1
|
Real MVF, Colvin MS, Sheehan MJ, Moeller AH. Major urinary protein ( Mup) gene family deletion drives sex-specific alterations in the house-mouse gut microbiota. Microbiol Spectr 2024; 12:e0356623. [PMID: 38170981 PMCID: PMC10846032 DOI: 10.1128/spectrum.03566-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
The gut microbiota is shaped by host metabolism. In house mice (Mus musculus), major urinary protein (MUP) pheromone production represents a considerable energy investment, particularly in sexually mature males. Deletion of the Mup gene family shifts mouse metabolism toward an anabolic state, marked by lipogenesis, lipid accumulation, and body mass increases. Given the metabolic implications of MUPs, they may also influence the gut microbiota. Here, we investigated the effect of a deletion of the Mup gene family on the gut microbiota of sexually mature mice. Shotgun metagenomics revealed distinct taxonomic and functional profiles between wild-type and knockout males but not females. Deletion of the Mup gene cluster significantly reduced diversity in microbial families and functions in male mice. Additionally, a species of Ruminococcaceae and several microbial functions, such as transporters involved in vitamin B5 acquisition, were significantly depleted in the microbiota of Mup knockout males. Altogether, these results show that MUPs significantly affect the gut microbiota of house mouse in a sex-specific manner.IMPORTANCEThe community of microorganisms that inhabits the gastrointestinal tract can have profound effects on host phenotypes. The gut microbiota is in turn shaped by host genes, including those involved with host metabolism. In adult male house mice, expression of the major urinary protein (Mup) gene cluster represents a substantial energy investment, and deletion of the Mup gene family leads to fat accumulation and weight gain in males. We show that deleting Mup genes also alters the gut microbiota of male, but not female, mice in terms of both taxonomic and functional compositions. Male mice without Mup genes harbored fewer gut bacterial families and reduced abundance of a species of Ruminococcaceae, a family that has been previously shown to reduce obesity risk. Studying the impact of the Mup gene family on the gut microbiota has the potential to reveal the ways in which these genes affect host phenotypes.
Collapse
Affiliation(s)
- Madalena V. F. Real
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Melanie S. Colvin
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Michael J. Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Greve S, Kuhn GA, Saenz-de-Juano MD, Ghosh A, von Meyenn F, Giller K. The major urinary protein gene cluster knockout mouse as a novel model for translational metabolism research. Sci Rep 2022; 12:13161. [PMID: 35915220 PMCID: PMC9343454 DOI: 10.1038/s41598-022-17195-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
Scientific evidence suggests that not only murine scent communication is regulated by major urinary proteins, but that their expression may also vary in response to metabolism via a yet unknown mechanism. Major urinary proteins are expressed mainly in the liver, showing a sexually dimorphic pattern with substantially higher expression in males. Here, we investigate the metabolic implications of a major urinary protein knockout in twelve-week-old male and female C57BL/6N mice during ad libitum feeding. Despite both sexes of major urinary protein knockout mice displayed numerically increased body weight and visceral adipose tissue proportions compared to sex-matched wildtype mice, the main genotype-specific metabolic differences were observed exclusively in males. Male major urinary protein knockout mice exhibited plasma and hepatic lipid accumulation accompanied by a hepatic transcriptome indicating an activation of lipogenesis. These findings match the higher major urinary protein expression in male compared to female wildtype mice, suggesting a more distinct reduction in energy requirements in male compared to female major urinary protein knockout mice. The observed sex-specific anabolic phenotype confirms a role of major urinary protein in metabolism and, since major urinary proteins are not expressed in humans, suggests the major urinary protein knockout mouse as a potential alternative model for translational metabolism research which needs to be further elucidated.
Collapse
Affiliation(s)
- Sarah Greve
- Animal Nutrition, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | | | - Adhideb Ghosh
- Laboratory of Nutrition and Metabolic Epigenetics, ETH Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, ETH Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Katrin Giller
- Animal Nutrition, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland.
| |
Collapse
|
3
|
Nephrotoxicity evaluation and proteomic analysis in kidneys of rats exposed to thioacetamide. Sci Rep 2022; 12:6837. [PMID: 35477741 PMCID: PMC9046159 DOI: 10.1038/s41598-022-11011-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Thioacetamide (TAA) was administered orally at 0, 10, and 30 mg/kg body weight (BW) daily to Sprague–Dawley rats aged 6–7 weeks for 28 consecutive days. Nephrotoxicity and proteomics were evaluated in the kidneys of rats exposed to TAA. The BW decreased, however, the relative kidneys weight increased. No significant histopathologic abnormalities were found in the kidneys. The numbers of monocytes and platelets were significantly increased. However, the mean corpuscular volume and hematocrit values were decreased significantly in rats exposed to 30 mg/kg BW TAA. The expression levels of Kim-1 and NGAL were increased 4 to 5-fold in the kidneys, resulting in significant nephrotoxicity. Proteomic analysis was conducted and a total of 5221 proteins spots were resolved. Of these, 3 and 21 protein spots were up- and downregulated, respectively. The validation of seven proteins was performed by Western blot analysis. The expression level of ASAP2 was significantly upregulated, whereas RGS14, MAP7Dl, IL-3Rα, Tmod1, NQO2, and MUP were reduced. Sixteen isoforms of MUP were found by the 2DE immunoblot assay and were significantly downregulated with increasing exposure to TAA. MUP isoforms were compared in the liver, kidneys, and urine of untreated rats and a total of 43 isoforms were found.
