
Affiliation(s)
- Rongli Wang
- 1Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China.
| | - Jing Geng
- 1Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
4
|
Dai W, Yang H, Xu B, He T, Liu L, Zhang Z, Ding L, Pei X, Fu X. 3D hUC-MSC spheroids exhibit superior resistance to autophagy and apoptosis of granulosa cells in POF rat model. Reproduction 2024; 168:e230496. [PMID: 38912966 PMCID: PMC11301424 DOI: 10.1530/rep-23-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/24/2024] [Indexed: 06/25/2024]
Abstract
In brief This study reveals that orthotopic transplantation of 3D hUC-MSC spheroids is more effective than monolayer-cultured hUC-MSCs in improving POF and distinctly reducing oxidative stress through the paracrine effect, thereby preventing apoptosis and autophagy of GCs. Abstract Premature ovarian failure (POF) is a common reproductive disease in women younger than 40 years old, and studies have demonstrated that the application of human umbilical cord mesenchymal stem cells (hUC-MSCs) is a promising therapy strategy for POF. Given the previously established therapeutic advantages of 3D MSC spheroids, and to evaluate their effectiveness, both 3D hUC-MSC spheroids and monolayer-cultured hUC-MSCs were employed to treat a cyclophosphamide-induced POF rat model through orthotopic transplantation. The effects of these two forms on POF were subsequently assessed by examining apoptosis, autophagy, and oxidative damage in ovarian granulosa cells (GCs). The results indicated that hUC-MSC spheroids exhibited superior treatment effects on resisting autophagy, apoptosis, and oxidative damage in GCs compared to monolayer-cultured hUC-MSCs. To further elucidate the impact of hUC-MSC spheroids in vitro, a H2O2-induced KGN cells model was established and co-cultured with both forms of hUC-MSCs. As expected, the hUC-MSC spheroids also exhibited superior effects in resisting apoptosis and autophagy caused by oxidative damage. Therefore, this study demonstrates that 3D hUC-MSC spheroids have potential advantages in POF therapy; however, the detailed mechanisms need to be further investigated. Furthermore, this study will provide a reference for the clinical treatment strategy of POF.
Collapse
Affiliation(s)
- Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Tiantian He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Zhen Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liyang Ding
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
5
|
Li F, Zhu F, Wang S, Hu H, Zhang D, He Z, Chen J, Li X, Cheng L, Zhong F. Icariin alleviates cisplatin-induced premature ovarian failure by inhibiting ferroptosis through activation of the Nrf2/ARE pathway. Sci Rep 2024; 14:17318. [PMID: 39068256 PMCID: PMC11283570 DOI: 10.1038/s41598-024-67557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Cisplatin is a widely used chemotherapeutic drug that can induce ovarian damage. Icariin (ICA), a natural antioxidant derived from Epimedium brevicornum Maxim., has been found to protect against organ injury. The aim of the present study was to investigate whether ICA can exert an ovarian-protective effect on cisplatin induced premature ovarian failure (POF) and the underlying mechanism involved. The preventive effect of ICA was evaluated using body weight, the oestrous cycle, ovarian histological analysis, and follicle counting. ICA treatment increased body weight, ovarian weight, and the number of follicles and improved the oestrous cycle in POF mice. ICA reduced cisplatin-induced oxidative damage and upregulated the protein expression levels of Nrf2, GPX4 and HO-1. Moreover, ICA reduced the expression levels of Bax and γH2AX and inhibited ovarian apoptosis. In addition, ICA activated the Nrf2 pathway in vitro and reversed changes in the viability of cisplatin-induced KGN cells, reactive oxygen species (ROS) levels, lipid peroxidation, and apoptosis, and these effects were abrogated when Nrf2 was knocked down or inhibited. Molecular docking confirmed that ICA promotes the release of Nrf2 by competing with Nrf2 for binding to Keap1. The inhibitory effects of ICA on cisplatin-induced oxidative stress, ferroptosis, and apoptosis may be mediated by its modulatory effects on the Nrf2 pathway, providing a novel perspective on the potential mechanisms by which ICA prevents POF.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fengyu Zhu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Siyuan Wang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Huiqing Hu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Di Zhang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhouying He
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiaqi Chen
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xuqing Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Linghui Cheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
