1
|
Novales Flamarique I, Grebinsky LA. Single cones give rise to multi-cone types in the retinas of fishes. Sci Rep 2025; 15:7823. [PMID: 40050341 PMCID: PMC11885650 DOI: 10.1038/s41598-025-91987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Retinal cone photoreceptors are specialized neurons that capture light to begin the process of daylight vision. They occur as individual cells (i.e., single cones), or as combinations of structurally linked cells, such as the double and triple cones found in the retinas of non-eutherian vertebrates. These different morphological cone types form mosaics of varying regularity, with single and double cones patterned as nearly perfect lattices in the retinas of many bony fishes (teleosts) and some geckos. Although double cones were first reported over 150 years ago, how they form (i.e., whether from coalescing single cones, or from structurally linked cone progenitors) remains uncertain. In turn, whether there is a general vertebrate sequence in appearance of morphological cone types and mosaics is unknown. Here, the developing retinas of seven species of teleosts were examined revealing that only single cones, arranged in hexagonal-like mosaics, were present at the earliest stages of photoreceptor differentiation. Double cones arose from coalescing single cones and the formation of multi-cone type mosaics (such as the square mosaic, where each single cone is surrounded by four double cones) followed different dynamics depending on whether the species was altricial or precocial. Single cones were therefore the primordial cells from which all multi-cone types arose and hexagonal-like mosaics preceded other mosaic patterns. Based on observations from transitional retinas, we propose a model for mosaic transformation from hexagonal to square. The double cones of fishes and those of land vertebrates constitute an example of convergent evolution to achieve the elliptical waveguide structure, likely for improved spatio-temporal resolution.
Collapse
Affiliation(s)
- Iñigo Novales Flamarique
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
- Department of Biology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada.
| | - Lisa A Grebinsky
- Greenagain Consulting, 18-5156 Cordova Bay Road, Victoria, British Columbia, V8Y 2X6, Canada
| |
Collapse
|
2
|
Cervino NG, Elias-Costa AJ, Iglesias PP, Yovanovich CAM, Faivovich J. Insights into the evolution of photoreceptor oil droplets in frogs and toads. Proc Biol Sci 2024; 291:20241388. [PMID: 39079666 PMCID: PMC11288682 DOI: 10.1098/rspb.2024.1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 08/03/2024] Open
Abstract
Photoreceptor oil droplets (ODs) are spherical organelles placed most commonly within the inner segment of the cone photoreceptors. Comprising neutral lipids, ODs can be either non-pigmented or pigmented and have been considered optically functional in various studies. Among living amphibians, ODs were only reported to occur in frogs and toads (Anura), while they are absent in salamanders and caecilians. Nonetheless, the limited understanding of their taxonomic distribution in anurans impedes a comprehensive assessment of their evolution and relationship with visual ecology. We studied the retinae of 134 anuran species, extending the knowledge of the distribution of ODs to 46 of the 58 currently recognized families, and providing a new perspective on this group that complements the available information from other vertebrates. The occurrence of ODs in anurans shows a strong phylogenetic signal, and our findings revealed that ODs evolved at least six times during the evolutionary history of the group, independently from other vertebrates. Although no evident correlation was found between OD occurrence, adult habits and diel activity, it is inferred that each independent origin involves distinct scenarios in the evolution of ODs concerning photic habits. Furthermore, our results revealed significant differences in the size of the ODs between nocturnal and arrhythmic anurans relative to the length of the cones' outer segment.
