1
|
Dantas MRT, Bezerra LGP, Pereira AG, Dos Santos RP, Souza-Junior JBF, de Macedo Costa LL, Silva AR. Relationship between season and spermatozoa traits of captive-reared agoutis from Brazilian semiarid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52501-52510. [PMID: 39147898 DOI: 10.1007/s11356-024-34717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
For the development of efficient management and conservation strategies for wild rodent species, understanding the aspects related to their reproduction, including the interaction of this physiological function with the environment, is essential. This study aimed to evaluate the impacts of weather changes derived from a semiarid region's dry and rainy seasons on the epididymal sperm characteristics of red-rumped agouti (Dasyprocta leporina), a histricognath rodent, still little studied, which inhabits the Brazilian Caatinga. The sperm from the epididymal cauda of 14 agoutis were collected, seven individuals per season (dry and rainy). Samples were evaluated for kinetic parameters, membrane structural and functional integrity, mitochondrial activity, morphology, and morphometry. The environmental variables were measured: maximum air temperature, relative humidity, wind speed, solar radiation, and the total rainfall for dry and rainy seasons were, respectively, 36.2 and 34.1 °C, 66.8 and 80.1%, 4.0 and 1.9 m/s, 527.3 and 441.8 W/m2, and 0.2 and 517.7 mm. There were strong correlations between some sperm parameters and environmental variables, mainly those related to the acquisition of sperm mobility. Sperm concentration and the number of sperm collected were higher in the dry (1028.7 sperm/mL × 10⁶ and 1361.2 × 106 sperm) than in the rainy season (758.9 sperm × 10⁶/mL and 714.6 sperm × 106). During the rainy season, there were fewer sperm defects, higher sperm metrics, and higher membrane structural integrity with mitochondrial activity. Regarding motility patterns, the increases during the rainy season stand out in total and progressive motility, VAP, VSL, VCL, and subpopulations of rapid sperm. In summary, our results suggest that the adverse climatic conditions of the dry season in the semiarid region, mainly high solar radiation and temperature, considerably impair the epididymal sperm quality of red-rumped agoutis. On the contrary, the largest amount of sperm was obtained during this season, probably due to compensatory and adaptive mechanisms of the species to enable its reproduction throughout the year.
Collapse
Affiliation(s)
- Maiko Roberto Tavares Dantas
- Laboratory On Animal Germplasm Conservation, Universidade Federal Rural Do Semi-Árido-UFERSA, BR 110, Km 47, Costa and Silva, Mossoró, RN, 59625-900, Brazil
| | - Luana Grasiele Pereira Bezerra
- Laboratory On Animal Germplasm Conservation, Universidade Federal Rural Do Semi-Árido-UFERSA, BR 110, Km 47, Costa and Silva, Mossoró, RN, 59625-900, Brazil
| | - Ana Glória Pereira
- Laboratory On Animal Germplasm Conservation, Universidade Federal Rural Do Semi-Árido-UFERSA, BR 110, Km 47, Costa and Silva, Mossoró, RN, 59625-900, Brazil
| | - Romário Parente Dos Santos
- Laboratory On Animal Germplasm Conservation, Universidade Federal Rural Do Semi-Árido-UFERSA, BR 110, Km 47, Costa and Silva, Mossoró, RN, 59625-900, Brazil
| | - João Batista Freire Souza-Junior
- Laboratory On Animal Germplasm Conservation, Universidade Federal Rural Do Semi-Árido-UFERSA, BR 110, Km 47, Costa and Silva, Mossoró, RN, 59625-900, Brazil
| | - Leonardo Lelis de Macedo Costa
- Laboratory of Biometeorology and Environmental Biophysics, Universidade Federal Rural Do Semi-Árido-UFERSA, Mossoró, RN, Brazil
| | - Alexandre Rodrigues Silva
- Laboratory On Animal Germplasm Conservation, Universidade Federal Rural Do Semi-Árido-UFERSA, BR 110, Km 47, Costa and Silva, Mossoró, RN, 59625-900, Brazil.
