1
|
Quatela AS, Cangren P, Jafari F, Michel T, de Boer HJ, Oxelman B. Retrieval of long DNA reads from herbarium specimens. AOB PLANTS 2023; 15:plad074. [PMID: 38130422 PMCID: PMC10735254 DOI: 10.1093/aobpla/plad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
High-throughput sequencing of herbarium specimens' DNA with short-read platforms has helped explore many biological questions. Here, for the first time, we investigate the potential of using herbarium specimens as a resource for long-read DNA sequencing technologies. We use target capture of 48 low-copy nuclear loci in 12 herbarium specimens of Silene as a basis for long-read sequencing using SMRT PacBio Sequel. The samples were collected between 1932 and 2019. A simple optimization of size selection protocol enabled the retrieval of both long DNA fragments (>1 kb) and long on-target reads for nine of them. The limited sampling size does not enable statistical evaluation of the influence of specimen age to the DNA fragmentation, but our results confirm that younger samples, that is, collected after 1990, are less fragmented and have better sequencing success than specimens collected before this date. Specimens collected between 1990 and 2019 yield between 167 and 3403 on-target reads > 1 kb. They enabled recovering between 34 loci and 48 (i.e. all loci recovered). Three samples from specimens collected before 1990 did not yield on-target reads > 1 kb. The four other samples collected before this date yielded up to 144 reads and recovered up to 25 loci. Young herbarium specimens seem promising for long-read sequencing. However, older ones have partly failed. Further exploration would be necessary to statistically test and understand the potential of older material in the quest for long reads. We would encourage greatly expanding the sampling size and comparing different taxonomic groups.
Collapse
Affiliation(s)
- Anne-Sophie Quatela
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Gothenburg, Sweden
- Gothenburg Global Biodiversity Center, Gothenburg, Box 463, 405 30, Sweden
| | - Patrik Cangren
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Gothenburg, Sweden
| | - Farzaneh Jafari
- Department of Biology, Faculty of Basic Sciences, Lorestan University, P.O. BOX 6815144316, Khorramabad, Iran
- Department of Plant Science, Center of Excellence in Phylogeny of Living Organisms, School of Biology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Thibauld Michel
- Tropical Diversity Research Department, Royal Botanic Garden of Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LRUK
| | - Hugo J de Boer
- Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Gothenburg, Sweden
- Gothenburg Global Biodiversity Center, Gothenburg, Box 463, 405 30, Sweden
| |
Collapse
|
2
|
Yang Z, Ferguson DK, Yang Y. New insights into the plastome evolution of Lauraceae using herbariomics. BMC PLANT BIOLOGY 2023; 23:387. [PMID: 37563571 PMCID: PMC10413609 DOI: 10.1186/s12870-023-04396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The family Lauraceae possesses ca. 50 genera and 2,500-3,000 species that are distributed in the pantropics. Only half of the genera of the family were represented in previously published plastome phylogenies because of the difficulty of obtaining research materials. Plastomes of Hypodaphnideae and the Mezilaurus group, two lineages with unusual phylogenetic positions, have not been previously reported and thus limit our full understanding on the plastome evolution of the family. Herbariomics, promoted by next generation sequencing technology, can make full use of herbarium specimens, and provides opportunities to fill the sampling gap. RESULTS In this study, we sequenced five new plastomes (including four genera which are reported for the first time, viz. Chlorocardium, Hypodaphnis, Licaria and Sextonia) from herbarium specimens using genome skimming to conduct a comprehensive analysis of plastome evolution of Lauraceae as a means of sampling representatives of all major clades of the family. We identified and recognized six types of plastomes and revealed that at least two independent loss events at the IR-LSC boundary and an independent expansion of SSC occurred in the plastome evolution of the family. Hypodaphnis possesses the ancestral type of Lauraceae with trnI-CAU, rpl23 and rpl2 duplicated in the IR regions (Type-I). The Mezilaurus group shares the same plastome structure with the core Lauraceae group in the loss of trnI-CAU, rpl23 and rpl2 in the IRa region (Type-III). Two new types were identified in the Ocotea group: (1) the insertion of trnI-CAU between trnL-UAG and ccsA in the SSC region of Licaria capitata and Ocotea bracteosa (Type-IV), and (2) trnI-CAU and pseudogenizated rpl23 inserted in the same region of Nectandra angustifolia (Type-V). Our phylogeny suggests that Lauraceae are divided into nine major clades largely in accordance with the plastome types. The Hypodaphnideae are the earliest diverged lineage supported by both robust phylogeny and the ancestral plastome type. The monophyletic Mezilaurus group is sister to the core Lauraceae. CONCLUSIONS By using herbariomics, we built a more complete picture of plastome evolution and phylogeny of the family, thus providing a convincing case for further use of herbariomics in phylogenetic studies of the Lauraceae.
