1
|
Tung PW, Thaker VV, Gallagher D, Kupsco A. Mitochondrial Health Markers and Obesity-Related Health in Human Population Studies: A Narrative Review of Recent Literature. Curr Obes Rep 2024; 13:724-738. [PMID: 39287712 DOI: 10.1007/s13679-024-00588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE OF REVIEW This narrative review summarizes current literature on the relationship of mitochondrial biomarkers with obesity-related characteristics, including body mass index and body composition. RECENT FINDINGS Mitochondria, as cellular powerhouses, play a pivotal role in energy production and the regulation of metabolic process. Altered mitochondrial functions contribute to obesity, yet evidence of the intricate relationship between mitochondrial dynamics and obesity-related outcomes in human population studies is scarce and warrants further attention. We discuss emerging evidence linking obesity and related health outcomes to impaired oxidative phosphorylation pathways, oxidative stress and mtDNA variants, copy number and methylation, all hallmark of suboptimal mitochondrial function. We also explore the influence of dietary interventions and metabolic and bariatric surgery procedures on restoring mitochondrial attributes of individuals with obesity. Finally, we report on the potential knowledge gaps in the mitochondrial dynamics for human health for future study.
Collapse
Affiliation(s)
- Pei Wen Tung
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Vidhu V Thaker
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Dympna Gallagher
- Department of Medicine, Columbia University Irving Medical Center , New York, NY, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Wevers A, San Roman-Mata S, Navarro-Ledesma S, Pruimboom L. The Role of Insulin Within the Socio-Psycho-Biological Framework in Type 2 Diabetes-A Perspective from Psychoneuroimmunology. Biomedicines 2024; 12:2539. [PMID: 39595105 PMCID: PMC11591609 DOI: 10.3390/biomedicines12112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
The interplay between socio-psychological factors and biological systems is pivotal in defining human health and disease, particularly in chronic non-communicable diseases. Recent advancements in psychoneuroimmunology and mitochondrial psychobiology have emphasized the significance of psychological factors as critical determinants of disease onset, progression, recurrence, and severity. These insights align with evolutionary biology, psychology, and psychiatry, highlighting the inherent social nature of humans. This study proposes a theory that expands insulin's role beyond traditional metabolic functions, incorporating it into the Mitochondrial Information Processing System (MIPS) and exploring it from an evolutionary medicine perspective to explore its function in processing psychological and social factors into biological responses. This narrative review comprises data from preclinical animal studies, longitudinal cohort studies, cross-sectional studies, machine learning analyses, and randomized controlled trials, and investigates the role of insulin in health and disease. The result is a proposal for a theoretical framework of insulin as a social substance within the socio-psycho-biological framework, emphasizing its extensive roles in health and disease. Type 2 Diabetes Mellitus (T2DM) with musculoskeletal disorders and neurodegeneration exemplifies this narrative. We suggest further research towards a comprehensive treatment protocol meeting evolutionary expectations, where incorporating psychosocial interventions plays an essential role. By supporting the concept of 'insulin resilience' and suggesting the use of heart rate variability to assess insulin resilience, we aim to provide an integrative approach to managing insulin levels and monitoring the effectiveness of interventions. This integrative strategy addresses broader socio-psychological factors, ultimately improving health outcomes for individuals with T2DM and musculoskeletal complications and neurodegeneration while providing new insights into the interplay between socio-psychological factors and biological systems in chronic diseases.