Collapse
|
4
|
Penn DJ, Zala SM, Luzynski KC. Regulation of Sexually Dimorphic Expression of Major Urinary Proteins. Front Physiol 2022; 13:822073. [PMID: 35431992 PMCID: PMC9008510 DOI: 10.3389/fphys.2022.822073] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Male house mice excrete large amounts of protein in their urinary scent marks, mainly composed of Major Urinary Proteins (MUPs), and these lipocalins function as pheromones and pheromone carriers. Here, we review studies on sexually dimorphic MUP expression in house mice, including the proximate mechanisms controlling MUP gene expression and their adaptive functions. Males excrete 2 to 8 times more urinary protein than females, though there is enormous variation in gene expression across loci in both sexes. MUP expression is dynamically regulated depending upon a variety of factors. Males regulate MUP expression according to social status, whereas females do not, and males regulate expression depending upon health and condition. Male-biased MUP expression is regulated by pituitary secretion of growth hormone (GH), which binds receptors in the liver, activating the JAK2-STAT5 signaling pathway, chromatin accessibility, and MUP gene transcription. Pulsatile male GH secretion is feminized by several factors, including caloric restriction, microbiota depletion, and aging, which helps explain condition-dependent MUP expression. If MUP production has sex-specific fitness optima, then this should generate sexual antagonism over allelic expression (intra-locus sexual conflict) selectively favoring sexually dimorphic expression. MUPs influence the sexual attractiveness of male urinary odor and increased urinary protein excretion is correlated with the reproductive success of males but not females. This finding could explain the selective maintenance of sexually dimorphic MUP expression. Producing MUPs entails energetic costs, but increased excretion may reduce the net energetic costs and predation risks from male scent marking as well as prolong the release of chemical signals. MUPs may also provide physiological benefits, including regulating metabolic rate and toxin removal, which may have sex-specific effects on survival. A phylogenetic analysis on the origins of male-biased MUP gene expression in Mus musculus suggests that this sexual dimorphism evolved by increasing male MUP expression rather than reducing female expression.
Collapse
|
5
|
Pheromones that correlate with reproductive success in competitive conditions. Sci Rep 2021; 11:21970. [PMID: 34754031 PMCID: PMC8578420 DOI: 10.1038/s41598-021-01507-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/09/2021] [Indexed: 11/08/2022] Open
Abstract
The major urinary proteins (MUPs) of house mice (Mus musculus) bind and stabilize the release of pheromones and other volatile organic compounds (VOCs) from urinary scent marks, which mediate chemical communication. Social status influences MUP and VOC excretion, and the urinary scent of dominant males is attractive to females. Urinary pheromones influence the sexual behavior and physiology of conspecifics, and yet it is not known whether they also affect reproductive success. We monitored the excretion of urinary protein and VOCs of wild-derived house mice living in large seminatural enclosures to compare the sexes and to test how these compounds correlate with reproductive success. Among males, urinary protein concentration and VOC expression correlated with reproductive success and social status. Territorial dominance also correlated with reproductive success in both sexes; but among females, no urinary compounds were found to correlate with social status or reproductive success. We found several differences in the urinary protein and volatile pheromones of mice in standard cages versus seminatural enclosures, which raises caveats for conventional laboratory studies. These findings provide novel evidence for chemical signals that correlate with male reproductive success of house mice living in competitive conditions.
Collapse
|
6
|
Stopková R, Otčenášková T, Matějková T, Kuntová B, Stopka P. Biological Roles of Lipocalins in Chemical Communication, Reproduction, and Regulation of Microbiota. Front Physiol 2021; 12:740006. [PMID: 34594242 PMCID: PMC8476925 DOI: 10.3389/fphys.2021.740006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
Major evolutionary transitions were always accompanied by genetic remodelling of phenotypic traits. For example, the vertebrate transition from water to land was accompanied by rapid evolution of olfactory receptors and by the expansion of genes encoding lipocalins, which - due to their transporting functions - represent an important interface between the external and internal organic world of an individual and also within an individual. Similarly, some lipocalin genes were lost along other genes when this transition went in the opposite direction leading, for example, to cetaceans. In terrestrial vertebrates, lipocalins are involved in the transport of lipophilic substances, chemical signalling, odour reception, antimicrobial defence and background odour clearance during ventilation. Many ancestral lipocalins have clear physiological functions across the vertebrate taxa while many other have - due to pleiotropic effects of their genes - multiple or complementary functions within the body homeostasis and development. The aim of this review is to deconstruct the physiological functions of lipocalins in light of current OMICs techniques. We concentrated on major findings in the house mouse in comparison to other model taxa (e.g., voles, humans, and birds) in which all or most coding genes within their genomes were repeatedly sequenced and their annotations are sufficiently informative.
