1
|
Palmas V, Deledda A, Heidrich V, Sanna G, Cambarau G, Fosci M, Puglia L, Cappai EA, Lai A, Loviselli A, Manzin A, Velluzzi F. Impact of Ketogenic and Mediterranean Diets on Gut Microbiota Profile and Clinical Outcomes in Drug-Naïve Patients with Diabesity: A 12-Month Pilot Study. Metabolites 2025; 15:22. [PMID: 39852366 DOI: 10.3390/metabo15010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Managing type 2 diabetes mellitus (T2DM) and obesity requires a multidimensional, patient-centered approach including nutritional interventions (NIs) and physical activity. Changes in the gut microbiota (GM) have been linked to obesity and the metabolic alterations typical of T2DM and obesity, and they are strongly influenced by diet. However, few studies have evaluated the effects on the GM of a very-low-calorie ketogenic diet (VLCKD) in patients with T2DM, especially in the mid-term and long-term. This longitudinal study is aimed at evaluating the mid-term and long-term impact of the VLCKD and Mediterranean diet (MD) on the GM and on the anthropometric, metabolic, and lifestyle parameters of 11 patients with T2DM and obesity (diabesity). This study extends previously published results evaluating the short-term (three months) impact of these NIs on the same patients. Methods: At baseline, patients were randomly assigned to either a VLCKD (KETO group) or a Mediterranean diet (MEDI group). After two months, the KETO group gradually shifted to a Mediterranean diet (VLCKD-MD), according to current VLCKD guidelines. From the fourth month until the end of the study both groups followed a similar MD. Previous published results showed that VLCKD had a more beneficial impact than MD on several variables for 3 months of NI. In this study, the analyses were extended until six (T6) and twelve months (T12) of NI by comparing data prospectively and against baseline (T0). The GM analysis was performed through next-generation sequencing. Results: Improvements in anthropometric and metabolic parameters were more pronounced in the KETO group at T6, particularly for body mass index (-5.8 vs. -1.7 kg/m2; p = 0.006) and waist circumference (-15.9 vs. -5.2 cm; p = 0.011). At T6, a significant improvement in HbA1c (6.7% vs. 5.5% p = 0.02) and triglyceride (158 vs. 95 mg/dL p = 0.04) values compared to T0 was observed only in the KETO group, which maintained the results achieved at T3. The VLCKD-MD had a more beneficial impact than the MD on the GM phenotype. A substantial positive modulatory effect was observed especially up to the sixth month of the NI in KETO due to the progressive increase in bacterial markers of human health. After the sixth month, most markers of human health decreased, though they were still increased compared with baseline. Among them, the Verrucomicrobiota phylum was identified as the main biomarker in the KETO group, together with its members Verrucomicrobiae, Akkermansiaceae, Verrucomicrobiales, and Akkermansia at T6 compared with baseline. Conclusions: Both dietary approaches ameliorated health status, but VLCKD, in support of the MD, has shown greater improvements on anthropometric and metabolic parameters, as well as on GM profile, especially up to T6 of NI.