6
|
Yuan B, Mao J, Wang J, Luo S, Luo B. Naringenin mitigates cadmium-induced cell death, oxidative stress, mitochondrial dysfunction, and inflammation in KGN cells by regulating the expression of sirtuin-1. Drug Chem Toxicol 2024; 47:445-456. [PMID: 38647073 DOI: 10.1080/01480545.2023.2288798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/05/2023] [Indexed: 04/25/2024]
Abstract
The objective of this study was to examine the potential protective role of naringenin against the harmful effects induced by cadmium in KGN cell line. Cell viability was evaluated by cell counting kit-8 assay. Caspase-3/-9 activities were determined by caspase-3/-9 activity assay kits, respectively. Intracellular reactive oxygen species (ROS) level was detected by ROS-Glo™ H2O2 Assay, antioxidant capacity was determined by a total antioxidant capacity assay kit. Mitochondrial membrane potential (MMP), ATP level, and ATP synthase activity were determined by JC-1, ATP assay kit, and ATP synthase activity assay kit, respectively. The mRNA expression was determined by qRT-PCR. Cadmium reduced cell viability and increased caspase-3/-9 activities in a concentration-dependent manner. Naringenin improved cell viability and reduced caspase-3/-9 activities in cadmium-stimulated KGN cells in a concentration-dependent manner. Cadmium diminished the antioxidant capacity, increased ROS production, and induced mitochondrial dysfunction in KGN cells. These effects were ameliorated by naringenin treatment in a concentration-dependent manner. Furthermore, naringenin reduced the levels of pro-inflammatory cytokines in KGN cells exposed to cadmium. SIRT1 knockdown downregulated its expression in KGN cells and compromised the protective effects of naringenin on cell viability and caspase-3/-9 activities in cadmium-stimulated KGN cells. Naringenin prevented the reduction of MMP, ATP levels, and ATP synthase activity in cadmium-stimulated KGN cells in a concentration-dependent manner. However, these protective effects were significantly reversed by SIRT1 knockdown. In conclusion, this study suggests that naringenin protects against cadmium-induced damage by regulating oxidative stress, mitochondrial function, and inflammation in KGN cells, with SIRT1 playing a potential mediating role.
Collapse
Affiliation(s)
- Ben Yuan
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
| | - Junbiao Mao
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
| | - Junling Wang
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Shuhong Luo
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
| | - Bingbing Luo
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
| |
Collapse
|
7
|
Pan R, Wang R, Cheng F, Wang L, Cui Z, She J, Yang X. Endometrial stem cells alleviate cisplatin-induced ferroptosis of granulosa cells by regulating Nrf2 expression. Reprod Biol Endocrinol 2024; 22:41. [PMID: 38605340 PMCID: PMC11008046 DOI: 10.1186/s12958-024-01208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Premature ovarian failure (POF) caused by cisplatin is a severe and intractable sequela for young women with cancer who received chemotherapy. Cisplatin causes the dysfunction of granulosa cells and mainly leads to but is not limited to its apoptosis and autophagy. Ferroptosis has been also reported to participate, while little is known about it. Our previous experiment has demonstrated that endometrial stem cells (EnSCs) can repair cisplatin-injured granulosa cells. However, it is still unclear whether EnSCs can play a repair role by acting on ferroptosis. METHODS Western blotting and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were applied to detect the expression levels of ferroptosis-related genes. CCK-8 and 5-Ethynyl-2'-deoxyuridine (EdU) assays were used to evaluate cell viability. Transmission electron microscopy (TEM) was performed to detect ferroptosis in morphology. And the extent of ferroptosis was assessed by ROS, GPx, GSSG and MDA indicators. In vivo, ovarian morphology was presented by HE staining and the protein expression in ovarian tissue was detected by immunohistochemistry. RESULTS Our results showed that ferroptosis could occur in cisplatin-injured granulosa cells. Ferroptosis inhibitor ferrostatin-1 (Fer-1) and EnSCs partly restored cell viability and mitigated the damage of cisplatin to granulosa cells by inhibiting ferroptosis. Moreover, the repair potential of EnSCs can be markedly blocked by ML385. CONCLUSION Our study demonstrated that cisplatin could induce ferroptosis in granulosa cells, while EnSCs could inhibit ferroptosis and thus exert repair effects on the cisplatin-induced injury model both in vivo and in vitro. Meanwhile, Nrf2 was validated to participate in this regulatory process and played an essential role.