Collapse
Affiliation(s)
- Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Tereza Otčenášková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Tereza Matějková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Barbora Kuntová
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| |
Collapse
|
7
|
Chung M, Wang M, Huang Z, Okuyama T. Diverse sensory cues for individual recognition. Dev Growth Differ 2020; 62:507-515. [DOI: 10.1111/dgd.12697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Myung Chung
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Mu‐Yun Wang
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Ziyan Huang
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Teruhiro Okuyama
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
- JST, PRESTO Tokyo Japan
| |
Collapse
|
8
|
Barabas AJ, Aryal UK, Gaskill BN. Proteome characterization of used nesting material and potential protein sources from group housed male mice, Mus musculus. Sci Rep 2019; 9:17524. [PMID: 31772257 PMCID: PMC6879570 DOI: 10.1038/s41598-019-53903-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/04/2019] [Indexed: 01/10/2023] Open
Abstract
Laboratory mice (Mus musculus) communicate a variety of social messages through olfactory cues and it is often speculated that these cues are preserved in nesting material. Based on these speculations, a growing number of husbandry recommendations support preserving used nests at cage cleaning to maintain familiar odors in the new cage. However, the content of used nesting material has never been chemically analyzed. Here we present the first comprehensive proteome profile of used nesting material. Nests from cages of group housed male mice contain a variety of proteins that primarily originate from saliva, plantar sweat, and urine sources. Most notably, a large proportion of proteins found in used nesting material belong to major urinary protein (“MUP”) and odorant binding protein (“OBP”) families. Both protein families send messages about individual identity and bind volatile compounds that further contribute to identity cues. Overall, this data supports current recommendations to preserve used nesting material at cage cleaning to maintain odor familiarity.
Collapse
Affiliation(s)
- Amanda J Barabas
- Department of Animal Science, Purdue University, West Lafayette, IN, 47907, USA.
| | - Uma K Aryal
- Purdue Proteomics Facility, Purdue University, West Lafayette, IN, 47907, USA
| | - Brianna N Gaskill
- Department of Animal Science, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
9
|
Andergassen D, Smith ZD, Lewandowski JP, Gerhardinger C, Meissner A, Rinn JL. In vivo Firre and Dxz4 deletion elucidates roles for autosomal gene regulation. eLife 2019; 8:e47214. [PMID: 31738164 PMCID: PMC6860989 DOI: 10.7554/elife.47214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Recent evidence has determined that the conserved X chromosome mega-structures controlled by the Firre and Dxz4 loci are not required for X chromosome inactivation (XCI) in cell lines. Here, we examined the in vivo contribution of these loci by generating mice carrying a single or double deletion of Firre and Dxz4. We found that these mutants are viable, fertile and show no defect in random or imprinted XCI. However, the lack of these elements results in many dysregulated genes on autosomes in an organ-specific manner. By comparing the dysregulated genes between the single and double deletion, we identified superloop, megadomain, and Firre locus-dependent gene sets. The largest transcriptional effect was observed in all strains lacking the Firre locus, indicating that this locus is the main driver for these autosomal expression signatures. Collectively, these findings suggest that these X-linked loci are involved in autosomal gene regulation rather than XCI biology.
Collapse
Affiliation(s)
- Daniel Andergassen
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeUnited States
| | - Zachary D Smith
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeUnited States
| | - Jordan P Lewandowski
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeUnited States
| | - Chiara Gerhardinger
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeUnited States
| | - Alexander Meissner
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeUnited States
- Department of Genome RegulationMax Planck Institute for Molecular GeneticsBerlinGermany
| | - John L Rinn
- Department of BiochemistryUniversity of Colorado BoulderBoulderUnited States
| |
Collapse
|
10
|
Sheehan MJ, Campbell P, Miller CH. Evolutionary patterns of major urinary protein scent signals in house mice and relatives. Mol Ecol 2019; 28:3587-3601. [DOI: 10.1111/mec.15155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/04/2023]
Affiliation(s)
| | - Polly Campbell
- Evolution, Ecology and Organismal Biology University of California – Riverside Riverside CA USA
| | | |
Collapse
|
11
|
Scent marks of rodents can provide information to conspecifics. Anim Cogn 2019; 22:445-452. [PMID: 30778801 DOI: 10.1007/s10071-019-01250-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/10/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022]
Abstract
For a scent mark to be informative it must provide a reliable, honest signal that allows individuals that detect it to predict fitness tradeoffs if they choose or not choose to respond to it. I argue that scent marks provide a great deal of information about the sender to receivers. The manner in which an animal uses this information to make decisions will depend on the context and manner in which it encounters these scent marks. Receivers can use the information found in the scent marks and odors to locate the donor, learn its identity, determine the donor's phenotype or genotype, and assess whether the scent marks were encountered earlier by conspecifics. For receivers to make potentially informed decisions, when they encounter the scent marks of conspecifics with whom they have had different experiences across a variety of contexts higher level cognitive processing involving procedural memory, episodic memory, autobiographical memory and making judgements of numerical discrimination would be required. Senders should have some insight into the receivers to increase the likelihood that the targets respond appropriately to the scent mark by reducing uncertainty. The sender's state or the current state of the environment and the context will affect when and where the scent marks were deposited. Decisions to deposit scent marks and respond to them must represent a tradeoff in the benefits and costs to the sender and receivers in terms of their fitness and survival. The actual tradeoff should be context dependent and reflect the experience, physiology, and life history constraints affecting the receiver. Calculating these tradeoffs likely involves some cognitive processing and requires some sort of information transfer between the sender and the receiver.