Collapse
Affiliation(s)
- Vanessa Palmas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Vitor Heidrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Giulia Cambarau
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Michele Fosci
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Lorenzo Puglia
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Enrico Antonio Cappai
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alessio Lai
- Diabetologia, P.O. Binaghi, ASSL Cagliari, 09126 Cagliari, Italy
| | - Andrea Loviselli
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
2
|
Razavi S, Amirmozafari N, Zahedi bialvaei A, Navab-Moghadam F, Khamseh ME, Alaei-Shahmiri F, Sedighi M. Gut microbiota composition and type 2 diabetes: Are these subjects linked Together? Heliyon 2024; 10:e39464. [PMID: 39469674 PMCID: PMC11513563 DOI: 10.1016/j.heliyon.2024.e39464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Purpose Evidence suggests that changes in the composition of gut microbiota may be linked to metabolic disorders including type 2 diabetes (T2D). The present study aims to evaluate the compositional changes of the intestinal microbiota in patients with T2D as compared to healthy individuals. Methods In this case-control study, there were 18 T2D patients and 18 healthy individuals who served as controls. To profile the gut microbiota in both groups, bacterial DNA was extracted from fecal samples and analyzed using quantitative real-time polymerase chain reaction (qPCR). Results The study discovered that diabetics had significantly greater frequencies of the genus Bacteroides and the phylum Bacteroidetes than did controls (P = 0.03 and P < 0.001, respectively). Conversely, the Actinobacteria and Firmicutes phyla were significantly more abundant in the controls (P=0.01 for both). No significant differences were observed in the fecal populations of the genus Enterococcus, Clostridium clusters IV and XIVa, phylum Proteobacteria, and all bacteria between the studied groups (P=0.88, P=0.56, P=0.8, P=0.99, and P=0.7, respectively). Conclusions Our findings confirm that T2D may be associated with the gut microbiota fluctuations. These findings may be valuable for developing strategies to control or treatment T2D by restoring the intestinal microbiota through the strategic administration of specific probiotics/prebiotics and lifestyle and dietary modifications.
Collapse
Affiliation(s)
- Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abed Zahedi bialvaei
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Navab-Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad E. Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Alaei-Shahmiri
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mansour Sedighi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
3
|
Lammi C, Ottaviano E, Fiore G, Bollati C, d'Adduzio L, Fanzaga M, Ceccarani C, Vizzuso S, Zuccotti G, Borghi E, Verduci E. Effect of docosahexaenoic acid as an anti-inflammatory for Caco-2 cells and modulating agent for gut microbiota in children with obesity (the DAMOCLE study). J Endocrinol Invest 2024:10.1007/s40618-024-02444-w. [PMID: 39186221 DOI: 10.1007/s40618-024-02444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE Docosahexaenoic acid (DHA) is a long-chain omega-3 polyunsaturated fatty acid. We investigated the dual health ability of DHA to modulate gut microbiota in children with obesity and to exert anti-inflammatory activity on human intestinal Caco-2 cells. METHODS In a pilot study involving 18 obese children (8-14 years), participants received a daily DHA supplement (500 mg/day) and dietary intervention from baseline (T0) to 4 months (T1), followed by dietary intervention alone from 4 months (T1) to 8 months (T2). Fecal samples, anthropometry, biochemicals and dietary assessment were collected at each timepoint. At preclinical level, we evaluated DHA's antioxidant and anti-inflammatory effects on Caco-2 cells stimulated with Hydrogen peroxide (H2O2) and Lipopolysaccharides (LPS), by measuring also Inducible nitric oxide synthase (iNOS) levels and cytokines, respectively. RESULTS Ten children were included in final analysis. No major changes were observed for anthropometric and biochemical parameters, and participants showed a low dietary compliance at T1 and T2. DHA supplementation restored the Firmicutes/Bacteroidetes ratio that was conserved also after the DHA discontinuation at T2. DHA supplementation drove a depletion in Ruminococcaceae and Dialisteraceae, and enrichment in Bacteroidaceae, Oscillospiraceae, and Akkermansiaceae. At genus level, Allisonella was the most decreased by DHA supplementation. In Caco-2 cells, DHA decreased H2O2-induced reactive oxygen species (ROS) and nitric oxide (NO) production via iNOS pathway modulation. Additionally, DHA modulated proinflammatory (IL-1β, IL-6, IFN-γ, TNF-α) and anti-inflammatory (IL-10) cytokine production in LPS-stimulated Caco-2 cells. CONCLUSION An improvement in gut dysbiosis of children with obesity seems to be triggered by DHA and to continue after discontinuation. The ability to modulate gut microbiota, matches also with an anti-inflammatory effect of DHA on Caco-2 cells.