Collapse
Affiliation(s)
- Zhi Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Rd, Nanjing, 210037, China
| | | | - Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Rd, Nanjing, 210037, China.
| |
Collapse
|
3
|
Yang S, Li G, Li H. Molecular characterizations of genes in chloroplast genomes of the genus Arachis L. (Fabaceae) based on the codon usage divergence. PLoS One 2023; 18:e0281843. [PMID: 36917565 PMCID: PMC10013919 DOI: 10.1371/journal.pone.0281843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/01/2023] [Indexed: 03/16/2023] Open
Abstract
Studies on the molecular characteristics of chloroplast genome are generally important for clarifying the evolutionary processes of plant species. The base composition, the effective number of codons, the relative synonymous codon usage, the codon bias index, and their correlation coefficients of a total of 41 genes in 21 chloroplast genomes of the genus Arachis were investigated to further perform the correspondence and clustering analyses, revealing significantly higher variations in genomes of wild species than those of the cultivated taxa. The codon usage patterns of all 41 genes in the genus Arachis were AT-rich, suggesting that the natural selection was the main factor affecting the evolutionary history of these genomes. Five genes (i.e., ndhC, petD, atpF, rpl14, and rps11) and five genes (i.e., atpE, psbD, psaB, ycf2, and rps12) showed higher and lower base usage divergences, respectively. This study provided novel insights into our understanding of the molecular evolution of chloroplast genomes in the genus Arachis.
Collapse
Affiliation(s)
- Shuwei Yang
- School of Intelligent Science and Information Engineering, Xi’an Peihua University, Xi’An, Shaanxi, China
| | - Gun Li
- Department of Biomedical Engineering, Laboratory for Biodiversity Science, School of Electronic Information Engineering, Xi’An Technological University, Xi’An, Shaanxi, China
- * E-mail: (GL); (HL)
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, Jilin, China
- * E-mail: (GL); (HL)
| |
Collapse
|
4
|
Pérez-Escobar OA, Dodsworth S, Bogarín D, Bellot S, Balbuena JA, Schley RJ, Kikuchi IA, Morris SK, Epitawalage N, Cowan R, Maurin O, Zuntini A, Arias T, Serna-Sánchez A, Gravendeel B, Torres Jimenez MF, Nargar K, Chomicki G, Chase MW, Leitch IJ, Forest F, Baker WJ. Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. AMERICAN JOURNAL OF BOTANY 2021; 108:1166-1180. [PMID: 34250591 DOI: 10.1002/ajb2.1702] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The inference of evolutionary relationships in the species-rich family Orchidaceae has hitherto relied heavily on plastid DNA sequences and limited taxon sampling. Previous studies have provided a robust plastid phylogenetic framework, which was used to classify orchids and investigate the drivers of orchid diversification. However, the extent to which phylogenetic inference based on the plastid genome is congruent with the nuclear genome has been only poorly assessed. METHODS We inferred higher-level phylogenetic relationships of orchids based on likelihood and ASTRAL analyses of 294 low-copy nuclear genes sequenced using the Angiosperms353 universal probe set for 75 species (representing 69 genera, 16 tribes, 24 subtribes) and a concatenated analysis of 78 plastid genes for 264 species (117 genera, 18 tribes, 28 subtribes). We compared phylogenetic informativeness and support for the nuclear and plastid phylogenetic hypotheses. RESULTS Phylogenetic inference using nuclear data sets provides well-supported orchid relationships that are highly congruent between analyses. Comparisons of nuclear gene trees and a plastid supermatrix tree showed that the trees are mostly congruent, but revealed instances of strongly supported phylogenetic incongruence in both shallow and deep time. The