1
|
von Hammerstein H, Fett TM, Ferse SCA, Helfer V, Kininmonth S, Bejarano S. Individual mangrove trees provide alternative reef fish habitat on backreefs. Sci Rep 2024; 14:18574. [PMID: 39127710 DOI: 10.1038/s41598-024-69524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Mangrove trees occur in a variety of geomorphic and sedimentary settings. Yet, studies investigating their role as habitat providers often focus on the most common biophysical types, such as deltaic, estuarine, open coast or lagoonal mangroves on soft sediments, disregarding less typical environments. Here, we investigated the influence of individual mangrove trees growing on a consolidated backreef system (Laucala Bay, Fiji) on habitat use by reef fishes. Combining field surveys and an experiment, we quantified the extent to which reef mangrove trees serve as habitat for solitary or shoaling reef fishes. Using mangrove tree mimics, we disentangled effects attributable to the physical structure of trees from those related to their bio-chemical properties. We found that fish numbers were 3.7 times higher within close proximity to the mangrove trees than at control sites and correlated significantly with root system perimeter. The roots of larger trees sheltered aggregations of juveniles and adults at incoming and high tides. Mangrove trees and mimics attracted fishes alike. We show that mangrove trees on backreefs provide habitat for shoaling and adult reef fishes in addition to serving as nursery areas, an ecosystem service otherwise lacking on backreef areas with low structural complexity.
Collapse
Affiliation(s)
- Hannah von Hammerstein
- Faculty of Biology and Chemistry (FB2), University of Bremen, Bibliothekstraße 1, 28359, Bremen, Germany.
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany.
- Department of Geography & Environment, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| | - Theresa-Marie Fett
- Faculty of Biology and Chemistry (FB2), University of Bremen, Bibliothekstraße 1, 28359, Bremen, Germany
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
| | - Sebastian C A Ferse
- Faculty of Biology and Chemistry (FB2), University of Bremen, Bibliothekstraße 1, 28359, Bremen, Germany
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
- Faculty of Fisheries and Marine Sciences, Bogor Agricultural University (IPB), Jl. Agatis 1, Dramaga Campus, Bogor, 16680, Indonesia
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Véronique Helfer
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
| | - Stuart Kininmonth
- School of Marine Studies, The University of the South Pacific, Suva, Fiji
- Heron Island Research Station, The University of Queensland, Brisbane, Australia
| | - Sonia Bejarano
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
| |
Collapse
|
2
|
Dedman S, Moxley JH, Papastamatiou YP, Braccini M, Caselle JE, Chapman DD, Cinner JE, Dillon EM, Dulvy NK, Dunn RE, Espinoza M, Harborne AR, Harvey ES, Heupel MR, Huveneers C, Graham NAJ, Ketchum JT, Klinard NV, Kock AA, Lowe CG, MacNeil MA, Madin EMP, McCauley DJ, Meekan MG, Meier AC, Simpfendorfer CA, Tinker MT, Winton M, Wirsing AJ, Heithaus MR. Ecological roles and importance of sharks in the Anthropocene Ocean. Science 2024; 385:adl2362. [PMID: 39088608 DOI: 10.1126/science.adl2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/17/2024] [Indexed: 08/03/2024]
Abstract
In ecosystems, sharks can be predators, competitors, facilitators, nutrient transporters, and food. However, overfishing and other threats have greatly reduced shark populations, altering their roles and effects on ecosystems. We review these changes and implications for ecosystem function and management. Macropredatory sharks are often disproportionately affected by humans but can influence prey and coastal ecosystems, including facilitating carbon sequestration. Like terrestrial predators, sharks may be crucial to ecosystem functioning under climate change. However, large ecosystem effects of sharks are not ubiquitous. Increasing human uses of oceans are changing shark roles, necessitating management consideration. Rebuilding key populations and incorporating shark ecological roles, including less obvious ones, into management efforts are critical for retaining sharks' functional value. Coupled social-ecological frameworks can facilitate these efforts.