Collapse
Affiliation(s)
- C Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - E Ottaviano
- Department of Health Sciences, University of Milan, 20142, Milan, Italy
| | - G Fiore
- Department of Health Sciences, University of Milan, 20142, Milan, Italy.
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Via Lodovico Castelvetro 32, 20154, Milan, Italy.
| | - C Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - L d'Adduzio
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - M Fanzaga
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - C Ceccarani
- Institute for Biomedical Technologies, CNR, Segrate, Italy
| | - S Vizzuso
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Via Lodovico Castelvetro 32, 20154, Milan, Italy
| | - G Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Via Lodovico Castelvetro 32, 20154, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, 20157, Milan, Italy
| | - E Borghi
- Department of Health Sciences, University of Milan, 20142, Milan, Italy
| | - E Verduci
- Department of Health Sciences, University of Milan, 20142, Milan, Italy
- Metabolic Diseases Unit, Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, 20157, Milan, Italy
| |
Collapse
|
4
|
Lyu X, Xu X, Shen S, Qin F. Genetics causal analysis of oral microbiome on type 2 diabetes in East Asian populations: a bidirectional two-sample Mendelian randomized study. Front Endocrinol (Lausanne) 2024; 15:1452999. [PMID: 39247916 PMCID: PMC11380152 DOI: 10.3389/fendo.2024.1452999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction The dysbiosis of the oral microbiome is associated with the progression of various systemic diseases, including diabetes. However, the precise causal relationships remain elusive. This study aims to investigate the potential causal associations between oral microbiome and type 2 diabetes (T2D) using Mendelian randomization (MR) analyses. Methods We conducted bidirectional two-sample MR analyses to investigate the impact of oral microbiome from saliva and the tongue T2D. This analysis was based on metagenome-genome-wide association studies (mgGWAS) summary statistics of the oral microbiome and a large meta-analysis of GWAS of T2D in East Asian populations. Additionally, we utilized the T2D GWAS summary statistics from the Biobank Japan (BBJ) project for replication. The MR methods employed included Wald ratio, inverse variance weighting (IVW), weighted median, MR-Egger, contamination mixture (ConMix), and robust adjusted profile score (RAPS). Results Our MR analyses revealed genetic associations between specific bacterial species in the oral microbiome of saliva and tongue with T2D in East Asian populations. The MR results indicated that nine genera were shared by both saliva and tongue. Among these, the genera Aggregatibacter, Pauljensenia, and Prevotella were identified as risk factors for T2D. Conversely, the genera Granulicatella and Haemophilus D were found to be protective elements against T2D. However, different species within the genera Catonella, Lachnoanaerobaculum, Streptococcus, and Saccharimonadaceae TM7x exhibited multifaceted influences; some species were positively correlated with the risk of developing T2D, while others were negatively correlated. Discussion This study utilized genetic variation tools to confirm the causal effect of specific oral microbiomes on T2D in East Asian populations. These findings provide valuable insights for the treatment and early screening of T2D, potentially informing more targeted and effective therapeutic strategies.
Collapse
Affiliation(s)
- Xinyi Lyu
- West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueyuan Xu
- West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sihong Shen
- West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Qin
- Department of Endocrinology and Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Baars DP, Fondevila MF, Meijnikman AS, Nieuwdorp M. The central role of the gut microbiota in the pathophysiology and management of type 2 diabetes. Cell Host Microbe 2024; 32:1280-1300. [PMID: 39146799 DOI: 10.1016/j.chom.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
The inhabitants of our intestines, collectively called the gut microbiome, comprise fungi, viruses, and bacterial strains. These microorganisms are involved in the fermentation of dietary compounds and the regulation of our adaptive and innate immune systems. Less known is the reciprocal interaction between the gut microbiota and type 2 diabetes mellitus (T2DM), as well as their role in modifying therapies to reduce associated morbidity and mortality. In this review, we aim to discuss the existing literature on gut microbial strains and their diet-derived metabolites involved in T2DM. We also explore the potential diagnostics and therapeutic avenues the gut microbiota presents for targeted T2DM management. Personalized treatment plans, driven by diet and medication based on the patient's microbiome and clinical markers, could optimize therapy.