phylogenetic informativeness of individual Angiosperms353 genes is in general better than that of most plastid genes. CONCLUSIONS Our study provides the first robust nuclear phylogenomic framework for Orchidaceae and an assessment of intragenomic nuclear discordance, plastid-nuclear tree incongruence, and phylogenetic informativeness across the family. Our results also demonstrate what has long been known but rarely thoroughly documented: nuclear and plastid phylogenetic trees can contain strongly supported discordances, and this incongruence must be reconciled prior to interpretation in evolutionary studies, such as taxonomy, biogeography, and character evolution.
Collapse
Affiliation(s)
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2UP, UK
| | - Diego Bogarín
- Lankester Botanic Garden, University of Costa Rica, Cartago, Costa Rica
| | | | | | | | | | | | | | - Robyn Cowan
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
| | | | | | | | | | | | | | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Australia
- National Research Collections, Commonwealth Industrial and Scientific Research Organization, Australia
| | - Guillaume Chomicki
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mark W Chase
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, 6102, Australia
| | | | - Félix Forest
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
| | | |
Collapse
|
5
|
Dodsworth S, Guignard MS, Pérez-Escobar OA, Struebig M, Chase MW, Leitch AR. Repetitive DNA Restructuring Across Multiple Nicotiana Allopolyploidisation Events Shows a Lack of Strong Cytoplasmic Bias in Influencing Repeat Turnover. Genes (Basel) 2020; 11:E216. [PMID: 32092894 PMCID: PMC7074350 DOI: 10.3390/genes11020216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
Allopolyploidy is acknowledged as an important force in plant evolution. Frequent allopolyploidy in Nicotiana across different timescales permits the evaluation of genome restructuring and repeat dynamics through time. Here we use a clustering approach on high-throughput sequence reads to identify the main classes of repetitive elements following three allotetraploid events, and how these are inherited from the closest extant relatives of the maternal and paternal subgenome donors. In all three cases, there was a lack of clear maternal, cytoplasmic bias in repeat evolution, i.e., lack of a predicted bias towards maternal subgenome-derived repeats, with roughly equal contributions from both parental subgenomes. Different overall repeat dynamics were found across timescales of <0.5 (N. rustica L.), 4 (N. repanda Willd.) and 6 (N. benthamiana Domin) Ma, with nearly additive, genome upsizing, and genome downsizing, respectively. Lower copy repeats were inherited in similar abundance to the parental subgenomes, whereas higher copy repeats contributed the most to genome size change in N. repanda and N. benthamiana. Genome downsizing post-polyploidisation may be a general long-term trend across angiosperms, but at more recent timescales there is species-specific variance as found in Nicotiana.
Collapse
Affiliation(s)
- Steven Dodsworth
- School of Life Sciences, University of Bedfordshire, Luton LU1 3JU, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (M.S.G.); (M.S.)
| | - Maïté S. Guignard
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (M.S.G.); (M.S.)
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, UK; (O.A.P.-E.); (M.W.C.)
| | | | - Monika Struebig
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (M.S.G.); (M.S.)
| | - Mark W. Chase
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, UK; (O.A.P.-E.); (M.W.C.)
- Department of Environment and Agriculture, Curtin University, Bentley 6102, Western Australia, Australia
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (M.S.G.); (M.S.)
| |
Collapse
|