Collapse
Affiliation(s)
- Rumeng Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Jing She
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China.
| |
Collapse
|
8
|
Wang R, Cheng F, Yang X. FTO attenuates the cytotoxicity of cisplatin in KGN granulosa cell-like tumour cells by regulating the Hippo/YAP1 signalling pathway. J Ovarian Res 2024; 17:62. [PMID: 38491479 PMCID: PMC10941382 DOI: 10.1186/s13048-024-01385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Premature ovarian failure (POF) is a devastating condition for women under 40 years old. Chemotherapy, especially the use of cisplatin, has been demonstrated to promote the apoptosis of granulosa cells in primary and secondary follicles, leading to POF. Our previous studies demonstrated that fat mass- and obesity-associated (FTO) plays an essential role in protecting granulosa cells from cisplatin-induced cytotoxicity. Various studies have suggested that the Hippo/YAP signalling pathway plays a significant role in regulating cell apoptosis and proliferation. Additionally, YAP1 is the main downstream target of the Hippo signalling pathway and is negatively regulated by the Hippo signalling pathway. However, whether the Hippo/YAP signalling pathway is involved in the protective effect of FTO on granulosa cells has not been determined. In this study, we found that after cisplatin treatment, the apoptosis of granulosa cells increased in a concentration-dependent manner, accompanied by the downregulation of FTO and YAP1. Furthermore, overexpression of FTO decreased cisplatin-induced granulosa cell apoptosis, inhibited the Hippo/YAP kinase cascade-induced phosphorylation of YAP1, and promoted the entry of YAP1 into the nucleus. The downstream targets of YAP1 (CTGF, CYR61, and ANKRD1) were also increased. Si-RNA-mediated downregulation of FTO promoted cisplatin-induced granulosa cell apoptosis, activated the Hippo/YAP kinase cascade, and inhibited the YAP1 entry into the nucleus. These effects were completely reversed by the small molecule inhibitor of YAP1-verteporfin (VP). Taken together, these data suggested that FTO-YAP1 plays a positive role in regulating the proliferation of injured granulosa cells induced by cisplatin.
Collapse
Affiliation(s)
- Rongli Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11, Xi-Zhi-Men South Street, Xi Cheng District, Beijing, 100044, China.
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
9
|
Gaspari L, Haouzi D, Gennetier A, Granes G, Soler A, Sultan C, Paris F, Hamamah S. Transgenerational Transmission of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Effects in Human Granulosa Cells: The Role of MicroRNAs. Int J Mol Sci 2024; 25:1144. [PMID: 38256218 PMCID: PMC10816780 DOI: 10.3390/ijms25021144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) might contribute to the increase in female-specific cancers in Western countries. 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) is considered the "prototypical toxicant" to study EDCs' effects on reproductive health. Epigenetic regulation by small noncoding RNAs (sncRNAs), such as microRNAs (miRNA), is crucial for controlling cancer development. The aim of this study was to analyze transcriptional activity and sncRNA expression changes in the KGN cell line after acute (3 h) and chronic (72 h) exposure to 10 nM TCDD in order to determine whether sncRNAs' deregulation may contribute to transmitting TCDD effects to the subsequent cell generations (day 9 and day 14 after chronic exposure). Using Affymetrix GeneChip miRNA 4.0 arrays, 109 sncRNAs were found to be differentially expressed (fold change < -2 or >2; p-value < 0.05) between cells exposed or not (control) to TCDD for 3 h and 72 h and on day 9 and day 14 after chronic exposure. Ingenuity Pathway Analysis predicted that following the acute and chronic exposure of KGN cells, sncRNAs linked to cellular development, growth and proliferation were downregulated, and those linked to cancer promotion were upregulated on day 9 and day 14. These results indicated that TCDD-induced sncRNA dysregulation may have transgenerational cancer-promoting effects.