Collapse
Affiliation(s)
- Simon Dedman
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Jerry H Moxley
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Yannis P Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Matias Braccini
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, North Beach, WA 6920, Australia
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Demian D Chapman
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Joshua Eli Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Erin M Dillon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Ruth Elizabeth Dunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4BA, UK
| | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060-11501, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060-11501, Costa Rica
- MigraMar, Bodega Bay, CA 94923, USA
| | - Alastair R Harborne
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, WA, Australia
| | - Michelle R Heupel
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Integrated Marine Observing System, University of Tasmania, Hobart, TAS, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - James T Ketchum
- MigraMar, Bodega Bay, CA 94923, USA
- Pelagios Kakunjá, La Paz, Baja California Sur, Mexico
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Natalie V Klinard
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, NS B3H 4R2, Canada
| | - Alison A Kock
- Cape Research Centre, South African National Parks, Cape Town, South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda (Grahamstown), South Africa
| | - Christopher G Lowe
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - M Aaron MacNeil
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, NS B3H 4R2, Canada
| | - Elizabeth M P Madin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Douglas J McCauley
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Mark G Meekan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - Amelia C Meier
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Colin A Simpfendorfer
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000, Australia
- College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia
| | - M Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA, USA
| | - Megan Winton
- Atlantic White Shark Conservancy, North Chatham, MA 02650, USA
| | - Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael R Heithaus
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| |
Collapse
|
3
|
Tebbett SB, Faul SI, Bellwood DR. Quantum of fear: Herbivore grazing rates not affected by reef shark presence. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106442. [PMID: 38484651 DOI: 10.1016/j.marenvres.2024.106442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Grazing by nominally herbivorous fishes is widely recognised as a critical ecosystem function on coral reefs. However, several studies have suggested that herbivory is reduced in the presence of predators, especially sharks. Nevertheless, the effects of shark presence on grazing, under natural settings, remains poorly resolved. Using ∼200 h of video footage, we quantify the extent of direct disturbance by reef sharks on grazing fishes. Contrary to expectations, grazing rate was not significantly suppressed due to sharks, with fishes resuming feeding in as little as 4 s after sharks passed. Based on our observations, we estimate that an average m2 area of reef at our study locations would be subjected to ∼5 s of acute shark disturbance during daylight hours. It appears the short-term impact of reef shark presence has a negligible effect on herbivore grazing rates, with the variable nature of grazing under natural conditions overwhelming any fear effects.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland, 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Sasha I Faul
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland, 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
4
|
Peacor SD, Dorn NJ, Smith JA, Peckham NE, Cherry MJ, Sheriff MJ, Kimbro DL. A skewed literature: Few studies evaluate the contribution of predation-risk effects to natural field patterns. Ecol Lett 2022; 25:2048-2061. [PMID: 35925978 PMCID: PMC9545701 DOI: 10.1111/ele.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
A narrative in ecology is that prey modify traits to reduce predation risk, and the trait modification has costs large enough to cause ensuing demographic, trophic and ecosystem consequences, with implications for conservation, management and agriculture. But ecology has a long history of emphasising that quantifying the importance of an ecological process ultimately requires evidence linking a process to unmanipulated field patterns. We suspected that such process-linked-to-pattern (PLP) studies were poorly represented in the predation risk literature, which conflicts with the confidence often given to the importance of risk effects. We reviewed 29 years of the ecological literature which revealed that there are well over 4000 articles on risk effects. Of those, 349 studies examined risk effects on prey fitness measures or abundance (i.e., non-consumptive effects) of which only 26 were PLP studies, while 275 studies examined effects on other interacting species (i.e., trait-mediated indirect effects) of which only 35 were PLP studies. PLP studies were narrowly focused taxonomically and included only three that examined unmanipulated patterns of prey abundance. Before concluding a widespread and influential role of predation-risk effects, more attention must be given to linking the process of risk effects to unmanipulated patterns observed across diverse ecosystems.
Collapse
Affiliation(s)
- Scott D Peacor
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Nathan J Dorn
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, Florida, USA
| | - Justine A Smith
- Department of Wildlife, Fish, and Conservation Biology, University of California - Davis, Davis, California, USA
| | - Nicole E Peckham
- Department of Marine and Environmental Science, Northeastern University, Boston, Massachusetts, USA
| | - Michael J Cherry
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, Texas, USA
| | - Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| | - David L Kimbro
- Department of Marine and Environmental Science, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Madin EMP, Precoda K, Roelfsema CM, Suan A. Global conservation potential in coral reef halos: Consistency over space, time, and ecosystems worldwide. Am Nat 2022; 200:857-871. [DOI: 10.1086/721436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Sivaguru M, Saw JJ, Wilson EM, Lieske JC, Krambeck AE, Williams JC, Romero MF, Fouke KW, Curtis MW, Kear-Scott JL, Chia N, Fouke BW. Human kidney stones: a natural record of universal biomineralization. Nat Rev Urol 2021; 18:404-432. [PMID: 34031587 DOI: 10.1038/s41585-021-00469-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/04/2023]
Abstract