Collapse
Affiliation(s)
- Daniel P Baars
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Marcos F Fondevila
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Abraham S Meijnikman
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Diabetes Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Farajipour H, Matin HR, Asemi Z, Sadr S, Tajabadi-Ebrahimi M, Sharifi N, Banikazemi Z, Taghizadeh M, Mirzaei H. The effects of probiotics supplements on metabolic indices and clinical signs in patients with diabetic retinopathy, a randomized double blind clinical trial. J Diabetes Metab Disord 2024; 23:1133-1140. [PMID: 38932908 PMCID: PMC11196520 DOI: 10.1007/s40200-024-01399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/07/2024] [Indexed: 06/28/2024]
Abstract
Purpose This study was carried out to evaluate the effects of probiotics administration on clinical status and metabolic profiles in diabetic retinopathy (DR) patients. Methods This randomized, double-blind, placebo-controlled trial was conducted among 72 DR patients. Subjects received probiotics including Lactobacillus acidophilus, Bifidobacterium bifidum, Bifidobacterium langum, Bifidobacterium lactis daily (2 × 109 CFU/each strain) (n = 36) or placebo (starch) (n = 36) and were instructed to take one capsule daily for 12 weeks. Finally, 55 participants [probiotic group (n = 30) and placebo group (n = 25)] completed the study. Fasting blood samples were obtained at baseline and after the 12-week intervention to determine metabolic profiles. To determine the effects of probiotic supplementation on clinical symptoms and biochemical variables, we used one-way repeated measures analysis of variance. Results After the 12-week intervention, compared with the placebo, probiotic supplementation significantly decreased means serum insulin concentrations (Probiotic group: -4.9 ± 6.5vs. Placebo group: 3.0 ± 7.7 µIU/mL, Ptime×group<0.001), homeostatic model assessment for insulin resistance (Probiotic group: -2.5 ± 3.8 vs. Placebo group: 1.1 ± 2.7, Ptime×group<0.001) and hemoglobin A1c (HbA1C) (Probiotic group: -0.4 ± 0.7 vs. Placebo group: -0.02 ± 0.2%, Ptime×group=0.01), and significantly increased the quantitative insulin sensitivity check index (QUICKI) (Probiotic group: 0.02 ± 0.03 vs. Placebo group: -0.03 ± 0.04, Ptime×group<0.001). There was no significant effect of probiotic administration on other metabolic profiles and clinical symptoms. Conclusions Overall, probiotic supplementation after 12 weeks in DR patients had beneficial effects on few metabolic profiles. This study was registered under the Iranian website for clinical trials as http://www.irct.ir: IRCT20130211012438N29.
