1
|
Soldan R, Fusi M, Cardinale M, Homma F, Santos LG, Wenzl P, Bach-Pages M, Bitocchi E, Chacon Sanchez MI, Daffonchio D, Preston GM. Consistent effects of independent domestication events on the plant microbiota. Curr Biol 2024; 34:557-567.e4. [PMID: 38232731 DOI: 10.1016/j.cub.2023.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
The effect of plant domestication on plant-microbe interactions remains difficult to prove. In this study, we provide evidence of a domestication effect on the composition and abundance of the plant microbiota. We focused on the genus Phaseolus, which underwent four independent domestication events within two species (P. vulgaris and P. lunatus), providing multiple replicates of a process spanning thousands of years. We targeted Phaseolus seeds to identify a link between domesticated traits and bacterial community composition as Phaseolus seeds have been subject to large and consistent phenotypic changes during these independent domestication events. The seed bacterial communities of representative plant accessions from subpopulations descended from each domestication event were analyzed under controlled and field conditions. The results showed that independent domestication events led to similar seed bacterial community signatures in independently domesticated plant populations, which could be partially explained by selection for common domesticated plant phenotypes. Our results therefore provide evidence of a consistent effect of plant domestication on seed microbial community composition and abundance and offer avenues for applying knowledge of the impact of plant domestication on the plant microbiota to improve microbial applications in agriculture.
Collapse
Affiliation(s)
| | - Marco Fusi
- Center for Conservation and Restoration Science, Edinburgh Napier University, Edinburgh, UK
| | - Massimiliano Cardinale
- University of Salento, Department of Biological and Environmental Sciences and Technologies, Lecce, Italy
| | - Felix Homma
- University of Oxford, Department of Biology, Oxford, UK
| | - Luis Guillermo Santos
- The Alliance Biodiversity International and the International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | - Peter Wenzl
- The Alliance Biodiversity International and the International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | | | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Isabel Chacon Sanchez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gail M Preston
- University of Oxford, Department of Biology, Oxford, UK.
| |
Collapse
|
2
|
Fernandez AR, Sáez A, Quintero C, Gleiser G, Aizen MA. Intentional and unintentional selection during plant domestication: herbivore damage, plant defensive traits and nutritional quality of fruit and seed crops. THE NEW PHYTOLOGIST 2021; 231:1586-1598. [PMID: 33977519 DOI: 10.1111/nph.17452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/23/2021] [Indexed: 05/19/2023]
Abstract
Greater susceptibility to herbivory can arise as an effect of crop domestication. One proposed explanation is that defenses decreased intentionally or unintentionally during the domestication process, but evidence for this remains elusive. An alternative but nonexclusive explanation is presumed selection for higher nutritional quality. We used a metaanalytical approach to examine susceptibility to herbivores in fruit and seed crops and their wild relatives. Our analyses provide novel insights into the mechanisms of increased susceptibility by evaluating whether it can be attributed to either a reduction in herbivore defensive traits, including direct/indirect and constitutive/inducible defenses, or an increase in the nutritional content of crops. The results confirm higher herbivory and lower levels of all types of defenses in crops compared to wild relatives, although indirect defenses were more affected than direct ones. Contrary to expectations, nutritional quality was lower in crops than in wild relatives, which may enhance biomass loss to herbivores if they increase consumption to meet nutritional requirements. Our findings represent an important advance in our understanding of how changes in defensive and nutritional traits following domestication could influence, in combination or individually, crop susceptibility to herbivore attacks.
Collapse
Affiliation(s)
- Anahí R Fernandez
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
- IRNAD, CONICET, Universidad Nacional de Río Negro, Mitre 630, Bariloche, 8400, Argentina
| | - Agustín Sáez
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Carolina Quintero
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Gabriela Gleiser
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Marcelo A Aizen
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
- Wissenschaftskolleg zu Berlin, Berlin, 14193, Germany
| |
Collapse
|
3
|
Chabaane Y, Haseeb M, Benrey B. Domestication of Chili Pepper Has Altered Fruit Traits Affecting the Oviposition and Feeding Behavior of the Pepper Weevil. INSECTS 2021; 12:630. [PMID: 34357290 PMCID: PMC8305446 DOI: 10.3390/insects12070630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022]
Abstract
The pepper weevil, Anthonomus eugenii, Cano (Coleoptera: Curculionidae), is one of the most destructive pests of chili pepper. It causes extensive damage on varieties selected for consumption. However, the occurrence of this pest on wild and ornamental peppers remains unknown. We investigated the consequences of chili domestication on the feeding and oviposition of A. eugenii on fruits and flowers. We used plants of one wild accession, Bird Eye Pepper, five ornamental varieties (Pops Yellow, Black Pearl, Sedona Sun, Chilli Chilli, and Salsa Deep), and two domesticated varieties selected for consumption (Scotch Bonnet and Jalapeño). First, we characterized the plants according to their fruit and flower sizes, pericarp thickness, capsaicin level, fruit position, and flower color. Then, we evaluated the susceptibility of fruits and flowers to A. eugenii. Overall, domestication increased fruit and flower sizes and pericarp thickness, altered capsaicin levels, and altered fruit position and flower color. Weevils laid more eggs and caused more feeding damage on varieties selected for consumption than on wild and ornamental plants. Our results add to the growing literature on the consequences of crop domestication on herbivores. This knowledge could be integrated into breeding programs to select varieties resistant against the pepper weevil.
