1
|
Pouresmaeil M, Azizi-Dargahlou S. Investigation of CaMV-host co-evolution through synonymous codon pattern. J Basic Microbiol 2024; 64:e2300664. [PMID: 38436477 DOI: 10.1002/jobm.202300664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/20/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Cauliflower mosaic virus (CaMV) has a double-stranded DNA genome and is globally distributed. The phylogeny tree of 121 CaMV isolates was categorized into two primary groups, with Iranian isolates showing the greatest genetic variations. Nucleotide A demonstrated the highest percentage (36.95%) in the CaMV genome and the dinucleotide odds ratio analysis revealed that TC dinucleotide (1.34 ≥ 1.23) and CG dinucleotide (0.63 ≤ 0.78) are overrepresented and underrepresented, respectively. Relative synonymous codon usage (RSCU) analysis confirmed codon usage bias in CaMV and its hosts. Brassica oleracea and Brassica rapa, among the susceptible hosts of CaMV, showed a codon adaptation index (CAI) value above 0.8. Additionally, relative codon deoptimization index (RCDI) results exhibited the highest degree of deoptimization in Raphanus sativus. These findings suggest that the genes of CaMV underwent codon adaptation with its hosts. Among the CaMV open reading frames (ORFs), genes that produce reverse transcriptase and virus coat proteins showed the highest CAI value of 0.83. These genes are crucial for the creation of new virion particles. The results confirm that CaMV co-evolved with its host to ensure the optimal expression of its genes in the hosts, allowing for easy infection and effective spread. To detect the force behind codon usage bias, an effective number of codons (ENC)-plot and neutrality plot were conducted. The results indicated that natural selection is the primary factor influencing CaMV codon usage bias.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Shahnam Azizi-Dargahlou
- Agricultural Biotechnology, Seed and Plant Certification and Registration Institute, Ardabil Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
2
|
Zarcero J, Antich A, Rius M, Wangensteen OS, Turon X. A new sampling device for metabarcoding surveillance of port communities and detection of non-indigenous species. iScience 2024; 27:108588. [PMID: 38111684 PMCID: PMC10726295 DOI: 10.1016/j.isci.2023.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/04/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023] Open
Abstract
Metabarcoding techniques are revolutionizing studies of marine biodiversity. They can be used for monitoring non-indigenous species (NIS) in ports and harbors. However, they are often biased by inconsistent sampling methods and incomplete reference databases. Logistic constraints in ports prompt the development of simple, easy-to-deploy samplers. We tested a new device called polyamide mesh for ports organismal monitoring (POMPOM) with a high surface-to-volume ratio. POMPOMS were deployed inside a fishing and recreational port in the Mediterranean alongside conventional settlement plates. We also compiled a curated database with cytochrome oxidase (COI) sequences of Mediterranean NIS. COI metabarcoding of the communities settled in the POMPOMs captured a similar biodiversity than settlement plates, with shared molecular operational units (MOTUs) representing ca. 99% of reads. 38 NIS were detected in the port accounting for ca. 26% of reads. POMPOMs were easy to deploy and handle and provide an efficient method for NIS surveillance.