Collapse
Affiliation(s)
- Hasan Farajipour
- Department of Ophthalmology, School of Medicine, Matini Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Matin
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Faculty member of Science Department, Science Faculty, Islamic Azad University, Tehran Central branch, Tehran, Iran
| | - Saeed Sadr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Tajabadi-Ebrahimi
- Faculty member of Science Department, Science Faculty, Islamic Azad University, Tehran Central branch, Tehran, Iran
| | - Nasrin Sharifi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Wang Y, Yao T, Lin Y, Ge H, Huang B, Gao Y, Wu J. Association between gut microbiota and pan-dermatological diseases: a bidirectional Mendelian randomization research. Front Cell Infect Microbiol 2024; 14:1327083. [PMID: 38562964 PMCID: PMC10982508 DOI: 10.3389/fcimb.2024.1327083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Background Gut microbiota has been associated with dermatological problems in earlier observational studies. However, it is unclear whether gut microbiota has a causal function in dermatological diseases. Methods Thirteen dermatological diseases were the subject of bidirectional Mendelian randomization (MR) research aimed at identifying potential causal links between gut microbiota and these diseases. Summary statistics for the Genome-Wide Association Study (GWAS) of gut microbiota and dermatological diseases were obtained from public datasets. With the goal of evaluating the causal estimates, five acknowledged MR approaches were utilized along with multiple testing corrections, with inverse variance weighted (IVW) regression serving as the main methodology. Regarding the taxa that were causally linked with dermatological diseases in the forward MR analysis, reverse MR was performed. A series of sensitivity analyses were conducted to test the robustness of the causal estimates. Results The combined results of the five MR methods and sensitivity analysis showed 94 suggestive and five significant causal relationships. In particular, the genus Eubacterium_fissicatena_group increased the risk of developing psoriasis vulgaris (odds ratio [OR] = 1.32, pFDR = 4.36 × 10-3), family Bacteroidaceae (OR = 2.25, pFDR = 4.39 × 10-3), genus Allisonella (OR = 1.42, pFDR = 1.29 × 10-2), and genus Bacteroides (OR = 2.25, pFDR = 1.29 × 10-2) increased the risk of developing acne; and the genus Intestinibacter increased the risk of urticaria (OR = 1.30, pFDR = 9.13 × 10-3). A reverse MR study revealed insufficient evidence for a significant causal relationship. In addition, there was no discernible horizontal pleiotropy or heterogeneity. Conclusion This study provides novel insights into the causality of gut microbiota in dermatological diseases and therapeutic or preventive paradigms for cutaneous conditions.
Collapse
Affiliation(s)
- Yingwei Wang
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Yao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunlu Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongping Ge
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bixin Huang
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Gao
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Wu
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Yang W, Xi C, Yao H, Yuan Q, Zhang J, Chen Q, Wu G, Hu J. Oral administration of lysozyme protects against injury of ileum via modulating gut microbiota dysbiosis after severe traumatic brain injury. Front Cell Infect Microbiol 2024; 14:1304218. [PMID: 38352055 PMCID: PMC10861676 DOI: 10.3389/fcimb.2024.1304218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Objective The current study sought to clarify the role of lysozyme-regulated gut microbiota and explored the potential therapeutic effects of lysozyme on ileum injury induced by severe traumatic brain injury (sTBI) and bacterial pneumonia in vivo and in vitro experiments. Methods Male 6-8-week-old specific pathogen-free (SPF) C57BL/6 mice were randomly divided into Normal group (N), Sham group (S), sTBI group (T), sTBI + or Lysozyme-treated group (L), Normal + Lysozyme group (NL) and Sham group + Lysozyme group (SL). At the day 7 after establishment of the model, mice were anesthetized and the samples were collected. The microbiota in lungs and fresh contents of the ileocecum were analyzed. Lungs and distal ileum were used to detect the degree of injury. The number of Paneth cells and the expression level of lysozyme were assessed. The bacterial translocation was determined. Intestinal organoids culture and co-coculture system was used to test whether lysozyme remodels the intestinal barrier through the gut microbiota. Results After oral administration of lysozyme, the intestinal microbiota is rebalanced, the composition of lung microbiota is restored, and translocation of intestinal bacteria is mitigated. Lysozyme administration reinstates lysozyme expression in Paneth cells, thereby reducing intestinal permeability, pathological score, apoptosis rate, and inflammation levels. The gut microbiota, including Oscillospira, Ruminococcus, Alistipes, Butyricicoccus, and Lactobacillus, play a crucial role in regulating and improving intestinal barrier damage and modulating Paneth cells in lysozyme-treated mice. A co-culture system comprising intestinal organoids and brain-derived proteins (BP), which demonstrated that the BP effectively downregulated the expression of lysozyme in intestinal organoids. However, supplementation of lysozyme to this co-culture system failed to restore its expression in intestinal organoids. Conclusion The present study unveiled a virtuous cycle whereby oral administration of lysozyme restores Paneth cell's function, mitigates intestinal injury and bacterial translocation through the remodeling of gut microbiota.