| |
Collapse
|
2
|
Zhang C, Zhang Y, Chang Z, Li C. Sperm YOLOv8E-TrackEVD: A Novel Approach for Sperm Detection and Tracking. SENSORS (BASEL, SWITZERLAND) 2024; 24:3493. [PMID: 38894284 PMCID: PMC11175353 DOI: 10.3390/s24113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Male infertility is a global health issue, with 40-50% attributed to sperm abnormalities. The subjectivity and irreproducibility of existing detection methods pose challenges to sperm assessment, making the design of automated semen analysis algorithms crucial for enhancing the reliability of sperm evaluations. This paper proposes a comprehensive sperm tracking algorithm (Sperm YOLOv8E-TrackEVD) that combines an enhanced YOLOv8 small object detection algorithm (SpermYOLOv8-E) with an improved DeepOCSORT tracking algorithm (SpermTrack-EVD) to detect human sperm in a microscopic field of view and track healthy sperm in a sample in a short period effectively. Firstly, we trained the improved YOLOv8 model on the VISEM-Tracking dataset for accurate sperm detection. To enhance the detection of small sperm objects, we introduced an attention mechanism, added a small object detection layer, and integrated the SPDConv and Detect_DyHead modules. Furthermore, we used a new distance metric method and chose IoU loss calculation. Ultimately, we achieved a 1.3% increase in precision, a 1.4% increase in recall rate, and a 2.0% improvement in mAP@0.5:0.95. We applied SpermYOLOv8-E combined with SpermTrack-EVD for sperm tracking. On the VISEM-Tracking dataset, we achieved 74.303% HOTA and 71.167% MOTA. These results show the effectiveness of the designed Sperm YOLOv8E-TrackEVD approach in sperm tracking scenarios.
Collapse
Affiliation(s)
| | | | - Zhanyuan Chang
- College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China; (C.Z.); (Y.Z.); (C.L.)
| | | |
Collapse
|
3
|
Fu L, Ma J, Chen L, Guo Y, Li W, Zhang X, Lu W, Wang S, Liu Y. Enhancement of Frozen-Thawed Human Sperm Quality with Zinc as a Cryoprotective Additive. Med Sci Monit 2024; 30:e942946. [PMID: 38698627 PMCID: PMC11075574 DOI: 10.12659/msm.942946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Cryopreservation preserves male fertility, crucial in oncology, advanced age, and infertility. However, it damages sperm motility, membrane, and DNA. Zinc (Zn), an antioxidant, shows promise in improving sperm quality after thawing, highlighting its potential as a cryoprotectant in reproductive medicine. MATERIAL AND METHODS Gradient concentration of ZnSO₄ (0, 12.5, 25, 50, and 100 µM) was added in the Glycerol-egg yolk-citrate (GEYC) cryopreservative medium as an extender. Alterations in sperm viability and motility parameters after cryopreservation were detected in each group. Sperm plasma membrane integrity (PMI), acrosome integrity (ACR), DNA fragment index (DFI), and changes in sperm mitochondrial function were examined, including: mitochondrial potential (MMP), sperm reactive oxygen species (ROS), and sperm ATP. RESULTS We found that 50 µM ZnSO₄ was the most effective for the curvilinear velocity (VCL) and the average path velocity (VAP) of sperm after cryo-resuscitation. Compared to the Zn-free group, sperm plasma membrane integrity (PMI) was increased, DNA fragmentation index (DFI) was decreased, reactive oxygen species (ROS) was reduced, and mitochondrial membrane potential (MMP) was increased after cryorevival in the presence of 50 µM ZnSO₄. CONCLUSIONS Zn ion is one of the antioxidants in the cell. The results of our current clinical study are sufficient to demonstrate that Zn can improve preserves sperm quality during cryopreservation when added to GEYC. The addition of 50 µM ZnSO₄ increased curve velocity, mean path velocity, sperm survival (or plasma membrane integrity), and mitochondrial membrane potential while reducing ROS production and DNA breaks compared to GEYC thawed without ZnSO₄.