Collapse
Affiliation(s)
- Laura Gaspari
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, Hôpital Arnaud-de-Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (L.G.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, Hôpital Lapeyronie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Delphine Haouzi
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
- Département de Biologie de la Reproduction et DPI (ART/PGD), Hôpital A. de Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
| | - Aurélie Gennetier
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Gaby Granes
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Alexandra Soler
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
- Global ART Innovation Network (GAIN), 34295 Montpellier, France
| | - Charles Sultan
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, Hôpital Arnaud-de-Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (L.G.); (C.S.)
| | - Françoise Paris
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, Hôpital Arnaud-de-Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (L.G.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, Hôpital Lapeyronie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Samir Hamamah
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
- Département de Biologie de la Reproduction et DPI (ART/PGD), Hôpital A. de Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
| |
Collapse
|
10
|
Qin Y, Wen C, Wu H. CXCL10-based gene cluster model serves as a potential diagnostic biomarker for premature ovarian failure. PeerJ 2023; 11:e16659. [PMID: 38107572 PMCID: PMC10725173 DOI: 10.7717/peerj.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Objective Premature ovarian failure (POF) is a disease with high clinical heterogeneity. Subsequently, its diagnosis is challenging. CXCL10 which is a small signaling protein involved in immune response and inflammation may have diagnostic potential in detection of premature ovarian insufficiency. Therefore, this study aimed to investigate CXCL10 based diagnostic biomarkers for POF. Methods Transcriptome data for POF was obtained from the Gene Expression Omnibus (GEO) database (GSE39501). Principal component analysis (PCA) assessed CXCL10 expression in patients with POF. The receiver operating characteristic (ROC) curve, analyzed using PlotROC, demonstrated the diagnostic potential of CXCL10 and CXCL10-based models for POF. Differentially expressed genes (DEGs) in the control group of POF were identified using DEbylimma. PlotVenn was used to determine the overlap between the POF-control group and the high-/low-expression CXCL10 groups. QuadrantPlot was employed to detect CXCL10-dysregulated genes in POF. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were conducted on DEGs using RunMulti Group cluster Profiler. A POF model was induced with cisplatin (DDP) using KGN cells. RT-qPCR and Western blot were used to measure the expression of CXCL10, apoptosis-related proteins, and peroxisome proliferator-activated receptor (PPAR) signaling pathway-related proteins in this model, following siRNA-mediated silencing of CXCL10. Flow cytometry was employed to assess the apoptosis of KGN cells after CXCL10 downregulation. Results The expression of CXCL10 is dysregulated in POF, and it shows promising diagnostic potential for POF, as evidenced by an area under the curve value of 1. In POF, we found 3,362 up-regulated and 3,969 down-regulated DEGs compared to healthy controls, while the high- and low-expression groups of POF (comprising samples above and below the median CXCL10 expression) exhibited 1,304 up-regulated and 1,315 down-regulated DEGs. Among these, 786 DEGs consistently displayed dysregulation in POF due to CXCL10 influence. Enrichment analysis indicated that the PPAR signaling pathway was activated by CXCL10 in POF. The CXCL10-based model (including CXCL10, Itga2, and Raf1) holds potential as a diagnostic biomarker for POF. Additionally, in the DDP-induced KGN cell model, interfering with CXCL10 expression promoted the secretion of estradiol, and reduced apoptosis. Furthermore, CXCL10 silencing led to decreased expression levels of PPARβ and long-chain acyl-CoA synthetase 1 compared to the Si-NC group. These results suggest that CXCL10 influences the progression of POF through the PPAR signaling pathway. Conclusion The CXCL10-based model, demonstrating perfect diagnostic accuracy for POF and comprising CXCL10, Itga2, and Raf1, holds potential as a valuable diagnostic biomarker. Thus, the expression levels of these genes may collectively provide valuable diagnostic information for POF.