Collapse
|
12
|
Regulation of volatile and non-volatile pheromone attractants depends upon male social status. Sci Rep 2019; 9:489. [PMID: 30679546 PMCID: PMC6346026 DOI: 10.1038/s41598-018-36887-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/15/2018] [Indexed: 01/01/2023] Open
Abstract
We investigated the regulation of chemical signals of house mice living in seminatural social conditions. We found that male mice more than doubled the excretion of major urinary proteins (MUPs) after they acquired a territory and become socially dominant. MUPs bind and stabilize the release of volatile pheromone ligands, and some MUPs exhibit pheromonal properties themselves. We conducted olfactory assays and found that female mice were more attracted to the scent of dominant than subordinate males when they were in estrus. Yet, when male status was controlled, females were not attracted to urine with high MUP concentration, despite being comparable to levels of dominant males. To determine which compounds influence female attraction, we conducted additional analyses and found that dominant males differentially upregulated the excretion of particular MUPs, including the pheromone MUP20 (darcin), and a volatile pheromone that influences female reproductive physiology and behavior. Our findings show that once male house mice become territorial and socially dominant, they upregulate the amount and types of excreted MUPs, which increases the intensities of volatiles and the attractiveness of their urinary scent to sexually receptive females.
Collapse
|
13
|
Ricatti J, Acquasaliente L, Ribaudo G, De Filippis V, Bellini M, Llovera RE, Barollo S, Pezzani R, Zagotto G, Persaud KC, Mucignat-Caretta C. Effects of point mutations in the binding pocket of the mouse major urinary protein MUP20 on ligand affinity and specificity. Sci Rep 2019; 9:300. [PMID: 30670733 PMCID: PMC6342991 DOI: 10.1038/s41598-018-36391-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/15/2018] [Indexed: 12/30/2022] Open
Abstract
The mouse Major Urinary Proteins (MUPs) contain a conserved β-barrel structure with a characteristic central hydrophobic pocket that binds a variety of volatile compounds. After release of urine, these molecules are slowly emitted in the environment where they play an important role in chemical communication. MUPs are highly polymorphic and conformationally stable. They may be of interest in the construction of biosensor arrays capable of detection of a broad range of analytes. In this work, 14 critical amino acids in the binding pocket involved in ligand interactions were identified in MUP20 using in silico techniques and 7 MUP20 mutants were synthesised and characterised to produce a set of proteins with diverse ligand binding profiles to structurally different ligands. A single amino acid substitution in the binding pocket can dramatically change the MUPs binding affinity and ligand specificity. These results have great potential for the design of new biosensor and gas-sensor recognition elements.
Collapse
Affiliation(s)
- Jimena Ricatti
- Department of Molecular Medicine, University of Padua, Padua, Italy.,Cell Biology and Neuroscience Institute, University of Buenos Aires-National Scientific and Technical Council (UBA-CONICET), Buenos Aires, Argentina
| | - Laura Acquasaliente
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Giovanni Ribaudo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Vincenzo De Filippis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Marino Bellini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Ramiro Esteban Llovera
- Multidisciplinary Institute of Cell Biology, National Scientific and Technical Council (CONICET) and Department of Science and Technology, National University of Quilmes, Buenos Aires, Argentina
| | - Susi Barollo
- Department of Medicine, University of Padua, Padua, Italy
| | | | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Krishna C Persaud
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, UK
| | - Carla Mucignat-Caretta
- Department of Molecular Medicine, University of Padua, Padua, Italy. .,National Institute of Biostructures and Biosystems, Rome, Italy.
| |
Collapse
|
14
|
Roberts SA, Prescott MC, Davidson AJ, McLean L, Beynon RJ, Hurst JL. Individual odour signatures that mice learn are shaped by involatile major urinary proteins (MUPs). BMC Biol 2018; 16:48. [PMID: 29703213 PMCID: PMC5921788 DOI: 10.1186/s12915-018-0512-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/28/2018] [Indexed: 11/17/2022] Open
Abstract
Background Reliable recognition of individuals requires phenotypic identity signatures that are both individually distinctive and appropriately stable over time. Individual-specific vocalisations or visual patterning are well documented among birds and some mammals, whilst odours play a key role in social recognition across many vertebrates and invertebrates. Less well understood, though, is whether individuals are recognised through variation in cues that arise incidentally from a wide variety of genetic and non-genetic differences between individuals, or whether animals evolve distinctive polymorphic signals to advertise identity reliably. As a bioassay to understand the derivation of individual-specific odour signatures, we use female attraction to the individual odours of male house mice (Mus musculus domesticus), learned on contact with a male’s scent marks. Results Learned volatile odour signatures are determined predominantly by individual differences in involatile major urinary protein (MUP) signatures, a specialised set of communication proteins that mice secrete in their urine. Recognition of odour signatures in genetically distinct mice depended on differences in individual MUP genotype. Direct manipulation using recombinant MUPs confirmed predictable changes in volatile signature recognition according to the degree of matching between MUP profiles and the learned urine template. Both the relative amount of the male-specific MUP pheromone darcin, which induces odour learning, and other MUP isoforms influenced learned odour signatures. By contrast, odour recognition was not significantly influenced by individual major histocompatibility complex genotype. MUP profiles shape volatile odour signatures through isoform-specific differences in binding and release of urinary volatiles from scent deposits, such that volatile signatures were recognised from the urinary protein fraction alone. Manipulation using recombinant MUPs led to quantitative changes in the release of known MUP ligands from scent deposits, with MUP-specific and volatile-specific effects. Conclusions Despite assumptions that many genes contribute to odours that can be used to recognise individuals, mice have evolved a polymorphic combinatorial MUP signature that shapes distinctive volatile signatures in their scent. Such specific signals may be more prevalent within complex body odours than previously realised, contributing to the evolution of phenotypic diversity within species. However, differences in selection may also result in species-specific constraints on the ability to recognise individuals through complex body scents. Electronic supplementary material The online version of this article (10.1186/s12915-018-0512-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah A Roberts
- Mammalian Behaviour & Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Mark C Prescott
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Amanda J Davidson
- Mammalian Behaviour & Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Lynn McLean
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Jane L Hurst
- Mammalian Behaviour & Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK.
