1
|
Agudelo J, Mukherjee S, Suryavanshi M, Ljubetic B, Lindenbaum MM, Miller AW. Mechanism of Nephrolithiasis: Does the Microbiome Play a Role? Eur Urol Focus 2024:S2405-4569(24)00255-4. [PMID: 39665895 DOI: 10.1016/j.euf.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024]
Abstract
Nephrolithiasis imposes a significant health care burden around the world. In the past decade, there has been considerable interest in the human microbiota in relation to the onset of nephrolithiasis. Most of the research has focused on degradation of oxalate, a known causative factor for nephrolithiasis, by bacteria in the gut. More recently, the role of antibiotic exposure and changes to short-chain fatty acids have been investigated. Studies have revealed that the urinary tract, previously thought to be sterile, harbors resident microbial communities closely associated with nephrolithiasis. In this mini-review, we evaluate potential causative roles of the microbiome in the onset of nephrolithiasis and the development of novel therapies to prevent this disease. PATIENT SUMMARY: This mini-review discusses scientific evidence on the influence of bacteria in our intestines and urinary tract on the formation of kidney stones. We discuss possible therapies targeting these bacteria that could prevent kidney stones from forming.
Collapse
Affiliation(s)
- Jose Agudelo
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Sromona Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Mangesh Suryavanshi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Bernardita Ljubetic
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Aaron W Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA; Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
2
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
3
|
Stepanova N. Dyslipidemia in Peritoneal Dialysis: Implications for Peritoneal Membrane Function and Patient Outcomes. Biomedicines 2024; 12:2377. [PMID: 39457689 PMCID: PMC11505255 DOI: 10.3390/biomedicines12102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Dyslipidemia is a common metabolic complication in patients undergoing peritoneal dialysis (PD) and has traditionally been viewed primarily in terms of cardiovascular risk. Current guidelines do not recommend initiating lipid-lowering therapy in dialysis patients due to insufficient evidence of its benefits on cardiovascular mortality. However, the impact of dyslipidemia in PD patients may extend beyond cardiovascular concerns, influencing PD-related outcomes such as the peritoneal ultrafiltration rate, residual kidney function, PD technique survival, and overall mortality. This review challenges the traditional perspective by discussing dyslipidemia's potential role in PD-related complications, which may account for the observed link between dyslipidemia and increased all-cause mortality in PD patients. It explores the pathophysiology of dyslipidemia in PD, the molecular mechanisms linking dyslipidemia to peritoneal membrane dysfunction, and summarizes clinical evidence supporting this hypothesis. In addition, this paper examines the potential for therapeutic strategies to manage dyslipidemia to improve peritoneal membrane function and patient outcomes. The review calls for future research to investigate dyslipidemia as a potential contributor to peritoneal membrane dysfunction and to develop targeted interventions for PD patients.
Collapse
Affiliation(s)
- Natalia Stepanova
- State Institution “O.O. Shalimov National Scientific Center of Surgery and Transplantology, National Academy of Medical Science of Ukraine”, 03126 Kyiv, Ukraine;
- Medical Center “Nephrocenter”, 03057 Kyiv, Ukraine
| |
Collapse
|
4
|
Han S, Chen Y, Lu Y, Jia M, Xu Y, Wang Y. Association between gut microbiota and diabetic nephropathy: a two-sample mendelian randomization study. BMC Endocr Disord 2024; 24:214. [PMID: 39390505 PMCID: PMC11468553 DOI: 10.1186/s12902-024-01746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Observational studies have demonstrated the alterations of gut microbiota composition in diabetic nephropathy (DN), however, the correlation between gut microbiota and DN remains unclear. METHODS A two-sample Mendelian randomization (MR) analysis was designed to estimate the association between gut microbiota and DN. The summary statistics of gut microbiota from phylum level to genus level were obtained from a large-scale, genome-wide association study involving 18,340 individuals, and the data at the species level was derived from the study of TwinsUK Registry, including 1126 twin pairs. The summary statistics of DN were originated from the latest release data of FinnGen (R7, 299623 participants). The MR estimation was calculated using inverse variance weighted, weighted median, MR-Egger regression, and MR-PRESSO. Heterogeneity was assessed using Cochrane's Q test. RESULTS Inverse variance weighted results indicated that the order Bacteroidetes and its corresponding class and phylum [odds ratio (OR), 1.58; 95% confidence interval (CI), 1.15-2.17], the family Verrucomicrobiaceae and its corresponding class and order (OR, 1.46; 95% CI, 1.14-1.87), the genera Akkermansia (OR, 1.46; 95% CI, 1.14-1.87) and Catenibacterium (OR, 1.33; 95% CI, 1.07-1.66) might be associated with a higher risk of DN; whereas the genera Coprococcus2 (OR, 0.68; 95% CI, 0.51-0.91) and Eubacterium_coprostanoligenes_group (OR, 0.69; 95% CI, 0.52-0.92) might play protective roles in DN. CONCLUSIONS This MR study suggested that several gut bacteria were potentially associated with DN, further studies are required to validate these findings.