Collapse
Affiliation(s)
- Yosra Chabaane
- Laboratory of Evolutionary Entomology, University of Neuchâtel, 2000 Neuchâtel, Switzerland;
| | - Muhammad Haseeb
- Center for Biological Control, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307-4100, USA;
| | - Betty Benrey
- Laboratory of Evolutionary Entomology, University of Neuchâtel, 2000 Neuchâtel, Switzerland;
| |
Collapse
|
4
|
Pacheco-Huh J, Carmona D, Dzib G, Chávez-Pesqueira M. Mutualistic and antagonistic interactions differ in wild and domesticated papaya (Carica papaya) in its centre of origin. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:250-258. [PMID: 33188722 DOI: 10.1111/plb.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Shifts in phenotypes derived from the domestication syndromes impact plant performance but may also affect interactions with other species in the community (e.g. mutualists and antagonists). Moreover, plantations often differ from the natural conditions experienced by the wild relatives of cultivated plants, potentially altering the nature of ecological interactions. However, apart from herbivory, little is known about how domestication and cultivation practices (e.g. insecticide application) can modify multiple ecological interactions simultaneously in wild and domesticated plants. In four sites on the Yucatan Peninsula, we compared the diversity of mutualists (e.g. moths) and antagonists (e.g. viruses) in wild and domesticated plants of papaya. For each individual, we recorded floral visitors and rates of visitation at three time periods during the day. We recorded type and percentage of damage by antagonists in three leaves of all individuals. Finally, we explored if plant sex had an effect on the interaction with floral visitors. The main floral visitors were ants and Trigona species, whereas viruses caused the main type of foliar damage. Wild individuals had a higher diversity and visitation rate of floral visitors, and less foliar damage from antagonists. Wild male individuals were more visited, but we observed a similar amount and diversity of damage in both sexes. The time of day did not have an effect on diversity of floral visitors. Together, cultivation practices and domestication appear to have an effect on the reduction in diversity of floral visitors in domesticated papaya, as well as an increase in foliar damage.
Collapse
Affiliation(s)
| | - D Carmona
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Yucatán, México
| | - G Dzib
- Centro de Investigación Científica de Yucatán AC, Unidad de Recursos Naturales, Yucatán, México
| | - M Chávez-Pesqueira
- Centro de Investigación Científica de Yucatán AC, Unidad de Recursos Naturales, Yucatán, México
| |
Collapse
|
5
|
Schneider D, Ramos AG, Córdoba‐Aguilar A. Multigenerational experimental simulation of climate change on an economically important insect pest. Ecol Evol 2020; 10:12893-12909. [PMID: 33304502 PMCID: PMC7713942 DOI: 10.1002/ece3.6847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
Long-term multigenerational experimental simulations of climate change on insect pests of economically and socially important crops are crucial to anticipate challenges for feeding humanity in the not-so-far future. Mexican bean weevil Zabrotes subfasciatus, is a worldwide pest that attacks the common bean Phaseolus vulgaris seeds, in crops and storage. We designed a long term (i.e., over 10 generations), experimental simulation of climate change by increasing temperature and CO2 air concentration in controlled conditions according to model predictions for 2100. Higher temperature and CO2 concentrations favored pest's egg-to-adult development survival, even at high female fecundity. It also induced a reduction of fat storage and increase of protein content but did not alter body size. After 10 generations of simulation, genetic adaptation was detected for total lipid content only, however, other traits showed signs of such process. Future experimental designs and methods similar to ours, are key for studying long-term effects of climate change through multigenerational experimental designs.