GeoBioMed - a new transdisciplinary approach that integrates the fields of geology, biology and medicine - reveals that kidney stones composed of calcium-rich minerals precipitate from a continuum of repeated events of crystallization, dissolution and recrystallization that result from the same fundamental natural processes that have governed billions of years of biomineralization on Earth. This contextual change in our understanding of renal stone formation opens fundamentally new avenues of human kidney stone investigation that include analyses of crystalline structure and stratigraphy, diagenetic phase transitions, and paragenetic sequences across broad length scales from hundreds of nanometres to centimetres (five Powers of 10). This paradigm shift has also enabled the development of a new kidney stone classification scheme according to thermodynamic energetics and crystalline architecture. Evidence suggests that ≥50% of the total volume of individual stones have undergone repeated in vivo dissolution and recrystallization. Amorphous calcium phosphate and hydroxyapatite spherules coalesce to form planar concentric zoning and sector zones that indicate disequilibrium precipitation. In addition, calcium oxalate dihydrate and calcium oxalate monohydrate crystal aggregates exhibit high-frequency organic-matter-rich and mineral-rich nanolayering that is orders of magnitude higher than layering observed in analogous coral reef, Roman aqueduct, cave, deep subsurface and hot-spring deposits. This higher frequency nanolayering represents the unique microenvironment of the kidney in which potent crystallization promoters and inhibitors are working in opposition. These GeoBioMed insights identify previously unexplored strategies for development and testing of new clinical therapies for the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Mayandi Sivaguru
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carl Zeiss Labs@Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Jessica J Saw
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Elena M Wilson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Amy E Krambeck
- Department of Urology, Mayo Clinic, Rochester, MN, USA.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James C Williams
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael F Romero
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kyle W Fouke
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - Matthew W Curtis
- Carl Zeiss Microscopy LLC, One North Broadway, White Plains, NY, USA
| | | | - Nicholas Chia
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bruce W Fouke
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carl Zeiss Labs@Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
7
|
Lester EK, Langlois TJ, Simpson SD, McCormick MI, Meekan MG. Reef‐wide evidence that the presence of sharks modifies behaviors of teleost mesopredators. Ecosphere 2021. [DOI: 10.1002/ecs2.3301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- E. K. Lester
- School of Biological Sciences The University of Western Australia Crawley Western Australia Australia
- The UWA Oceans InstituteThe University of Western Australia Crawley Western Australia Australia
- Australian Institute of Marine Science Crawley Western Australia Australia
| | - T. J. Langlois
- School of Biological Sciences The University of Western Australia Crawley Western Australia Australia
- The UWA Oceans InstituteThe University of Western Australia Crawley Western Australia Australia
| | - S. D. Simpson
- Biosciences College of Life and Environmental Sciences University of Exeter Exeter UK
| | - M. I. McCormick
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland Australia
| | - M. G. Meekan
- The UWA Oceans InstituteThe University of Western Australia Crawley Western Australia Australia
- Australian Institute of Marine Science Crawley Western Australia Australia
| |
Collapse
|
8
|
Climate drives the geography of marine consumption by changing predator communities. Proc Natl Acad Sci U S A 2020; 117:28160-28166. [PMID: 33106409 DOI: 10.1073/pnas.2005255117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth's ecosystems.
Collapse
|
9
|
Wilson MW, Ridlon AD, Gaynor KM, Gaines SD, Stier AC, Halpern BS. Ecological impacts of human-induced animal behaviour change. Ecol Lett 2020; 23:1522-1536. [PMID: 32705769 DOI: 10.1111/ele.13571] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Abstract
A growing body of literature has documented myriad effects of human activities on animal behaviour, yet the ultimate ecological consequences of these behavioural shifts remain largely uninvestigated. While it is understood that, in the absence of humans, variation in animal behaviour can have cascading effects on species interactions, community structure and ecosystem function, we know little about whether the type or magnitude of human-induced behavioural shifts translate into detectable ecological change. Here we synthesise empirical literature and theory to create a novel framework for examining the range of behaviourally mediated pathways through which human activities may affect different ecosystem functions. We highlight the few empirical studies that show the potential realisation of some of these pathways, but also identify numerous factors that can dampen or prevent ultimate ecosystem consequences. Without a deeper understanding of these pathways, we risk wasting valuable resources on mitigating behavioural effects with little ecological relevance, or conversely mismanaging situations in which behavioural effects do drive ecosystem change. The framework presented here can be used to anticipate the nature and likelihood of ecological outcomes and prioritise management among widespread human-induced behavioural shifts, while also suggesting key priorities for future research linking humans, animal behaviour and ecology.
Collapse
Affiliation(s)
- Margaret W Wilson
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, 93106, USA
| | - April D Ridlon
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, 93101, USA
| | - Kaitlyn M Gaynor
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, 93101, USA
| | - Steven D Gaines
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, 93106, USA
| | - Adrian C Stier
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Benjamin S Halpern
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, 93106, USA.,National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, 93101, USA
| |
Collapse
|
10
|
Lester EK, Langlois TJ, Simpson SD, McCormick MI, Meekan MG. The hemisphere of fear: the presence of sharks influences the three dimensional behaviour of large mesopredators in a coral reef ecosystem. OIKOS 2020. [DOI: 10.1111/oik.06844] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Emily K. Lester
- School of Biological Sciences and the UWA Oceans Inst., Univ. of Western Australia Crawley WA Australia
- Australian Inst. of Marine Science, UWA Oceans Inst. Crawley WA Australia
| | - Tim J. Langlois
- School of Biological Sciences and the UWA Oceans Inst., Univ. of Western Australia Crawley WA Australia
| | - Stephen D. Simpson
- Biosciences, College of Life and Environmental Sciences, Univ. of Exeter Exeter UK
| | - Mark I. McCormick
- Dept of Marine Biology and Aquaculture, ARC Centre of Excellence for Coral Reef Studies, James Cook Univ. Townsville QLD Australia
| | - Mark G. Meekan
- Australian Inst. of Marine Science, UWA Oceans Inst. Crawley WA Australia
| |
Collapse
|
11
|
Warren M. Hippos, haloes and black holes - April's best science images. Nature 2019:10.1038/d41586-019-01356-7. [PMID: 32358549 DOI: 10.1038/d41586-019-01356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|