Collapse
Affiliation(s)
- Nadia G. Cervino
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Av. Ángel Gallardo 470, Buenos AiresC1405DJR, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresC1428EGA, Argentina
| | - Agustín J. Elias-Costa
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Av. Ángel Gallardo 470, Buenos AiresC1405DJR, Argentina
- Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin10115, Germany
| | - Patricia P. Iglesias
- CONICET--Agencia INTA General Acha, Estación Experimental Anguil, Avellaneda 530 General Acha, La PampaL8200AEL, Argentina
| | - Carola A. M. Yovanovich
- Department of Zoology, Institute of Biosciences, University of São Paulo, Rua do Matão No. 101, São Paulo05508-090, Brazil
- Department of Biology, Lund University, Sölvegatan 35, Lund22362, Sweden
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Av. Ángel Gallardo 470, Buenos AiresC1405DJR, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresC1428EGA, Argentina
| |
Collapse
|
3
|
Mokhtar DM, Alesci A, Pergolizzi S, Zaccone G. Light and electron microscopic observations on retinal neurons of red-tail shark (Epalzeorhynchos bicolor H. M. Smith, 1931). Microsc Res Tech 2024; 87:1009-1019. [PMID: 38192121 DOI: 10.1002/jemt.24488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/26/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024]
Abstract
The structure of photoreceptors (PR) and the arrangement of neurons in the retina of red-tail shark were investigated using light and electron microscopy. The PR showed a mosaic arrangement and included double cones, single cones (SC), and single rods. Most cones occur as SC. The ratio between the number of cones and rods was 3:1.39 (±0.29). The rods were tall that reached the pigmented epithelium. The outer plexiform layer (OPL) showed a complex synaptic connection between the horizontal and photoreceptor terminals that were surrounded by Müller cell processes. Electron microscopy showed that the OPL possessed both cone pedicles and rod spherules. Each rod spherule consisted of a single synaptic ribbon within the invaginating terminal endings of the horizontal cell (hc) processes. In contrast, the cone pedicles possessed many synaptic ribbons within their junctional complexes. The inner nuclear layer consisted of bipolar, amacrine, Müller cells, and hc. Müller cells possessed intermediate filaments and cell processes that can reach the outer limiting membrane and form connections with each other by desmosomes. The ganglion cells were large multipolar cells with a spherical nucleus and Nissl' bodies in their cytoplasm. The presence of different types of cones arranged in a mosaic pattern in the retina of this species favors the spatial resolution of visual objects. RESEARCH HIGHLIGHTS: This is the first study demonstrating the structure and arrangement of retinal neurons of red-tail shark using light and electron microscopy. The current study showed the presence of different types of cones arranged in a mosaic pattern that may favor the spatial resolution of visual objects in this species. The bipolar, amacrine, Müller, and horizontal cells could be demonstrated.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Vet. Medicine, Assiut University, Assiut, Egypt
- Department of Histology and Anatomy, School of veterinary medicine, Badr University in Assiut, Assiut, Egypt
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giacomo Zaccone
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Barry Collin H, Ratcliffe J, Collin SP. Morphology of the cornea and iris in the Australian lungfish Neoceratodus forsteri (Krefft 1870) (Dipnoi): Functional and evolutionary perspectives of transitioning from an aquatic to a terrestrial environment. J Morphol 2024; 285:e21662. [PMID: 38100743 DOI: 10.1002/jmor.21662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
The Australian lungfish, Neoceratodus forsteri (Krefft 1870), is the sole extant member of the Ceratodontidae within the Dipnoi, a small order of sarcopterygian (lobe-finned) fishes, that is thought to be the earliest branching species of extant lungfishes, having changed little over the last 100 million years. To extend studies on anatomical adaptations associated with the fish-tetrapod transition, the ultrastructure of the cornea and iris is investigated using light and electron (transmission and scanning) microscopy to investigate structure-function relationships and compare these to other vertebrate corneas (other fishes and tetrapods). In contrast to previous studies, the cornea is found to have only three main components, comprising an epithelium with its basement membrane, a stroma with a Bowman's layer and an endothelium, and is not split into a dermal (secondary) spectacle and a scleral cornea. The epithelial cells are large, relatively low in density and similar to many species of non-aquatic tetrapods and uniquely possess numerous surface canals that contain and release mucous granules onto the corneal surface to avoid desiccation. A Bowman's layer is present and, in association with extensive branching and anastomosing of the collagen fibrils, may be an adaptation for the inhibition of swelling and/or splitting of the stroma during its amphibious lifestyle. The dorsal region of the stroma possesses aggregations of pigment granules that act as a yellow, short wavelength-absorbing filter during bright light conditions. Desçemet's membrane is absent and replaced by an incomplete basement membrane overlying a monocellular endothelium. The iris is pigmented, well-developed, vascularised and contractile containing reflective crystals anteriorly. Based upon its ultrastructure and functional adaptations, the cornea of N. forsteri is more similar to amphibians than to other bony fishes and is well-adapted for an amphibious lifestyle.
