1
|
Döring TF, Kirchner SM. A model for colour preference behaviour of spring migrant aphids. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210283. [PMID: 36058244 PMCID: PMC9441243 DOI: 10.1098/rstb.2021.0283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Aphids are economically and ecologically important herbivorous insects. A critical step in their life cycle is the visually guided host finding behaviour. To elucidate the role of colour in host finding of aphid spring migrants we conducted large colour trap experiments in the field and analysed aphid catch data, using trap spectral reflectance data as input. Based on known and putative photoreceptor sensitivities we developed and optimized a simple empirical colour choice model for spring migrants of different aphid species which confirmed and explained the yellow preference of these insects. In a further step, we applied multivariate statistical methods to behavioural and reflectance data, but without data on photoreceptor sensitivities, to find the wavelengths of greatest importance for the aphids' behavioural responses. This analysis confirmed the position of the green photoreceptor peak previously obtained independently with electrophysiological methods. In a final step, we applied the colour preference model to a dataset of leaf spectra. This showed that aphid visual preference would be dependent on the plants' nutritional status, with lower nitrogen input being associated with stronger preference, despite known benefits of high nitrogen levels for aphid reproduction and fitness. Ecological and evolutionary implications of these results are discussed. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Thomas F. Döring
- Agroecology and Organic Farming Group, University of Bonn, Auf dem Hügel 6, 53121 Bonn, Germany
| | - Sascha M. Kirchner
- Faculty of Organic Agricultural Sciences, University of Kassel, Nordbahnhofstraße 1a, 37123 Witzenhausen, Germany
| |
Collapse
|
2
|
Bonelli M, Eustacchio E, Avesani D, Michelsen V, Falaschi M, Caccianiga M, Gobbi M, Casartelli M. The Early Season Community of Flower-Visiting Arthropods in a High-Altitude Alpine Environment. INSECTS 2022; 13:insects13040393. [PMID: 35447835 PMCID: PMC9032982 DOI: 10.3390/insects13040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
In mountain ecosystems, climate change can cause spatiotemporal shifts, impacting the composition of communities and altering fundamental biotic interactions, such as those involving flower-visiting arthropods. On of the main problems in assessing the effects of climate change on arthropods in these environments is the lack of baseline data. In particular, the arthropod communities on early flowering high-altitude plants are poorly investigated, although the early season is a critical moment for possible mismatches. In this study, we characterised the flower-visiting arthropod community on the early flowering high-altitude Alpine plant, Androsace brevis (Primulaceae). In addition, we tested the effect of abiotic factors (temperature and wind speed) and other variables (time, i.e., hour of the day, and number of flowers per plant) on the occurrence, abundance, and diversity of this community. A. brevis is a vulnerable endemic species growing in the Central Alps above 2000 m asl and flowering for a very short period immediately after snowmelt, thus representing a possible focal plant for arthropods in this particular moment of the season. Diptera and Hymenoptera were the main flower visitors, and three major features of the community emerged: an evident predominance of anthomyiid flies among Diptera, a rare presence of bees, and a relevant share of parasitoid wasps. Temperature and time (hour of the day), but not wind speed and number of flowers per plant, affected the flower visitors' activity. Our study contributes to (1) defining the composition of high-altitude Alpine flower-visiting arthropod communities in the early season, (2) establishing how these communities are affected by environmental variables, and (3) setting the stage for future evaluation of climate change effects on flower-visiting arthropods in high-altitude environments in the early season.
Collapse
Affiliation(s)
- Marco Bonelli
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (E.E.); (M.C.); (M.C.)
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE—Science Museum, 38122 Trento, Italy;
- Correspondence:
| | - Elena Eustacchio
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (E.E.); (M.C.); (M.C.)
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE—Science Museum, 38122 Trento, Italy;
| | - Daniele Avesani
- Zoology Section, Civic Museum of Natural History of Verona, 37129 Verona, Italy;
| | - Verner Michelsen
- Natural History Museum of Denmark, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| | - Mattia Falaschi
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy;
| | - Marco Caccianiga
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (E.E.); (M.C.); (M.C.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, 80138 Naples, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE—Science Museum, 38122 Trento, Italy;
| | - Morena Casartelli
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (E.E.); (M.C.); (M.C.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
3
|
Lefèvre T, Sauvion N, Almeida RP, Fournet F, Alout H. The ecological significance of arthropod vectors of plant, animal, and human pathogens. Trends Parasitol 2022; 38:404-418. [DOI: 10.1016/j.pt.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
|
4
|
Mouden S, Leiss KA. Host plant resistance to thrips (Thysanoptera: Thripidae) - current state of art and future research avenues. CURRENT OPINION IN INSECT SCIENCE 2021; 45:28-34. [PMID: 33278641 DOI: 10.1016/j.cois.2020.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 05/27/2023]
Abstract
Integrated Pest Management (IPM) is endorsed as the future standard for crop protection worldwide. This holistic concept integrates preventative and curative measures amongst which host plant resistance (HPR) plays an essential role. Up to now HPR has been a somewhat under-utilized tool in pest management due to widespread use of pesticides and technological hindrance. Thrips are key pests in agriculture and horticulture worldwide. Here we provide an overview on the current status of research on constitutive and induced HPR including thrips-host relationships and thrips as virus vectors. We stress modulation of plant defense responses by abiotic and biotic elicitors to increase HPR and provide an outlook on the increasing potential of HPR inspired by the fast advancement of -omics techniques.
Collapse
Affiliation(s)
- Sanae Mouden
- Wageningen University & Research, Business Unit Horticulture, Violierenweg 1, 2665 MV Bleiswijk, The Netherlands
| | - Kirsten A Leiss
- Wageningen University & Research, Business Unit Horticulture, Violierenweg 1, 2665 MV Bleiswijk, The Netherlands.
| |
Collapse
|