Collapse
Affiliation(s)
- Ying Qin
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
- Reproductive Medicine Center, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Canliang Wen
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Huijiao Wu
- Reproductive Medicine Center, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| |
Collapse
|
11
|
Zhou W, Chen A, Ye Y, Ren Y, Lu J, Xuan F, Jin R. LIPUS combined with TFSC alleviates premature ovarian failure by promoting autophagy and inhibiting apoptosis. Gynecol Endocrinol 2023; 39:2258422. [PMID: 37855244 DOI: 10.1080/09513590.2023.2258422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVE Premature ovarian failure (POF), also known as primary ovarian insufficiency, is a major cause of infertility in female worldwide. Excessive apoptosis and impaired autophagy in ovarian granulosa cells are the main pathological mechanisms of POF. The total flavonoids from semen cuscutae (TFSC) are often used in the treatment of gynecological endocrine disorders. In addition, low intensity pulsed ultrasound (LIPUS) is report as an effective method to improve ovarian function. This study aims to investigate the protective effect of POF by the combined use of TFSC and LIPUS. METHODS POF rats model and granulosa cell model were successfully induced by tripterygium glycosides and cyclophosphamide, respectively. After that, model rats and cells received TFSC plus LIPUS administration. Then ovarian histomorphology, senescence, estrus cycle, and serum sex hormone levels were detected in rats. Ovarian tissue and granulosa cells autophagy and apoptosis levels were also assessed. RESULTS Disturbed sex hormone levels, atrophied and senescent ovaries, and abnormal estrous cycle were found in POF rats. Meanwhile, cell autophagy was inhibited and cell apoptosis was activated in POF ovarian tissue and granulosa cells. However, TFSC combined with LIPUS improved these changes, and this combination treatment exhibited synergistic effects. The abnormal expression of the cell apoptosis-, autophagy-, and PI3K/AKT/mTOR signaling pathway-related proteins were also improved by combination treatment. CONCLUSION The study found that the combination of TFSC and LIPUS can alleviate POF by modulating cell autophagy and apoptosis. The findings may provide a viable scientific basis for POF treatment.
Collapse
Affiliation(s)
- Weimei Zhou
- Department of Ultrasound, Jiaojiang Maternal and Child Health Hospital, Taizhou, China
| | - Aixue Chen
- Department of Gynecology, Changxing People's Hospital of Chongming District, Shanghai, China
| | - Yongju Ye
- Department of gynaecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| | - Yuefang Ren
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Jiali Lu
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Feilan Xuan
- Department of obstetrics and gynecology, Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruiying Jin
- Department of Gynecology, Jiaojiang Maternal and Child Health Hospital, Taizhou, China
| |
Collapse
|
12
|
Wang L, Cheng F, Pan R, Cui Z, She J, Zhang Y, Yang X. FGF2 Rescued Cisplatin-Injured Granulosa Cells through the NRF2-Autophagy Pathway. Int J Mol Sci 2023; 24:14215. [PMID: 37762517 PMCID: PMC10532427 DOI: 10.3390/ijms241814215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Premature ovarian failure (POF) is a complicated disorder related to the apoptosis of granulosa cells. The incidence of chemotherapy-associated POF is rising dramatically owing to the increasing proportion of cancer in adolescents. According to previous studies, oxidative stress caused by chemotherapeutic agents plays an important role in the development of POF. However, the exact effects of nuclear factor-erythroid 2-related factor2 (NRF2), a pivotal anti-oxidative factor, are still unknown in chemotherapy-associated POF. Firstly, we manipulated NRF2 expressions on a genetic or pharmaceutical level in cisplatin-injured granulosa cell models. The results indicate that the increasing NRF2 in cisplatin-injured cells was just compensatory and not enough to resist the accumulated stress. Upregulation of NRF2 could protect granulosa cells against cisplatin via elevating autophagic level by using an autophagic activator (rapamycin) and inhibitor (chloroquine). Additionally, exogenous FGF2 exerted a protective role by increasing NRF2 expression and promoting its nuclear translocation. Meanwhile, the results in cisplatin-POF mice models were consistent with what was found in injured cells. In conclusion, our research proved that FGF2 rescued cisplatin-injured granulosa cells through the NRF2-autophagy pathway and might provide a possible alternative treatment choice by targeting NRF2 for POF patients who are intolerant or unsuitable to FGF2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xinyuan Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (L.W.); (F.C.); (R.P.); (Z.C.); (J.S.); (Y.Z.)
| |
Collapse
|