Collapse
Affiliation(s)
- Hermann Barry Collin
- Department of Optometry and Vision Science, University of New South Wales, Kensington, New South Wales, Australia
| | - Julian Ratcliffe
- Bioimaging Platform, La Trobe University, Bundoora, Victoria, Australia
| | - Shaun P Collin
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Oceans Graduate School and Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
5
|
Abstract
The jawless fish that were ancestral to all living vertebrates had four spectral cone types that were probably served by chromatic-opponent retinal circuits. Subsequent evolution of photoreceptor spectral sensitivities is documented for many vertebrate lineages, giving insight into the ecological adaptation of color vision. Beyond the photoreceptors, retinal color processing is best understood in mammals, especially the blueON system, which opposes short- against long-wavelength receptor responses. For other vertebrates that often have three or four types of cone pigment, new findings from zebrafish are extending older work on teleost fish and reptiles to reveal rich color circuitry. Here, horizontal cells establish diverse and complex spectral responses even in photoreceptor outputs. Cone-selective connections to bipolar cells then set up color-opponent synaptic layers in the inner retina, which lead to a large variety of color-opponent channels for transmission to the brain via retinal ganglion cells.
Collapse
Affiliation(s)
- T Baden
- School of Life Sciences, University of Sussex, BN1 9QG Brighton, United Kingdom; ,
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - D Osorio
- School of Life Sciences, University of Sussex, BN1 9QG Brighton, United Kingdom; ,
| |
Collapse
|
6
|
Toomey MB, Corbo JC. Evolution, Development and Function of Vertebrate Cone Oil Droplets. Front Neural Circuits 2017; 11:97. [PMID: 29276475 PMCID: PMC5727011 DOI: 10.3389/fncir.2017.00097] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 11/24/2022] Open
Abstract
To distinguish colors, the nervous system must compare the activity of distinct subtypes of photoreceptors that are maximally sensitive to different portions of the light spectrum. In vertebrates, a variety of adaptations have arisen to refine the spectral sensitivity of cone photoreceptors and improve color vision. In this review article, we focus on one such adaptation, the oil droplet, a unique optical organelle found within the inner segment of cone photoreceptors of a diverse array of vertebrate species, from fish to mammals. These droplets, which consist of neutral lipids and carotenoid pigments, are interposed in the path of light through the photoreceptor and modify the intensity and spectrum of light reaching the photosensitive outer segment. In the course of evolution, the optical function of oil droplets has been fine-tuned through changes in carotenoid content. Species active in dim light reduce or eliminate carotenoids to enhance sensitivity, whereas species active in bright light precisely modulate carotenoid double bond conjugation and concentration among cone subtypes to optimize color discrimination and color constancy. Cone oil droplets have sparked the curiosity of vision scientists for more than a century. Accordingly, we begin by briefly reviewing the history of research on oil droplets. We then discuss what is known about the developmental origins of oil droplets. Next, we describe recent advances in understanding the function of oil droplets based on biochemical and optical analyses. Finally, we survey the occurrence and properties of oil droplets across the diversity of vertebrate species and discuss what these patterns indicate about the evolutionary history and function of this intriguing organelle.
Collapse
Affiliation(s)
- Matthew B Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|