1
|
Chen R, Wang M, Dong L, Zhou G, Xu X, Deng K, Xu L, Zhang C, Wang L, Du H, Lin G, Lin M, Zhou Z. Earliest short-tailed bird from the Late Jurassic of China. Nature 2025; 638:441-448. [PMID: 39939791 DOI: 10.1038/s41586-024-08410-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/14/2024] [Indexed: 02/14/2025]
Abstract
Recent macroevolutionary studies predict a diversification of early birds during the Jurassic period1-4, but the unquestionable Jurassic bird fossil record is limited to Archaeopteryx1,5,6, which has also been referred to deinonychosaurian dinosaurs by some analyses7,8. Although they have feathered wings, the known Jurassic birds are more similar to non-avialan theropods in having the ancestral long reptilian tail9-11. This is in stark contrast to most Cretaceous and crownward taxa, which have a short tail that terminates in a compound bone called the pygostyle12-14. Here we report on the oldest short-tailed avialan, Baminornis zhenghensis gen. et sp. nov., from the recently discovered Late Jurassic Zhenghe Fauna15, which fills a noticeable spatio-temporal gap in the earliest branching avialan fossil record. B. zhenghensis exhibits a unique combination of derived ornithothoracine-like pectoral and pelvic girdles and plesiomorphic non-avialan maniraptoran hand, demonstrating mosaic evolution along stem avialan line. An avialan furcula collected from the same locality is referrable to ornithuromorphs on the basis of our morphometric and phylogenetic analyses. These newly discovered fossils demonstrate the early appearance of highly derived bird features, and together with an anchiornithine fossil from the same locality, they suggest an earlier origin of birds and a radiation of early birds in the Jurassic.
Collapse
Affiliation(s)
- Runsheng Chen
- Fujian Institute of Geological Survey, Fuzhou, China
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
| | - Liping Dong
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Guowu Zhou
- Fujian Institute of Geological Survey, Fuzhou, China
| | - Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Ke Deng
- Fujian Institute of Geological Survey, Fuzhou, China
| | - Liming Xu
- Fujian Institute of Geological Survey, Fuzhou, China
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Linchang Wang
- Fujian Institute of Geological Survey, Fuzhou, China
| | - Honggang Du
- Fujian Institute of Geological Survey, Fuzhou, China
| | - Ganmin Lin
- Fujian Institute of Geological Survey, Fuzhou, China
| | - Min Lin
- Fujian Institute of Geological Survey, Fuzhou, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Heers AM. Unexpected Performance in Developing Birds. Integr Comp Biol 2023; 63:772-784. [PMID: 37516443 DOI: 10.1093/icb/icad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 07/31/2023] Open
Abstract
Birds are well known for their ability to fly, and flight-capable adult birds have many anatomical specializations for meeting the demands of aerial locomotion. Juvenile birds in altricial species typically acquire these specializations close to fledging and leave the nest with some flight capability. In contrast, juveniles in most precocial species begin navigating their environment with rudimentary anatomies and may not develop full-sized wings or musculoskeletal apparatuses for several months. This manuscript explores how juvenile birds achieve high levels of locomotor performance in the absence of flight specializations, by synthesizing work on two groups of precocial birds with very different developmental strategies. Galliforms like the Chukar Partridge (Alectoris chukar) have early wing development and are capable of flight within weeks. Compared with adults, juvenile chukars have less aerodynamically effective feathers and smaller muscles but compensate through anatomical, kinematic, and behavioral mechanisms. In contrast, waterfowl have delayed wing development and initially rely on leg-based locomotion. In Mallards (Anas platyrhynchos) and their domesticated derivatives, leg investment and performance peak early in ontogeny, but then decline when wings develop. Chukar and mallard juveniles thus rely on different mechanisms for negotiating their surroundings in the absence of flight specializations. In conjunction with work in other animals, these patterns indicate that juveniles with developing locomotor apparatuses can achieve surprisingly high levels of locomotor performance through a variety of compensatory mechanisms.
Collapse
Affiliation(s)
- Ashley M Heers
- California State University, Los Angeles, Biological Sciences, Los Angeles, CA 90032, USA
| |
Collapse
|
3
|
Akeda T, Fujiwara SI. Coracoid strength as an indicator of wing-beat propulsion in birds. J Anat 2023; 242:436-446. [PMID: 36380603 PMCID: PMC9919476 DOI: 10.1111/joa.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
Abstract
Birds generate a propulsive force by flapping their wings. They use this propulsive force for various locomotion styles, such as aerodynamic flight, wing-paddle swimming and wing-assisted incline running. It is therefore important to reveal the origin of flapping ability in the evolution from theropod dinosaurs to birds. However, there are no quantitative indices to reconstruct the flapping abilities of extinct forms based on their skeletal morphology. This study compares the section modulus of the coracoid relative to body mass among various extant birds to test whether the index is correlated with flapping ability. According to a survey of 220 historical bird specimens representing 209 species, 180 genera, 83 families and 30 orders, the section modulus of the coracoid relative to body mass in non-flapping birds was significantly smaller than that of flapping birds. This indicates that coracoid strength in non-flapping birds is deemphasised, whereas in flapping birds the strength is emphasised to withstand the contractile force produced by powerful flapping muscles, such as the m. pectoralis and m. supracoracoideus. Therefore, the section modulus of the coracoid is expected to be a powerful tool to reveal the origin of powered flight in birds.