| |
Collapse
|
15
|
Kuntová B, Stopková R, Stopka P. Transcriptomic and Proteomic Profiling Revealed High Proportions of Odorant Binding and Antimicrobial Defense Proteins in Olfactory Tissues of the House Mouse. Front Genet 2018; 9:26. [PMID: 29459883 PMCID: PMC5807349 DOI: 10.3389/fgene.2018.00026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
Mammalian olfaction depends on chemosensory neurons of the main olfactory epithelia (MOE), and/or of the accessory olfactory epithelia in the vomeronasal organ (VNO). Thus, we have generated the VNO and MOE transcriptomes and the nasal cavity proteome of the house mouse, Mus musculus musculus. Both transcriptomes had low levels of sexual dimorphisms, while the soluble proteome of the nasal cavity revealed high levels of sexual dimorphism similar to that previously reported in tears and saliva. Due to low levels of sexual dimorphism in the olfactory receptors in MOE and VNO, the sex-specific sensing seems less likely to be dependent on receptor repertoires. However, olfaction may also depend on a continuous removal of background compounds from the sites of detection. Odorant binding proteins (OBPs) are thought to be involved in this process and in our study Obp transcripts were most expressed along other lipocalins (e.g., Lcn13, Lcn14) and antimicrobial proteins. At the level of proteome, OBPs were highly abundant with only few being sexually dimorphic. We have, however, detected the major urinary proteins MUP4 and MUP5 in males and females and the male-biased central/group-B MUPs that were thought to be abundant mainly in the urine. The exocrine gland-secreted peptides ESP1 and ESP22 were male-biased but not male-specific in the nose. For the first time, we demonstrate that the expression of nasal lipocalins correlates with antimicrobial proteins thus suggesting that their individual variation may be linked to evolvable mechanisms that regulate natural microbiota and pathogens that regularly enter the body along the ‘eyes-nose-oral cavity’ axis.
Collapse
Affiliation(s)
- Barbora Kuntová
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Romana Stopková
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Pavel Stopka
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
16
|
Ferkin MH. Odor Communication and Mate Choice in Rodents. BIOLOGY 2018; 7:E13. [PMID: 29370074 PMCID: PMC5872039 DOI: 10.3390/biology7010013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/15/2022]
Abstract
This paper details how chemical communication is affected by ecological challenges such as finding mates. I list several conditions that affect the decision to attract mates, the decision to respond to the signals of potential mates and how the response depends on context. These mate-choice decisions and their outcomes will depend on the life history constraints placed on individuals such as their fecundity, sex, lifespan, opportunities to mate in the future and age at senescence. Consequently, the sender's decision to scent mark or self-groom as well as the receiver's choice of response represents a tradeoff between the current costs of the participant's own survival and future reproduction against that of reproducing now. The decision to scent nark and the response to the scent mark of opposite-sex conspecifics should maximize the fitness of the participants in that context.
Collapse
Affiliation(s)
- Michael H Ferkin
- Department of Biological Sciences, University of Memphis, Memphis, TN 38017, USA.
| |
Collapse
|
17
|
Černá M, Kuntová B, Talacko P, Stopková R, Stopka P. Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse. Sci Rep 2017; 7:11674. [PMID: 28916783 PMCID: PMC5601457 DOI: 10.1038/s41598-017-12021-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/01/2017] [Indexed: 01/08/2023] Open
Abstract
Female house mice produce pheromone-carrying major urinary proteins (MUPs) in a cycling manner, thus reaching the maximum urinary production just before ovulation. This is thought to occur to advertise the time of ovulation via deposited urine marks. This study aimed to characterize the protein content from the house mouse vaginal flushes to detect putative vaginal-advertising molecules for a direct identification of reproductive states. Here we show that the mouse vaginal discharge contains lipocalins including those from the odorant binding (OBP) and major urinary (MUP) protein families. OBPs were highly expressed but only slightly varied throughout the cycle, whilst several MUPs were differentially abundant. MUP20 or 'darcin', was thought to be expressed only by males. However, in females it was significantly up-regulated during estrus similarly as the recently duplicated central/group-B MUPs (sMUP17 and highly expressed sMUP9), which in the mouse urine are male biased. MUPs rise between proestrus and estrus, remain steady throughout metestrus, and are co-expressed with antimicrobial proteins. Thus, we suggest that MUPs and potentially also OBPs are important components of female vaginal advertising of the house mouse.