Collapse
Affiliation(s)
- Weijian Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Caihua Xi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Department of Neurosurgery and Neurocritical Care, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haijun Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Department of Neurosurgery and Neurocritical Care, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Yuan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jun Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Qifang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Department of Neurosurgery and Neurocritical Care, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gang Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
9
|
Padron-Manrique C, Vázquez-Jiménez A, Esquivel-Hernandez DA, Martinez Lopez YE, Neri-Rosario D, Sánchez-Castañeda JP, Giron-Villalobos D, Resendis-Antonio O. mb-PHENIX: diffusion and supervised uniform manifold approximation for denoizing microbiota data. Bioinformatics 2023; 39:btad706. [PMID: 38015858 PMCID: PMC10699834 DOI: 10.1093/bioinformatics/btad706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 10/16/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
MOTIVATION Microbiota data encounters challenges arising from technical noise and the curse of dimensionality, which affect the reliability of scientific findings. Furthermore, abundance matrices exhibit a zero-inflated distribution due to biological and technical influences. Consequently, there is a growing demand for advanced algorithms that can effectively recover missing taxa while also considering the preservation of data structure. RESULTS We present mb-PHENIX, an open-source algorithm developed in Python that recovers taxa abundances from the noisy and sparse microbiota data. Our method infers the missing information of count matrix (in 16S microbiota and shotgun studies) by applying imputation via diffusion with supervised Uniform Manifold Approximation Projection (sUMAP) space as initialization. Our hybrid machine learning approach allows to denoise microbiota data, revealing differential abundance microbes among study groups where traditional abundance analysis fails. AVAILABILITY AND IMPLEMENTATION The mb-PHENIX algorithm is available at https://github.com/resendislab/mb-PHENIX. An easy-to-use implementation is available on Google Colab (see GitHub).
Collapse
Affiliation(s)
- Cristian Padron-Manrique
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, 14610, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, 14610, Mexico
| | | | - Yoscelina Estrella Martinez Lopez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, 14610, Mexico
- Programa de Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| | - Daniel Neri-Rosario
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, 14610, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| | - Jean Paul Sánchez-Castañeda
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, 14610, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| | - David Giron-Villalobos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, 14610, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, 14610, Mexico
- Coordinación de la Investigación Científica—Red de Apoyo a la Investigación—Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| |
Collapse
|
10
|
Slouha E, Rezazadah A, Farahbod K, Gerts A, Clunes LA, Kollias TF. Type-2 Diabetes Mellitus and the Gut Microbiota: Systematic Review. Cureus 2023; 15:e49740. [PMID: 38161953 PMCID: PMC10757596 DOI: 10.7759/cureus.49740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
The gut microbiota is a community situated in the gastrointestinal tract that consists of bacteria thriving and contributing to the functions of our body. It is heavily influenced by what individuals eat, as the quality, amount, and frequency of food consumed can favor and inhibit specific bacteria. Type-2 diabetes mellitus (T2DM) is a common but detrimental condition that arises from excessive hyperglycemia, leading to either insulin resistance or damage to the B-cells that produce insulin in the pancreas. A poor diet high in sugar and fats leads to hyperglycemia, and as this persists, it can lead to the development of T2DM. Both insulin resistance and damage to B-cells are greatly affected by the diet an individual consumes, but is there a more involved relationship between the gut microbiota and T2DM? This paper aimed to evaluate the changes in the gut microbiota in patients with T2DM and the impacts of the changes in gut microbiota. Bacteroides, Proteobacteria, Firmicutes, and Actinobacteria prevailed in patients with T2DM and healthy control, but their abundance varied greatly. There was also a significant decrease in bacteria like Lactobacilli spp.and F. prausnitizii associated with insulin resistance. High levels of BMI in patients with T2DM have also been associated with increased levels of A. muciniphilia, which has been associated with decreased fat metabolism and increased BMI. Metabolites such as butyrates and melatonin have also been identified as influencing the development and progression of T2DM. Testosterone levels have also been greatly influenced by the gut microbiota changes in T2DM, such that males with lower testosterone have a greater abundance of bacteria like Gemella, Lachnospiraceae, and Massiia. Identifying these changes and how they impact the body may lead to a treatment addressing insulin dysfunction and the changes that the altered gut microbiota leads to. Future research should address how treatment methods such as healthy diets, exercise, and anti-diabetics affect the gut microbiota and see if they influence sustained changes and reduced hyperglycemia.