Collapse
Affiliation(s)
- David Schneider
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| | - Alejandra G. Ramos
- Facultad de CienciasUniversidad Autónoma de Baja CaliforniaEnsenadaMexico
| | - Alex Córdoba‐Aguilar
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| |
Collapse
|
6
|
Holmes LA, Nelson WA, Dyck M, Lougheed SC. Enhancing the usefulness of artificial seeds in seed beetle model systems research. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Markus Dyck
- Department of Environment Government of Nunavut Igloolik NU Canada
| | | |
Collapse
|
7
|
Cuny MAC, Traine J, Bustos-Segura C, Benrey B. Host density and parasitoid presence interact and shape the outcome of a tritrophic interaction on seeds of wild lima bean. Sci Rep 2019; 9:18591. [PMID: 31819127 PMCID: PMC6901471 DOI: 10.1038/s41598-019-55143-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/22/2019] [Indexed: 01/17/2023] Open
Abstract
The interaction between the seed beetle Zabrotes subfasciatus and its parasitoid Stenocorse bruchivora, was investigated on seeds of two populations of wild lima bean, Phaseolus lunatus. By manipulating the number of beetle larvae per seed and the presence of parasitoids, we determined how factors related to beetle larvae density, the seed in which they feed and the parasitoid, may interact and affect host and parasitoid survival. Results showed that an increase in larval beetle density had a negative impact on beetle performance. This effect cascaded up to parasitoids, high larval density strongly reduced parasitoid emergence. Also, parasitoid presence resulted in faster beetle development and lower female weight. An interactive effect between larval host density and parasitoid presence affected the number of insects that emerged from the seeds. Beetle performance was better in the bean population with the largest seeds, while parasitoid emergence was the lowest in these seeds. This study shows that the impact of parasitoids on seed beetles is contingent on the interaction between density-mediated (direct mortality) and trait-mediated (e.g. non-consumptive) effects. Indirect trait-mediated effects of natural enemies are likely prevalent across insect communities, understanding their role in driving host-parasitoid interactions can have important implications for biological control.
Collapse
Affiliation(s)
- Maximilien A C Cuny
- Institute of Biology, Laboratory of Evolutive Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Juan Traine
- Institute of Biology, Laboratory of Evolutive Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Carlos Bustos-Segura
- Institute of Biology, Laboratory of Evolutive Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Betty Benrey
- Institute of Biology, Laboratory of Evolutive Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
8
|
Bustos‐Segura C, Cuny MAC, Benrey B. Parasitoids of leaf herbivores enhance plant fitness and do not alter caterpillar‐induced resistance against seed beetles. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Carlos Bustos‐Segura
- Laboratory of Evolutionary Entomology Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Maximilien A. C. Cuny
- Laboratory of Evolutionary Entomology Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Betty Benrey
- Laboratory of Evolutionary Entomology Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
9
|
Differential Susceptibility of Wild and Cultivated Blueberries to an Invasive Frugivorous Pest. J Chem Ecol 2018; 45:286-297. [PMID: 30554361 DOI: 10.1007/s10886-018-1042-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/23/2018] [Accepted: 12/07/2018] [Indexed: 01/28/2023]
Abstract
Highbush blueberry is a crop native to the northeast USA that has been domesticated for about 100 years. This study compared the susceptibility of wild and domesticated/cultivated highbush blueberries to an invasive frugivorous pest, the spotted wing drosophila (Drosophila suzukii). We hypothesized that: 1) cultivated fruits are preferred by D. suzukii for oviposition and better hosts for its offspring than wild fruits; and, 2) wild and cultivated fruits differ in physico-chemical traits. Fruits from wild and cultivated blueberries were collected from June through August of 2015 and 2016 from 10 to 12 sites in New Jersey (USA); with each site having wild and cultivated blueberries growing in close proximity. The preference and performance of D. suzukii on wild and cultivated blueberries were studied in choice and no-choice bioassays. In addition, we compared size, firmness, acidity (pH), total soluble solids (°Brix), and nutrient, phenolic, and anthocyanin content between wild and cultivated berries. In choice and no-choice bioassays, more eggs were oviposited in, and more flies emerged from, cultivated than wild blueberries. Cultivated fruits were 2x bigger, 47% firmer, 14% less acidic, and had lower °Brix, phenolic, and anthocyanin amounts per mass than wild fruits. Levels of potassium and boron were higher in cultivated fruits, while calcium, magnesium, and copper were higher in wild fruits. These results show that domestication and/or agronomic practices have made blueberries more susceptible to D. suzukii, which was associated with several physico-chemical changes in fruits. Our study documents the positive effects of crop domestication/cultivation on an invasive insect pest.
Collapse
|
10
|
Shlichta JG, Cuny MA, Hernandez-Cumplido J, Traine J, Benrey B. Contrasting consequences of plant domestication for the chemical defenses of leaves and seeds in lima bean plants. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|