Collapse
Affiliation(s)
- Anne Wevers
- Clinical Medicine and Public Health PhD Program, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain;
| | - Silvia San Roman-Mata
- Department of Nursing, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain;
| | - Santiago Navarro-Ledesma
- Department of Physical Therapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| | - Leo Pruimboom
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| |
Collapse
|
3
|
Geng Q, Gao R, Sun Y, Chen S, Sun L, Li W, Li Z, Zhao Y, Zhao F, Zhang Y, Li A, Liu H. Mitochondrial DNA content and methylation in sperm of patients with asthenozoospermia. J Assist Reprod Genet 2024; 41:2795-2805. [PMID: 39190228 PMCID: PMC11535106 DOI: 10.1007/s10815-024-03236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
PURPOSE The aim of the current study was to investigate the mtDNA methylation levels and mtDNA copy numbers in the sperm of patients with asthenozoospermia and compare them to those observed in controls with normozoospermia. METHODS Pyrosequencing analysis of the methylation levels of the mitochondrial D-loop and MT-CO1/chr1:631,907-632083/chrX:26,471,887-126,472,063 (hereinafter referred to as "MT-CO1-AVG") region and quantitative PCR analysis of the mtDNA copy number were performed on sperm from 30 patients with asthenozoospermia and 30 controls with normozoospermia. RESULTS Compared with those of controls with normozoospermia, the methylation levels of D-loop and MT-CO1-AVG regions and mtDNA copy number were significantly higher in patients with asthenozoospermia. The methylation level of the D-loop region in patients with asthenozoospermia and controls with normozoospermia and that of MT-CO1-AVG region in patients with asthenozoospermia showed a decreasing tendency with increasing total sperm motility. A significant inverse correlation between the mtDNA copy number and total sperm motility was observed in patients with asthenozoospermia but not in controls with normozoospermia. In patients with asthenozoospermia, but not in controls with normozoospermia, we observed a significant inverse correlation between D-loop methylation levels and mtDNA copy number, while no significant correlation was observed between MT-CO1-AVG methylation levels and mtDNA copy number. CONCLUSION These results reveal the occurrence of mtDNA methylation in human sperm and altered D-loop and MT-CO1-AVG methylation levels in patients with asthenozoospermia. Additional research is needed to determine the function of these features in the etiology and course of asthenozoospermia.
Collapse
Affiliation(s)
- Qiang Geng
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ruifang Gao
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China.
| | - Yuan Sun
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shaofeng Chen
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lili Sun
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Wei Li
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Zhong Li
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu Zhao
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Zhao
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ying Zhang
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Anwen Li
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongbin Liu
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China.
- Health Commission of Heping District, Tianjin, China.
| |
Collapse
|
4
|
Li C, Ni S, Zhao L, Lin H, Yang X, Zhang Q, Zhang L, Guo L, Jiang S, Tang N. Effects of PM 2.5 and high-fat diet on glucose and lipid metabolisms and role of MT-COX3 methylation in male rats. ENVIRONMENT INTERNATIONAL 2024; 188:108780. [PMID: 38821017 DOI: 10.1016/j.envint.2024.108780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/24/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Both fine particulate matter (PM2.5) and high-fat diet (HFD) can cause changes in glucose and lipid metabolisms; however, the mechanism of their combined effects on glucose and lipid metabolisms is still unclear. This study aimed to investigate the effects of PM2.5 and HFD co-exposure on glucose and lipid metabolisms and mitochondrial DNA methylation in Wistar rats. PM2.5 and HFD co-treatment led to an increase in fasting blood glucose levels, an alteration in glucose tolerance, and a decrease in high density lipoprotein cholesterol (HDL-C) levels in Wistar rats. In the homeostasis model assessment (HOMA), HOMA-insulin resistance (HOMA-IR) increased and HOMA-insulin sensitivity (HOMA-IS) and HOMA-β cell function (HOMA-β) decreased in rats co-exposed to PM2.5 and HFD. Additionally, superoxide dismutase (SOD) and malondialdehyde (MDA) levels were increased, and interleukin-6 (IL-6) and interleukin-10 (IL-10) mRNA expressions were upregulated in the brown adipose tissue following PM2.5 and HFD co-exposure. Bisulfite pyrosequencing was used to detect the methylation levels of mitochondrially-encoded genes (MT-COX1, MT-COX2 and MT-COX3), and MT-COX3 was hypermethylated in the PM2.5 and HFD co-exposure group. Moreover, MT-COX3-Pos.2 mediated 36.41 % (95 % CI: -27.42, -0.75) of the total effect of PM2.5 and HFD exposure on HOMA-β. Our study suggests that PM2.5 and HFD co-exposure led to changes in glucose and lipid metabolisms in rats, which may be related to oxidative stress and inflammatory responses, followed by mitochondrial stress leading to MT-COX3 hypermethylation. Moreover, MT-COX3-Pos.2 was found for the first time as a mediator in the impact of co-exposure to PM2.5 and HFD on β-cell function. It could serve as a potential biomarker, offering fresh insights into the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Shu Ni
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 32500, China
| | - Huishu Lin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 32500, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 32500, China.