Collapse
Affiliation(s)
- Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yinqing Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Meng Jia
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
5
|
Sánchez-Tapia M, Tobón-Cornejo S, Noriega LG, Vázquez-Manjarrez N, Coutiño-Hernández D, Granados-Portillo O, Román-Calleja BM, Ruíz-Margáin A, Macías-Rodríguez RU, Tovar AR, Torres N. Hepatic Steatosis Can Be Partly Generated by the Gut Microbiota-Mitochondria Axis via 2-Oleoyl Glycerol and Reversed by a Combination of Soy Protein, Chia Oil, Curcumin and Nopal. Nutrients 2024; 16:2594. [PMID: 39203731 PMCID: PMC11357552 DOI: 10.3390/nu16162594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a serious health problem, and recent evidence indicates that gut microbiota plays a key role in its development. It is known that 2-oleoyl glycerol (2-OG) produced by the gut microbiota is associated with hepatic fibrosis, but it is not known whether this metabolite is involved in the development of hepatic steatosis. The aim of this study was to evaluate how a high-fat-sucrose diet (HFS) increases 2-OG production through gut microbiota dysbiosis and to identify whether this metabolite modifies hepatic lipogenesis and mitochondrial activity for the development of hepatic steatosis as well as whether a combination of functional foods can reverse this process. Wistar rats were fed the HFS diet for 7 months. At the end of the study, body composition, biochemical parameters, gut microbiota, protein abundance, lipogenic and antioxidant enzymes, hepatic 2-OG measurement, and mitochondrial function of the rats were evaluated. Also, the effect of the consumption of functional food with an HFS diet was assessed. In humans with MASLD, we analyzed gut microbiota and serum 2-OG. Consumption of the HFS diet in Wistar rats caused oxidative stress, hepatic steatosis, and gut microbiota dysbiosis, decreasing α-diversity and increased Blautia producta abundance, which increased 2-OG. This metabolite increased de novo lipogenesis through ChREBP and SREBP-1. 2-OG significantly increased mitochondrial dysfunction. The addition of functional foods to the diet modified the gut microbiota, reducing Blautia producta and 2-OG levels, leading to a decrease in body weight gain, body fat mass, serum glucose, insulin, cholesterol, triglycerides, fatty liver formation, and increased mitochondrial function. To use 2-OG as a biomarker, this metabolite was measured in healthy subjects or with MASLD, and it was observed that subjects with hepatic steatosis II and III had significantly higher 2-OG than healthy subjects, suggesting that the abundance of this circulating metabolite could be a predictor marker of hepatic steatosis.
Collapse
Affiliation(s)
- Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, México; (M.S.-T.); (S.T.-C.); (L.G.N.); (N.V.-M.); (D.C.-H.); (O.G.-P.); (A.R.T.)
| | - Sandra Tobón-Cornejo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, México; (M.S.-T.); (S.T.-C.); (L.G.N.); (N.V.-M.); (D.C.-H.); (O.G.-P.); (A.R.T.)