Collapse
Affiliation(s)
- Martina Černá
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Barbora Kuntová
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Pavel Talacko
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Romana Stopková
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic.
| |
Collapse
|
18
|
Stopkova R, Klempt P, Kuntova B, Stopka P. On the tear proteome of the house mouse ( Mus musculus musculus) in relation to chemical signalling. PeerJ 2017; 5:e3541. [PMID: 28698824 PMCID: PMC5502090 DOI: 10.7717/peerj.3541] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022] Open
Abstract
Mammalian tears are produced by lacrimal glands to protect eyes and may function in chemical communication and immunity. Recent studies on the house mouse chemical signalling revealed that major urinary proteins (MUPs) are not individually unique in Mus musculus musculus. This fact stimulated us to look for other sexually dimorphic proteins that may—in combination with MUPs—contribute to a pool of chemical signals in tears. MUPs and other lipocalins including odorant binding proteins (OBPs) have the capacity to selectively transport volatile organic compounds (VOCs) in their eight-stranded beta barrel, thus we have generated the tear proteome of the house mouse to detect a wider pool of proteins that may be involved in chemical signalling. We have detected significant male-biased (7.8%) and female-biased (7%) proteins in tears. Those proteins that showed the most elevated sexual dimorphisms were highly expressed and belong to MUP, OBP, ESP (i.e., exocrine gland-secreted peptides), and SCGB/ABP (i.e., secretoglobin) families. Thus, tears may have the potential to elicit sex-specific signals in combination by different proteins. Some tear lipocalins are not sexually dimorphic—with MUP20/darcin and OBP6 being good examples—and because all proteins may flow with tears through nasolacrimal ducts to nasal and oral cavities we suggest that their roles are wider than originally thought. Also, we have also detected several sexually dimorphic bactericidal proteins, thus further supporting an idea that males and females may have adopted alternative strategies in controlling microbiota thus yielding different VOC profiles.
Collapse
Affiliation(s)
- Romana Stopkova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Klempt
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Kuntova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
19
|
Diversity of major urinary proteins (MUPs) in wild house mice. Sci Rep 2016; 6:38378. [PMID: 27922085 PMCID: PMC5138617 DOI: 10.1038/srep38378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 11/09/2016] [Indexed: 11/21/2022] Open
Abstract
Major urinary proteins (MUPs) are often suggested to be highly polymorphic, and thereby provide unique chemical signatures used for individual and genetic kin recognition; however, studies on MUP variability have been lacking. We surveyed populations of wild house mice (Mus musculus musculus), and examined variation of MUP genes and proteins. We sequenced several Mup genes (9 to 11 loci) and unexpectedly found no inter-individual variation. We also found that microsatellite markers inside the MUP cluster show remarkably low levels of allelic diversity, and significantly lower than the diversity of markers flanking the cluster or other markers in the genome. We found low individual variation in the number and types of MUP proteins using a shotgun proteomic approach, even among mice with variable MUP electrophoretic profiles. We identified gel bands and spots using high-resolution mass spectrometry and discovered that gel-based methods do not separate MUP proteins, and therefore do not provide measures of MUP diversity, as generally assumed. The low diversity and high homology of Mup genes are likely maintained by purifying selection and gene conversion, and our results indicate that the type of selection on MUPs and their adaptive functions need to be re-evaluated.
Collapse
|
20
|
Enk VM, Baumann C, Thoß M, Luzynski KC, Razzazi-Fazeli E, Penn DJ. Regulation of highly homologous major urinary proteins in house mice quantified with label-free proteomic methods. MOLECULAR BIOSYSTEMS 2016; 12:3005-16. [PMID: 27464909 PMCID: PMC5166567 DOI: 10.1039/c6mb00278a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/15/2016] [Indexed: 01/16/2023]
Abstract
Major urinary proteins (MUPs) are highly homologous proteoforms that function in binding, transporting and releasing pheromones in house mice. The main analytical challenge for studying variation in MUPs, even for state-of-the-art proteomics techniques, is their high degree of amino acid sequence homology. In this study we used unique peptides for proteoform-specific identification. We applied different search engines (ProteinPilot™vs. PEAKS®) and protein databases (MUP database vs. SwissProt + unreviewed MUPs), and found that proteoform identification is influenced by addressing background proteins (unregulated urinary proteins, non-MUPs) during the database search. High resolution Q-TOF mass spectrometry was used to identify and precisely quantify the regulation of MUP proteoforms in male mice that were reared in standard housing and then transferred to semi-natural enclosures (within-subject design). By using a designated MUP database we were able to distinguish 19 MUP proteoforms, with A2CEK6 (a Mup11 gene product) being the most abundant based on spectral intensities. We compared three different quantification strategies based on MS1- (from IDA and SWATH™ spectra) and MS2 (SWATH™) data, and the results of these methods were correlated. Furthermore, three data normalization methods were compared and we found that increased statistical significance of fold-changes can be achieved by normalization based on urinary protein concentrations. We show that male mice living in semi-natural enclosures significantly up-regulated some but not all MUPs (differential regulation), e.g., A2ANT6, a Mup6 gene product, was upregulated between 9-fold (MS1) and 13-fold (MS2) using the designated MUP database. Finally, we show that 85 ± 7% of total MS intensity can be attributed to MUP-derived peptides, which supports the assumption that MUPs are the primary proteins in mouse urine. Our results provide new tools for assessing qualitative and quantitative variation of MUPs and suggest that male mice regulate the expression of specific MUP proteoforms, depending upon social conditions.