Collapse
Affiliation(s)
- Longlong Fu
- Reproductive Health Research Centre, National Research Institute for Family Planning, Beijing, China (mainland)
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Lixia Chen
- Department of Family Planning, Maternal and Child Health Care Hospital of Zhangjiakou, Zhangjiakou, Hebei, China (mainland)
| | - Ying Guo
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing, China (mainland)
| | - Wenjie Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Xingguo Zhang
- Department of Family Planning, Maternal and Child Health Care Hospital of Zhangjiakou, Zhangjiakou, Hebei, China (mainland)
| | - Wenhong Lu
- Reproductive Health Research Centre, National Research Institute for Family Planning, Beijing, China (mainland)
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
4
|
Aitken RJ. What is driving the global decline of human fertility? Need for a multidisciplinary approach to the underlying mechanisms. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1364352. [PMID: 38726051 PMCID: PMC11079147 DOI: 10.3389/frph.2024.1364352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
An intense period of human population expansion over the past 250 years is about to cease. Total fertility rates are falling dramatically all over the world such that highly industrialized nations, including China and the tiger economies of SE Asia, will see their populations decline significantly in the coming decades. The socioeconomic, geopolitical and environmental ramifications of this change are considerable and invite a multidisciplinary consideration of the underlying mechanisms. In the short-term, socioeconomic factors, particularly urbanization and delayed childbearing are powerful drivers of reduced fertility. In parallel, lifestyle factors such as obesity and the presence of numerous reproductive toxicants in the environment, including air-borne pollutants, nanoplastics and electromagnetic radiation, are seriously compromising reproductive health. In the longer term, it is hypothesized that the reduction in family size that accompanies the demographic transition will decrease selection pressure on high fertility genes leading to a progressive loss of human fecundity. Paradoxically, the uptake of assisted reproductive technologies at scale, may also contribute to such fecundity loss by encouraging the retention of poor fertility genotypes within the population. Since the decline in fertility rate that accompanies the demographic transition appears to be ubiquitous, the public health implications for our species are potentially devastating.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
5
|
Gao C, Sun N, Xie J, Li J, Tao L, Guo L, Shi L, He X, Shen X, Wang H, Yang P, Covaci A, Huang Y. Co-exposure to 55 endocrine-disrupting chemicals linking diminished sperm quality: Mixture effect, and the role of seminal plasma docosapentaenoic acid. ENVIRONMENT INTERNATIONAL 2024; 185:108571. [PMID: 38471262 DOI: 10.1016/j.envint.2024.108571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Isolated effects of single endocrine-disrupting chemicals (EDCs) on male reproductive health have been studied extensively, but their mixture effect remains unelucidated. Previous research has suggested that consuming diet enriched in omega-3 polyunsaturated fatty acids (PUFA) might be beneficial for reproductive health, whether omega-3 PUFA could moderate the effect of EDCs mixture on semen quality remains to be explored. In this study of 155 male recruited from a reproductive health center in China, we used targeted-exposomics to simultaneously measure 55 EDCs in the urine for exposure burden. Regression analyses were restricted to highly detected EDCs (≥55%, n = 34), and those with consistently elevated risk were further screened and brought into mixture effect models (Bisphenol A, ethyl paraben, methyl paraben [MeP], benzophenone-1 [BP1], benzophenone-3, mono(3-carboxypropyl) phthalate [MCPP]). Bayesian Kernel Machine Regression (BKMR) and quantile-based g-computation (QGC) models demonstrated that co-exposure to top-ranked EDCs was related to reduced sperm total (β = -0.18, 95%CI: -0.29 - -0.07, P = 0.002) and progressive motility (β = -0.27, 95%CI: -0.43 - -0.10, P = 0.002), but not to lower semen volume. BP1, MeP and MCPP were identified as the main effect driver for deteriorated sperm motion parameters using mixture model analyses. Seminal plasma fatty acid profiling showed that high omega-3 PUFA status, notably elevated docosapentaenoic acid (DPA, C22:5n-3) status, moderated the association between MCPP and sperm motion parameters (total motility: β = 0.26, 95%CI: 0.01 - -0.51, Pinteraction = 0.047; progressive motility: β = 0.64, 95%CI: 0.23 - 1.05, Pinteraction = 0.003). Co-exposure to a range of EDCs is mainly associated with deteriorated sperm quality, but to a lesser extent on sperm quantity, high seminal plasma DPA status might be protective against the effect. Our work emphasizes the importance of exposomic approach to assess chemical exposures and highlighted a new possible intervention target for mitigating the potential adverse effect of EDCs on semen quality.
Collapse
Affiliation(s)
- Chang Gao
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
| | - Nan Sun
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
| | - Jinying Xie
- Department of Public Health and Preventive Medicine, China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Jiehao Li
- Department of Public Health and Preventive Medicine, China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Lin Tao
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
| | - Lijuan Guo
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
| | - Lan Shi
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui Province, China
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui Province, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoting Shen
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China.
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Wilrijk, Belgium
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China; Clinical Research Center, Suzhou Hospital of Anhui Medical University, Anhui Medical University, Suzhou, China.
| |
Collapse
|