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, México; (M.S.-T.); (S.T.-C.); (L.G.N.); (N.V.-M.); (D.C.-H.); (O.G.-P.); (A.R.T.)
| | - Natalia Vázquez-Manjarrez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, México; (M.S.-T.); (S.T.-C.); (L.G.N.); (N.V.-M.); (D.C.-H.); (O.G.-P.); (A.R.T.)
| | - Diana Coutiño-Hernández
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, México; (M.S.-T.); (S.T.-C.); (L.G.N.); (N.V.-M.); (D.C.-H.); (O.G.-P.); (A.R.T.)
| | - Omar Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, México; (M.S.-T.); (S.T.-C.); (L.G.N.); (N.V.-M.); (D.C.-H.); (O.G.-P.); (A.R.T.)
| | - Berenice M. Román-Calleja
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, México; (B.M.R.-C.); (A.R.-M.); (R.U.M.-R.)
| | - Astrid Ruíz-Margáin
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, México; (B.M.R.-C.); (A.R.-M.); (R.U.M.-R.)
| | - Ricardo U. Macías-Rodríguez
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, México; (B.M.R.-C.); (A.R.-M.); (R.U.M.-R.)
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, México; (M.S.-T.); (S.T.-C.); (L.G.N.); (N.V.-M.); (D.C.-H.); (O.G.-P.); (A.R.T.)
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, México; (M.S.-T.); (S.T.-C.); (L.G.N.); (N.V.-M.); (D.C.-H.); (O.G.-P.); (A.R.T.)
| |
Collapse
|
6
|
Ezenabor EH, Adeyemi AA, Adeyemi OS. Gut Microbiota and Metabolic Syndrome: Relationships and Opportunities for New Therapeutic Strategies. SCIENTIFICA 2024; 2024:4222083. [PMID: 39041052 PMCID: PMC11262881 DOI: 10.1155/2024/4222083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/10/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024]
Abstract
Since its discovery, numerous studies have shown the role of the microbiota in well-being and disease. The gut microbiota represents an essential factor that plays a multidirectional role that affects not just the gut but also other parts of the body, including the brain, endocrine system, humoral system, immune system, and metabolic pathways, as well as host-microbiome interactions. Through a comprehensive analysis of existing literature using the desktop research methodology, this review elucidates the mechanisms by which gut microbiota dysbiosis contributes to metabolic dysfunction, including obesity, dyslipidaemia, hypertension, atherosclerosis, hyperuricemia, and hyperglycaemia. Furthermore, it examines the bidirectional communication pathways between gut microbiota and host metabolism, highlighting the role of microbial-derived metabolites, immune modulation, and gut barrier integrity in shaping metabolic homeostasis. Importantly, the review identifies promising therapeutic strategies targeting the gut microbiota as potential interventions for metabolic syndrome, including probiotics, prebiotics, symbiotics, dietary modifications, and faecal microbiota transplantation. By delineating the bidirectional interactions between gut microbiota and metabolic syndrome, the review not only advances our understanding of disease pathophysiology but also underscores the potential for innovative microbiota-based interventions to mitigate the global burden of metabolic syndrome and its associated complications.