Collapse
Affiliation(s)
- Viktoria M. Enk
- VetCore-Facility for Research , University of Veterinary Medicine Vienna , Veterinärplatz 1 , A-1210-Vienna , Austria
| | - Christian Baumann
- SCIEX Germany GmbH , Landwehrstraße 54 , D-64293 Darmstadt , Germany
| | - Michaela Thoß
- Department of Integrative Biology and Evolution , Konrad Lorenz Institute of Ethology , University of Veterinary Medicine Vienna , Savoyenstraße 1 , A-1160-Vienna , Austria .
| | - Kenneth C. Luzynski
- Department of Integrative Biology and Evolution , Konrad Lorenz Institute of Ethology , University of Veterinary Medicine Vienna , Savoyenstraße 1 , A-1160-Vienna , Austria .
| | - Ebrahim Razzazi-Fazeli
- VetCore-Facility for Research , University of Veterinary Medicine Vienna , Veterinärplatz 1 , A-1210-Vienna , Austria
| | - Dustin J. Penn
- Department of Integrative Biology and Evolution , Konrad Lorenz Institute of Ethology , University of Veterinary Medicine Vienna , Savoyenstraße 1 , A-1160-Vienna , Austria .
| |
Collapse
|
21
|
On the saliva proteome of the Eastern European house mouse (Mus musculus musculus) focusing on sexual signalling and immunity. Sci Rep 2016; 6:32481. [PMID: 27577013 PMCID: PMC5006050 DOI: 10.1038/srep32481] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
Chemical communication is mediated by sex-biased signals abundantly present in the urine, saliva and tears. Because most studies concentrated on the urinary signals, we aimed to determine the saliva proteome in wild Mus musculus musculus, to extend the knowledge on potential roles of saliva in chemical communication. We performed the gel-free quantitative LC-MS/MS analyses of saliva and identified 633 proteins with 134 (21%) of them being sexually dimorphic. They include proteins that protect and transport volatile organic compounds in their beta barrel including LCN lipocalins, major urinary proteins (MUPs), and odorant binding proteins (OBPs). To our surprise, the saliva proteome contains one MUP that is female biased (MUP8) and the two protein pheromones MUP20 (or 'Darcin') and ESP1 in individuals of both sex. Thus, contrary to previous assumptions, our findings reveal that these proteins cannot function as male-unique signals. Our study also demonstrates that many olfactory proteins (e.g. LCNs, and OBPs) are not expressed by submandibular glands but are produced elsewhere-in nasal and lacrimal tissues, and potentially also in other oro-facial glands. We have also detected abundant proteins that are involved in wound healing, immune and non-immune responses to pathogens, thus corroborating that saliva has important protective roles.
Collapse
|
22
|
Du J, Leung A, Trac C, Lee M, Parks BW, Lusis AJ, Natarajan R, Schones DE. Chromatin variation associated with liver metabolism is mediated by transposable elements. Epigenetics Chromatin 2016; 9:28. [PMID: 27398095 PMCID: PMC4939004 DOI: 10.1186/s13072-016-0078-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/29/2016] [Indexed: 01/23/2023] Open
Abstract
Background Functional regulatory regions in eukaryotic genomes are characterized by the disruption of nucleosomes leading to accessible chromatin. The modulation of chromatin accessibility is one of the key mediators of transcriptional regulation, and variation in chromatin accessibility across individuals has been linked to complex traits and disease susceptibility. While mechanisms responsible for chromatin variation across individuals have been investigated, the overwhelming majority of chromatin variation remains unexplained. Furthermore, the processes through which the variation of chromatin accessibility contributes to phenotypic diversity remain poorly understood. Results We profiled chromatin accessibility in liver from seven strains of mice with phenotypic diversity in response to a high-fat/high-sucrose (HF/HS) diet and identified reproducible chromatin variation across the individuals. We found that sites of variable chromatin accessibility were more likely to coincide with particular classes of transposable elements (TEs) than sites with common chromatin signatures. Evolutionarily younger long interspersed nuclear elements (LINEs) are particularly likely to harbor variable chromatin sites. These younger LINEs are enriched for binding sites of immune-associated transcription factors, whereas older LINEs are enriched for liver-specific transcription factors. Genomic region enrichment analysis indicates that variable chromatin sites at TEs may function to regulate liver metabolic pathways. CRISPR-Cas9 deletion of a number of variable chromatin sites at TEs altered expression of nearby metabolic genes. Finally, we show that polymorphism of TEs and differential DNA methylation at TEs can both influence chromatin variation. Conclusions Our results demonstrate that specific classes of TEs show variable chromatin accessibility across strains of mice that display phenotypic diversity in response to a HF/HS diet. These results indicate that chromatin variation at TEs is an important contributor to phenotypic variation among populations. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0078-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Du
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA USA ; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA USA
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA USA
| | - Candi Trac
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA USA
| | - Michael Lee
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA USA ; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA USA
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Aldons J Lusis
- Department of Medicine, University of California, Los Angeles, CA USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA USA ; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA USA
| | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA USA ; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA USA