Collapse
Affiliation(s)
- Takumi Akeda
- Department of Earth and Planetary Sciences, Nagoya University, Nagoya, Japan
| | | |
Collapse
|
4
|
Wang M, Stidham TA, O'Connor JK, Zhou Z. Insight into the evolutionary assemblage of cranial kinesis from a Cretaceous bird. eLife 2022; 11:e81337. [PMID: 36469022 PMCID: PMC9721616 DOI: 10.7554/elife.81337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
The independent movements and flexibility of various parts of the skull, called cranial kinesis, are an evolutionary innovation that is found in living vertebrates only in some squamates and crown birds and is considered to be a major factor underpinning much of the enormous phenotypic and ecological diversity of living birds, the most diverse group of extant amniotes. Compared to the postcranium, our understanding of the evolutionary assemblage of the characteristic modern bird skull has been hampered by sparse fossil records of early cranial materials, with competing hypotheses regarding the evolutionary development of cranial kinesis among early members of the avialans. Here, a detailed three-dimensional reconstruction of the skull of the Early Cretaceous enantiornithine Yuanchuavis kompsosoura allows for its in-depth description, including elements that are poorly known among early-diverging avialans but are central to deciphering the mosaic assembly of features required for modern avian cranial kinesis. Our reconstruction of the skull shows evolutionary and functional conservation of the temporal and palatal regions by retaining the ancestral theropod dinosaurian configuration within the skull of this otherwise derived and volant bird. Geometric morphometric analysis of the palatine suggests that loss of the jugal process represents the first step in the structural modifications of this element leading to the kinetic crown bird condition. The mixture of plesiomorphic temporal and palatal structures together with a derived avialan rostrum and postcranial skeleton encapsulated in Yuanchuavis manifests the key role of evolutionary mosaicism and experimentation in early bird diversification.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of SciencesBeijingChina
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of SciencesBeijingChina
| | - Thomas A Stidham
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of SciencesBeijingChina
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of SciencesBeijingChina
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Heers AM, Tobalske BW, Jackson BE, Dial KP. Where is WAIR (and other wing-assisted behaviours)? Essentially everywhere: a response to Kuznetsov and Panyutina (2022). Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Kuznetsov and Panyutina (2022) offer a reanalysis of the kinematic and force plate data previously published by Bundle and Dial (2003). Their intention is to describe instantaneous wing forces during wing-assisted incline running (WAIR), focusing particularly on the upstroke phase. Based on their interpretation of wing forces and muscle function, the authors conclude that ‘WAIR is a very specialized mode of locomotion that is employed by a few specialized birds as an adaptation to a very specific environment and involving highly developed flying features of the locomotor apparatus’, and thus not relevant to the evolution of avian flight. Herein, we respond to the authors’ interpretations, offering an alternative perspective on WAIR and, more generally, on studies exploring the evolution of avian flight.
Collapse
Affiliation(s)
- Ashley M Heers
- Department of Biological Sciences, California State University Los Angeles , Los Angeles, CA , USA
| | - Bret W Tobalske
- Flight Laboratory, Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana , Missoula, MT , USA
| | - Brandon E Jackson
- Department of Biological and Environmental Sciences, Longwood University , Farmville, VA , USA
| | - Kenneth P Dial
- Flight Laboratory, Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana , Missoula, MT , USA
| |
Collapse
|
6
|
Plateau O, Foth C. Common Patterns of Skull Bone Fusion and Their Potential to Discriminate Different Ontogenetic Stages in Extant Birds. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.737199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The degree of sutural closure between bones generally allows for the classification of skeleton maturity in tetrapods. In mammals, the sutural closure of skull bones was previously used as proxy to evaluate the ontogenetic stage of single individuals. However, due to temporal variation, this process can be only applied among mammalian subclades, but not for all mammals in general. In contrast, the process of sutural closures in bird skulls could be a more reliable ontogenetic proxy for this clade as adult birds commonly show a generally high degree of bone fusion. To test this, we studied the process of sutural closure in ontogenetic series of 18 extant bird species regarding the presence of an ontogenetic signal and compared the results with changes in skull size and proportions. Univariate analyses indicate that bone fusion happens faster in altricial than in precocial birds. However, the use of PCoA and multivariate regressions reveal that the skull bone fusion follows a common pattern among birds and thus can be used as proxy to identify different ontogenetic stages. In general, the process of sutural closure spreads from posterior to anterior and from ventral to dorsal. In contrast, skull measurements reflect rather interspecific allometry than ontogeny. The used of bone fusion as proxy will help to better identify and compare different stages of maturation in birds, including historical material from osteological collections.
Collapse
|