Collapse
Affiliation(s)
- Emmanuel Henry Ezenabor
- Department of BiochemistryMedicinal Biochemistry, Nanomedicine & Toxicology LaboratoryBowen University, Iwo 232102, Osun State, Nigeria
| | - Aishat Abimbola Adeyemi
- Department of BiochemistryMedicinal Biochemistry, Nanomedicine & Toxicology LaboratoryBowen University, Iwo 232102, Osun State, Nigeria
| | - Oluyomi Stephen Adeyemi
- Department of BiochemistryMedicinal Biochemistry, Nanomedicine & Toxicology LaboratoryBowen University, Iwo 232102, Osun State, Nigeria
| |
Collapse
|
7
|
Liu ZH, Ai S, Xia Y, Wang HL. Intestinal toxicity of Pb: Structural and functional damages, effects on distal organs and preventive strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172781. [PMID: 38685433 DOI: 10.1016/j.scitotenv.2024.172781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Lead (Pb) is one of the most common heavy metal pollutants that possesses multi-organ toxicity. For decades, great efforts have been devoted to investigate the damage of Pb to kidney, liver, bone, blood cells and the central nervous system (CNS). For the common, dietary exposure is the main avenue of Pb, but our knowledge of Pb toxicity in gastrointestinal tract (GIT) remains quite insufficient. Importantly, emerging evidence has documented that gastrointestinal disorders affect other distal organs like brain and liver though gut-brain axis or gut-liver axis, respectively. This review focuses on the recent understanding of intestinal toxicity of Pb exposure, including structural and functional damages. We also review the influence and mechanism of intestinal toxicity on other distal organs, mainly concentrated on brain and liver. At last, we summarize the bioactive substances that reported to alleviate Pb toxicity, providing potential dietary intervention strategies to prevent or attenuate Pb toxicity.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| |
Collapse
|
8
|
Aleksova A, Fluca AL, Stornaiuolo M, Barbati G, Pierri A, Zwas DR, Santon D, D'Errico S, Marketou M, Sinagra G, Avraham Y, Novellino E, Janjusevic M. Intra-hospital variation of gut microbiota product, trimethylamine N-oxide (TMAO), predicts future major adverse cardiovascular events after myocardial infarction. Hellenic J Cardiol 2024:S1109-9666(24)00111-8. [PMID: 38729348 DOI: 10.1016/j.hjc.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Trimethylamine N-oxide (TMAO) has been associated with atherosclerosis and poor outcome. We evaluated the prognostic impact of intra-hospital TMAO variation on patient outcome. METHODS AND RESULTS Blood samples from 149 patients with acute myocardial infarction (AMI) were taken on admission and discharge. Plasma TMAO was determined by HPLC-MS. The endpoint was a composite three-point MACE (major adverse cardiovascular events), including all-cause mortality, re-infarction, or heart failure (HF) development. Median TMAO concentration on admission was significantly higher than on discharge (respectively, 7.81 [3.47-19.98] vs 3.45 [2.3-4.78] μM, p < 0.001). After estimating the 3.45 μM TMAO cut-off with the analysis of the continuous hazard ratio, we divided our cohort into two groups. The first group included 75 (50.3%) patients whose TMAO levels remained below or decreased under cut-off (low-low/high-low; LL/HL), while the second group included 74 (49.7%) patients whose TMAO levels remained high or increased above the cut-off during hospitalisation (high-high/low-high; HH/LH). During the median 30-month follow-up, 21.5% of patients experienced the composite endpoint. At Kaplan-Meier analysis, a trend of increasing MACE risk was observed in patients in the HH/LH group (p = 0.05). At multivariable Cox analysis, patients from the HH/LH group had more than two times higher risk of MACE during the follow-up than the LL/HL group (HR = 2.15 [95% CI, 1.03-4.5], p = 0.04). Other independent predictors of MACE were older age and worse left ventricular systolic function. CONCLUSION In patients with AMI, permanently high or increasing TMAO levels during hospitalisation are associated with a higher risk of MACE during long-term follow-up.