| | - Shoufang Jiang
- Department of Occupational and Environmental Health, Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| |
Collapse
|
5
|
Long Y, Mao C, Liu S, Tao Y, Xiao D. Epigenetic modifications in obesity-associated diseases. MedComm (Beijing) 2024; 5:e496. [PMID: 38405061 PMCID: PMC10893559 DOI: 10.1002/mco2.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
The global prevalence of obesity has reached epidemic levels, significantly elevating the susceptibility to various cardiometabolic conditions and certain types of cancer. In addition to causing metabolic abnormalities such as insulin resistance (IR), elevated blood glucose and lipids, and ectopic fat deposition, obesity can also damage pancreatic islet cells, endothelial cells, and cardiomyocytes through chronic inflammation, and even promote the development of a microenvironment conducive to cancer initiation. Improper dietary habits and lack of physical exercise are important behavioral factors that increase the risk of obesity, which can affect gene expression through epigenetic modifications. Epigenetic alterations can occur in early stage of obesity, some of which are reversible, while others persist over time and lead to obesity-related complications. Therefore, the dynamic adjustability of epigenetic modifications can be leveraged to reverse the development of obesity-associated diseases through behavioral interventions, drugs, and bariatric surgery. This review provides a comprehensive summary of the impact of epigenetic regulation on the initiation and development of obesity-associated cancers, type 2 diabetes, and cardiovascular diseases, establishing a theoretical basis for prevention, diagnosis, and treatment of these conditions.
Collapse
Affiliation(s)
- Yiqian Long
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaChina
| | - Shuang Liu
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaChina
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic SurgerySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Desheng Xiao
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
6
|
Guo YC, Cao HD, Lian XF, Wu PX, Zhang F, Zhang H, Lu DH. Molecular mechanisms of noncoding RNA and epigenetic regulation in obesity with consequent diabetes mellitus development. World J Diabetes 2023; 14:1621-1631. [DOI: 10.4239/wjd.v14.i11.1621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/26/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetes mellitus (DM) and obesity have become two of the most prevalent and challenging diseases worldwide, with increasing incidence and serious complications. Recent studies have shown that noncoding RNA (ncRNA) and epigenetic regulation play crucial roles in the pathogenesis of DM complicated by obesity. Identification of the involvement of ncRNA and epigenetic regulation in the pathogenesis of diabetes with obesity has opened new avenues of investigation. Targeting these mechanisms with small molecules or RNA-based therapies may provide a more precise and effective approach to diabetes treatment than traditional therapies. In this review, we discuss the molecular mechanisms of ncRNA and epigenetic regulation and their potential therapeutic targets, and the research prospects for DM complicated with obesity.
Collapse
Affiliation(s)
- Yi-Chen Guo
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Hao-Di Cao
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Xiao-Fen Lian
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Pei-Xian Wu
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Fan Zhang
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Hua Zhang
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Dong-Hui Lu
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| |
Collapse
|
7
|
Hu K, Deya Edelen E, Zhuo W, Khan A, Orbegoso J, Greenfield L, Rahi B, Griffin M, Ilich JZ, Kelly OJ. Understanding the Consequences of Fatty Bone and Fatty Muscle: How the Osteosarcopenic Adiposity Phenotype Uncovers the Deterioration of Body Composition. Metabolites 2023; 13:1056. [PMID: 37887382 PMCID: PMC10608812 DOI: 10.3390/metabo13101056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Adiposity is central to aging and several chronic diseases. Adiposity encompasses not just the excess adipose tissue but also body fat redistribution, fat infiltration, hypertrophy of adipocytes, and the shifting of mesenchymal stem cell commitment to adipogenesis. Bone marrow adipose tissue expansion, inflammatory adipokines, and adipocyte-derived extracellular vesicles are central to the development of osteopenic adiposity. Adipose tissue infiltration and local adipogenesis within the muscle are critical in developing sarcopenic adiposity and subsequent poorer functional outcomes. Ultimately, osteosarcopenic adiposity syndrome is the result of all the processes noted above: fat infiltration and adipocyte expansion and redistribution within the bone, muscle, and adipose tissues, resulting in bone loss, muscle mass/strength loss, deteriorated adipose tissue, and subsequent functional decline. Increased fat tissue, typically referred to as obesity and expressed by body mass index (the latter often used inadequately), is now occurring in younger age groups, suggesting people will live longer with the negative effects of adiposity. This review discusses the role of adiposity in the deterioration of bone and muscle, as well as adipose tissue itself. It reveals how considering and including adiposity in the definition and diagnosis of osteopenic adiposity, sarcopenic adiposity, and osteosarcopenic adiposity will help in better understanding the pathophysiology of each and accelerate possible therapies and prevention approaches for both relatively healthy individuals or those with chronic disease.