Collapse
Affiliation(s)
- Ethan Slouha
- Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Atbeen Rezazadah
- Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Kiana Farahbod
- Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Andrew Gerts
- Pharmacology, St. George's University School of Medicine, St. George, GRD
| | - Lucy A Clunes
- Pharmacology, St. George's University, St. George's, GRD
| | - Theofanis F Kollias
- Microbiology, Immunology and Pharmacology, St. George's University School of Medicine, St. George's, GRD
| |
Collapse
|
11
|
Gong H, Ma Y, Wang M, Gu Y, Deng R, Deng B, Feng D, Han Y, Mi R, Huang Y, Zhang Y, Zhang W, Chen Z. Microbiota Profiles of Hen Eggs from the Different Seasons and Different Sectors of Shanghai, China. Microorganisms 2023; 11:2519. [PMID: 37894177 PMCID: PMC10609546 DOI: 10.3390/microorganisms11102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Hen eggs are one of the most popular foods worldwide, and their safety is critical. Employing 16S rRNA full-length sequencing is an effective way to identify microorganisms on or in eggs. Here, hen eggs collected from poultry farms over four seasons, as well as from markets in Shanghai, were analyzed with third-generation sequencing. Firmicutes (44.46%) and Proteobacteria (35.78%) were the two dominant phyla, and Staphylococcus, Acinetobacter, Aerococcus, Psychrobacter, and Lactobacillus were the dominant genera. The dominant genera on the eggshell surfaces from the farms varied with the seasons, and the highest contamination of Staphylococcus (32.93%) was seen in the eggs collected during the summer. For the market samples, Pseudomonas was the most abundant in content, with Staphylococcus being the most-often genera found on the eggshell surfaces. Moreover, several potential pathogenic bacteria including Riemerella anatipestifer (species), Klebsiella (genus), and Escherichia/shigella (genus) were detected in the samples. The results revealed the impacts of weather on the microbiota deposited on an eggshell's surface, as well as the impacts due to the differences between the contents and the surface. The results can help disinfect eggs and guide antibiotic selection.
Collapse
Affiliation(s)
- Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.G.)
| | - Yingqing Ma
- Food Quality Supervision, Inspection and Testing Center of the Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Center of Agricultural Products Quality Safety, Shanghai 201708, China
| | - Min Wang
- Food Quality Supervision, Inspection and Testing Center of the Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Center of Agricultural Products Quality Safety, Shanghai 201708, China
| | - Yumeng Gu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.G.)
| | - Ruipeng Deng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.G.)
| | - Bo Deng
- Food Quality Supervision, Inspection and Testing Center of the Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Center of Agricultural Products Quality Safety, Shanghai 201708, China
| | - Dongsheng Feng
- Food Quality Supervision, Inspection and Testing Center of the Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Center of Agricultural Products Quality Safety, Shanghai 201708, China
| | - Yiyi Han
- Food Quality Supervision, Inspection and Testing Center of the Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Center of Agricultural Products Quality Safety, Shanghai 201708, China
| | - Rongsheng Mi
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.G.)
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.G.)
| | - Yan Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.G.)
| | - Weiyi Zhang
- Food Quality Supervision, Inspection and Testing Center of the Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Center of Agricultural Products Quality Safety, Shanghai 201708, China
| | - Zhaoguo Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.G.)
| |
Collapse
|