Collapse
Affiliation(s)
- Aneta Aleksova
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| | - Alessandra Lucia Fluca
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Giulia Barbati
- Biostatistics Unit, Department of Medical Sciences, University of Trieste, Italy
| | - Alessandro Pierri
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Cardiology, San Paolo Hospital, Bari, Italy
| | - Donna R Zwas
- Linda Joy Pollin Cardiovascular Wellness Center for Women, Heart Institute, Hadassah University Medical Center, Jerusalem, Israel
| | - Daniela Santon
- Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Stefano D'Errico
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Maria Marketou
- Heraklion University General Hospital, University of Crete, School of Medicine, Cardiology Department Crete, Greece
| | - Gianfranco Sinagra
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Yosefa Avraham
- Department of Human Nutrition and Metabolism, School of Public Health Medical Faculty Jerusalem, Jerusalem 91120, Israel
| | - Ettore Novellino
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, Rome 00168, Italy; Inventia Biotech Centro Ricerche Alimentari Healthcare, Caserta, Italy
| | - Milijana Janjusevic
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
9
|
Mirzababaei A, Mahmoodi M, Keshtkar A, Ashraf H, Abaj F, Soveid N, Hajmir MM, Radmehr M, Khalili P, Mirzaei K. Serum levels of trimethylamine N-oxide and kynurenine novel biomarkers are associated with adult metabolic syndrome and its components: a case-control study from the TEC cohort. Front Nutr 2024; 11:1326782. [PMID: 38321994 PMCID: PMC10844432 DOI: 10.3389/fnut.2024.1326782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Background Epidemiologic research suggests that gut microbiota alteration (dysbiosis) may play a role in the pathogenesis of metabolic syndrome (MetS). Dysbiosis can influence Trimethylamine N-oxide (TMAO) a gut microbiota-derived metabolite, as well as kynurenine pathways (KP), which are known as a new marker for an early predictor of chronic diseases. Hence, the current study aimed to investigate the association between KYN and TMAO with MetS and its components. Methods This case-control study was conducted on 250 adults aged 18 years or over of Tehran University of Medical Sciences (TUMS) Employee's Cohort study (TEC) in the baseline phase. Data on the dietary intakes were collected using a validated dish-based food frequency questionnaire (FFQ) and dietary intakes of nitrite and nitrate were estimated using FFQ with 144 items. MetS was defined according to the NCEP ATP criteria. Serum profiles TMAO and KYN were measured by standard protocol. Result The mean level of TMAO and KYN in subjects with MetS was 51.49 pg/mL and 417.56 nmol/l. High levels of TMAO (≥30.39 pg/mL) with MetS were directly correlated, after adjusting for confounding factors, the odds of MetS in individuals 2.37 times increased (OR: 2.37, 95% CI: 1.31-4.28, P-value = 0.004), also, high levels of KYN (≥297.18 nmol/L) increased odds of Mets+ 1.48 times, which is statistically significant (OR: 1.48, 95% CI: 0.83-2.63, P-value = 0.04). High levels of TMAO compared with the reference group increased the odds of hypertriglyceridemia and low HDL in crude and adjusted models (P < 0.05). Additionally, there was a statistically significant high level of KYN increased odds of abdominal obesity (P < 0.05). Conclusion Our study revealed a positive association between serum TMAO and KYN levels and MetS and some of its components. For underlying mechanisms and possible clinical implications of the differences. Prospective studies in healthy individuals are necessary.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahmoodi
- Department of Cellular and Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Disaster and Emergency Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Ashraf
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Abaj
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Neda Soveid
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Mehri Hajmir
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Radmehr
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pardis Khalili
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Cipryan L, Kosek V, García CJ, Dostal T, Bechynska K, Hajslova J, Hofmann P. A lipidomic and metabolomic signature of a very low-carbohydrate high-fat diet and high-intensity interval training: an additional analysis of a randomized controlled clinical trial. Metabolomics 2023; 20:10. [PMID: 38141101 DOI: 10.1007/s11306-023-02071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Regular physical activity and dietary variety are modifiable and influential factors of health outcomes. However, the cumulative effects of these behaviors are not well understood. Metabolomics may have a promising research potential to extend our knowledge and use it in the attempts to find a long-term and sustainable personalized approach in exercise and diet recommendations. OBJECTIVE The main aim was to investigate the effect of