Collapse
Affiliation(s)
- Kelsey Hu
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Elizabeth Deya Edelen
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Wenqing Zhuo
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Aliya Khan
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Josselyne Orbegoso
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Lindsey Greenfield
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Berna Rahi
- Department of Human Sciences, Sam Houston State University College of Health Sciences, Huntsville, TX 77341, USA;
| | - Michael Griffin
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Jasminka Z. Ilich
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32304, USA;
| | - Owen J. Kelly
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| |
Collapse
|
8
|
Kaplánek R, Kejík Z, Hajduch J, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hosnedlová B, Hromádka R, Dytrych P, Novotný P, Abramenko N, Antonyová V, Hoskovec D, Babula P, Masařík M, Martásek P, Jakubek M. TET protein inhibitors: Potential and limitations. Biomed Pharmacother 2023; 166:115324. [PMID: 37598475 DOI: 10.1016/j.biopha.2023.115324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
TET proteins (methylcytosine dioxygenases) play an important role in the regulation of gene expression. Dysregulation of their activity is associated with many serious pathogenic states such as oncological diseases. Regulation of their activity by specific inhibitors could represent a promising therapeutic strategy. Therefore, this review describes various types of TET protein inhibitors in terms of their inhibitory mechanism and possible applicability. The potential and possible limitations of this approach are thoroughly discussed in the context of TET protein functionality in living systems. Furthermore, possible therapeutic strategies based on the inhibition of TET proteins are presented and evaluated, especially in the field of oncological diseases.
Collapse
Affiliation(s)
- Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Božena Hosnedlová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Róbert Hromádka
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Petr Novotný
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Veronika Antonyová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
9
|
Lower Circulating Cell-Free Mitochondrial DNA Is Associated with Heart Failure in Type 2 Diabetes Mellitus Patients. CARDIOGENETICS 2023. [DOI: 10.3390/cardiogenetics13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Cell-free nuclear (cf-nDNA) and mitochondrial (cf-mDNA) DNA are released from damaged cells in type 2 diabetes mellitus (T2DM) patients, contributing to adverse cardiac remodeling, vascular dysfunction, and inflammation. The purpose of this study was to correlate the presence and type of cf-DNAs with HF in T2DM patients. A total of 612 T2DM patients were prescreened by using a local database, and 240 patients (120 non-HF and 120 HF individuals) were ultimately selected. The collection of medical information, including both echocardiography and Doppler imagery, as well as the assessment of biochemistry parameters and the circulating biomarkers, were performed at baseline. The N-terminal brain natriuretic pro-peptide (NT-proBNP) and cf-nDNA/cf-mtDNA levels were measured via an ELISA kit and real-time quantitative PCR tests, respectively. We found that HF patients possessed significantly higher levels of cf-nDNA (9.9 ± 2.5 μmol/L vs. 5.4 ± 2.7 μmol/L; p = 0.04) and lower cf-mtDNA (15.7 ± 3.3 μmol/L vs. 30.4 ± 4.8 μmol/L; p = 0.001) than those without HF. The multivariate log regression showed that the discriminative potency of cf-nDNA >7.6 μmol/L (OR = 1.07; 95% CI = 1.03–1.12; p = 0.01) was higher that the NT-proBNP (odds ratio [OR] = 1.10; 95% confidence interval [CI] = 1.04–1.19; p = 0.001) for HF. In conclusion, we independently established that elevated levels of cf-nDNA, originating from NT-proBNP, were associated with HF in T2DM patients.
Collapse
|