| |
Collapse
|
23
|
Stopková R, Vinkler D, Kuntová B, Šedo O, Albrecht T, Suchan J, Dvořáková-Hortová K, Zdráhal Z, Stopka P. Mouse Lipocalins (MUP, OBP, LCN) Are Co-expressed in Tissues Involved in Chemical Communication. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
24
|
Kwak J, Strasser E, Luzynski K, Thoß M, Penn DJ. Are MUPs a Toxic Waste Disposal System? PLoS One 2016; 11:e0151474. [PMID: 26966901 PMCID: PMC4788440 DOI: 10.1371/journal.pone.0151474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/28/2016] [Indexed: 11/18/2022] Open
Abstract
Male house mice produce large quantities of major urinary proteins (MUPs), which function to bind and transport volatile pheromones, though they may also function as scavengers that bind and excrete toxic compounds (‘toxic waste hypothesis’). In this study, we demonstrate the presence of an industrial chemical, 2,4-di-tert-butylphenol (DTBP), in the urine of wild-derived house mice (Mus musculus musculus). Addition of guanidine hydrochloride to male and female urine resulted in an increased release of DTBP. This increase was only observed in the high molecular weight fractions (HMWF; > 3 kDa) separated from male or female urine, suggesting that the increased release of DTBP was likely due to the denaturation of MUPs and the subsequent release of MUP-bound DTBP. Furthermore, when DTBP was added to a HMWF isolated from male urine, an increase in 2-sec-butyl-4,5-dihydrothiazole (SBT), the major ligand of MUPs and a male-specific pheromone, was observed, indicating that DTBP was bound to MUPs and displaced SBT. These results suggest that DTBP is a MUP ligand. Moreover, we found evidence for competitive ligand binding between DTBP and SBT, suggesting that males potentially face a tradeoff between eliminating toxic wastes versus transporting pheromones. Our findings support the hypothesis that MUPs bind and eliminate toxic wastes, which may provide the most important fitness benefits of excreting large quantities of these proteins.
Collapse
Affiliation(s)
- Jae Kwak
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| | - Eva Strasser
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ken Luzynski
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Thoß
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dustin J. Penn
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
25
|
Selection on Coding and Regulatory Variation Maintains Individuality in Major Urinary Protein Scent Marks in Wild Mice. PLoS Genet 2016; 12:e1005891. [PMID: 26938775 PMCID: PMC4777540 DOI: 10.1371/journal.pgen.1005891] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/31/2016] [Indexed: 01/17/2023] Open
Abstract
Recognition of individuals by scent is widespread across animal taxa. Though animals can often discriminate chemical blends based on many compounds, recent work shows that specific protein pheromones are necessary and sufficient for individual recognition via scent marks in mice. The genetic nature of individuality in scent marks (e.g. coding versus regulatory variation) and the evolutionary processes that maintain diversity are poorly understood. The individual signatures in scent marks of house mice are the protein products of a group of highly similar paralogs in the major urinary protein (Mup) gene family. Using the offspring of wild-caught mice, we examine individuality in the major urinary protein (MUP) scent marks at the DNA, RNA and protein levels. We show that individuality arises through a combination of variation at amino acid coding sites and differential transcription of central Mup genes across individuals, and we identify eSNPs in promoters. There is no evidence of post-transcriptional processes influencing phenotypic diversity as transcripts accurately predict the relative abundance of proteins in urine samples. The match between transcripts and urine samples taken six months earlier also emphasizes that the proportional relationships across central MUP isoforms in urine is stable. Balancing selection maintains coding variants at moderate frequencies, though pheromone diversity appears limited by interactions with vomeronasal receptors. We find that differential transcription of the central Mup paralogs within and between individuals significantly increases the individuality of pheromone blends. Balancing selection on gene regulation allows for increased individuality via combinatorial diversity in a limited number of pheromones. Individual recognition via scent is critical for many aspects of behavior including parental care, competition, cooperation and mate choice. While animal scents can differ in a huge number of dimensions, recent work has shown that only some specialized semiochemicals in scent marks are behaviorally relevant for individual recognition. How is individuality in specialized semiochemical blends produced and maintained in populations? At the extremes, individuality may depend on either a plethora of semiochemical isoforms or on combinatorial variation in a small number of shared isoforms across individuals. Analyzing the major urinary protein (MUP) pheromone blends of a wild population of house mice, we find evidence in favor of a combinatorial diversity model for the production and maintenance of individuality. Balancing selection maintains MUP proteins at moderate frequencies in the population, though interactions with the pheromone receptors appear to limit the extent of pheromone diversity in the system. By contrast, differential transcription of proteins greatly increases individuality in pheromone blends with balancing selection maintaining diversity in promoter regions associated with gene expression patterns. Selection maintaining combinatorial diversity in a limited set of behaviorally important semiochemicals may be a widespread mechanism generating and maintaining individuality in scent across taxa.
Collapse
|