the 12 week very low carbohydrate high fat (VLCHF) diet and high-intensity interval training (HIIT) on lipidomic and metabolomic profiles in individuals with overweight and obesity. METHODS The participants (N = 91) were randomly allocated to HIIT (N = 22), VLCHF (N = 25), VLCHF + HIIT (N = 25) or control (N = 19) groups for 12 weeks. Fasting plasma samples were collected before the intervention and after 4, 8 and 12 weeks. The samples were then subjected to untargeted lipidomic and metabolomic analyses using reversed phase ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry. RESULTS The VLCHF diet affected plasma lipids considerably while the effect of HIIT was unremarkable. Already after 4 weeks of intervention substantial changes of plasma lipids were found in both VLCHF diet groups. The changes persisted throughout the entire 12 weeks of the VLCHF diet. Specifically, acyl carnitines, plasmalogens, fatty acyl esters of hydroxy fatty acid, sphingomyelin, ceramides, cholesterol esters, fatty acids and 4-hydroxybutyric were identified as lipid families that increased in the VLCHF diet groups whereas lipid families of triglycerides and glycerophospholipids decreased. Additionally, metabolomic analysis showed a decrease of theobromine. CONCLUSIONS This study deciphers the specific responses to a VLCHF diet, HIIT and their combination by analysing untargeted lipidomic and metabolomic profile. VLCHF diet caused divergent changes of plasma lipids and other metabolites when compared to the exercise and control group which may contribute to a better understanding of metabolic changes and the appraisal of VLCHF diet benefits and harms. CLINICAL TRIAL REGISTRY NUMBER NCT03934476, registered 1st May 2019 https://clinicaltrials.gov/ct2/show/NCT03934476?term=NCT03934476&draw=2&rank=1 .
Collapse
Affiliation(s)
- Lukas Cipryan
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Vit Kosek
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic.
| | - Carlos J García
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Tomas Dostal
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Kamila Bechynska
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Peter Hofmann
- Institute of Human Movement Science, Sport and Health, Exercise Physiology, Training and Training Therapy Research Group, University of Graz, Graz, Austria
| |
Collapse
|
11
|
Zhou X, Lian P, Liu H, Wang Y, Zhou M, Feng Z. Causal Associations between Gut Microbiota and Different Types of Dyslipidemia: A Two-Sample Mendelian Randomization Study. Nutrients 2023; 15:4445. [PMID: 37892520 PMCID: PMC10609956 DOI: 10.3390/nu15204445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The determination of a causal association between gut microbiota and a range of dyslipidemia remains uncertain. To clarify these associations, we employed a two-sample Mendelian randomization (MR) analysis utilizing the inverse-variance weighted (IVW) method. This comprehensive analysis investigated the genetic variants that exhibited a significant association (p < 5 × 10-8) with 129 distinct gut microbiota genera and their potential link to different types of dyslipidemia. The results indicated a potential causal association between 22 gut microbiota genera and dyslipidemia in humans. Furthermore, these findings suggested that the impact of gut microbiota on dyslipidemia regulation is dependent on the specific phylum, family, and genus. Bacillota phylum demonstrated the greatest diversity, with 15 distinct genera distributed among eight families. Notably, gut microbiota-derived from the Lachnospiraceae and Lactobacillaceae families exhibit statistically significant associations with lipid levels that contribute to overall health (p < 0.05). The sensitivity analysis indicated that our findings possess robustness (p > 0.05). The findings of our investigation provide compelling evidence that substantiates a causal association between the gut microbiota and dyslipidemia in the human body. It is noteworthy to highlight the significant influence of the Bacillota phylum as a crucial regulator of lipid levels, and the families Lachnospiraceae and Lactobacillaceae should be recognized as probiotics that significantly contribute to this metabolic process.
Collapse
Affiliation(s)
| | | | | | | | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.Z.); (P.L.); (H.L.); (Y.W.)
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.Z.); (P.L.); (H.L.); (Y.W.)
| |
Collapse
|
12
|
Rašković A, Tomas A, Stilinović N, Kovačević ND, Al-Salami H. Editorial: Therapeutic potential of natural products-based drugs in regulation of lipid metabolism. Front Pharmacol 2023; 14:1216367. [PMID: 37351511 PMCID: PMC10282934 DOI: 10.3389/fphar.2023.1216367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Affiliation(s)
- Aleksandar Rašković
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Ana Tomas
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nebojša Stilinović
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Duborija Kovačević
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| |
Collapse
|