Collapse
Affiliation(s)
- Jesús Zarcero
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB), CSIC, 17300 Blanes, Catalonia, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences and Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Adrià Antich
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB), CSIC, 17300 Blanes, Catalonia, Spain
| | - Marc Rius
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB), CSIC, 17300 Blanes, Catalonia, Spain
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park Johannesburg 2006, South Africa
| | - Owen S. Wangensteen
- Department of Evolutionary Biology, Ecology and Environmental Sciences and Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Xavier Turon
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB), CSIC, 17300 Blanes, Catalonia, Spain
| |
Collapse
|
3
|
Li Y, Yu FH. Managing the risk of biological invasions. iScience 2023; 26:108221. [PMID: 37942008 PMCID: PMC10628845 DOI: 10.1016/j.isci.2023.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The large environmental impacts and enormous economic costs caused by biological invasions provide a strong impetus for managing invasion risks. Understanding the factors driving the invasion process and their consequences will raise awareness of invasions among the general public, stakeholders, and policymakers and inform effective management strategies. The identification of priority species and introduction pathways and sites and the development of national capabilities for prevention and preparedness, early detection, monitoring, and rapid response will reduce the impacts of invasive species in terms of effectiveness and cost efficiency.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| |
Collapse
|
4
|
Rathnayake RAS, Wedage WMM, Muthukumarana LS, De Silva BGDNK. Genetic diversity, phylogenetic and phylogeographic analysis of Anopheles culicifacies species complex using ITS2 and COI sequences. PLoS One 2023; 18:e0290178. [PMID: 37585421 PMCID: PMC10431676 DOI: 10.1371/journal.pone.0290178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
Anopheles culicifacies is the major vector of malaria in Sri Lanka and the Indian subcontinent which is characterized as a species complex with five sibling species provisionally designated as A, B, C, D and E. The current study was carried out to understand the phylogenetic and phylogeographic relationships between the sibling species of the species complex while observing their genetic diversity and genetic differentiation. Thirty-five ITS2 and seventy-seven COI sequences of An. culicifacies species complex reported from different geographical locations of Asia and China at the NCBI public database were used for the analysis. Bayesian likelihood trees were generated for the phylogenetic analysis. The divergence of the species complex was obtained from the Bayesian phylogeographic model in BEAST. There were two clades of the sibling species of An. culicifacies species complex as A, D and B, C and E in both phylogenetic and phylogeographic analysis using ITS2 sequences. Based on the highly divergent COI sequences and the high mutation rate of the mitochondrial genome, there were four and three clades in both phylogenetic and phylogeographic analysis using COI sequences. The diversification of An. culicifacies species complex was obtained as ranging from 20.25 to 24.12 Mya and 22.37 to 26.22 Mya based on ITS2 and COI phylogeographic analysis respectively. There was a recent diversification of the sibling species A and D than the sibling species B, C and E. Low haplotype diversity was observed in the sequences reported from Sri Lanka in both ITS2 and COI analysis that can be due to bottlenecks resulting from the intense malaria control efforts. A high genetic differentiation was achieved for some populations due to the large geographical distance. The high genetic diversity based on the five sibling species implies the possibility of maintaining a relatively high effective population size despite the vector control efforts.
Collapse
Affiliation(s)
- R. A. S. Rathnayake
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - W. M. M. Wedage
- Center for Biotechnology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - L. S. Muthukumarana
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - B. G. D. N. K. De Silva
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Center for Biotechnology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
5
|
Vargas-Rivas AG, Barba-Macias E, Sánchez AJ, Castellanos-Morales G. Lack of mtDNA genetic diversity despite phenotypic variation and environmental heterogeneity in the exotic suckermouth armored catfish (Pterygoplichthys pardalis). Biol Invasions 2022. [DOI: 10.1007/s10530-022-02961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Schoeman AL, du Preez LH, Kmentová N, Vanhove MPM. A monogenean parasite reveals the widespread translocation of the African Clawed Frog in its native range. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anneke L. Schoeman
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North‐West University Potchefstroom South Africa
- DSI‐NRF Centre of Excellence for Invasion Biology Stellenbosch South Africa
- South African Institute for Aquatic Biodiversity Grahamstown South Africa
| | - Louis H. du Preez
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North‐West University Potchefstroom South Africa
- South African Institute for Aquatic Biodiversity Grahamstown South Africa
| | - Nikol Kmentová
- Hasselt University Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Agoralaan Gebouw D Diepenbeek Belgium
| | - Maarten P. M. Vanhove
- Hasselt University Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Agoralaan Gebouw D Diepenbeek Belgium
| |
Collapse
|
7
|
Introgression at the emerging secondary contact zone of magpie Pica pica subspecies (Aves: Corvidae): integrating data on nuclear and mitochondrial markers, vocalizations, and field observations. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Zones of secondary contact provide a good opportunity to investigate the origin and dynamics of reproductive isolation between related populations. We analyzed genetic and phenotypic patterns and gene flow between two subspecies of the Eurasian magpie Pica pica s.l. which recently came into contact after presumably long periods of isolation. We describe the distribution of subspecies in a young contact zone at Argun’ river basin in southern Siberia where populations occur in parapatry and an older hybrid population in eastern Mongolia. Based on genome-wide SNP data, we analyzed patterns and strength of gene flow between the subspecies. Our results indicate occasional hybridization with backcrossing and asymmetric introgression along a wide range in Transbaikalia and locally in eastern Mongolia. Males of P. p. jankowskii apparently exhibit higher dispersal ability towards the west compared to P. p. leucoptera (towards the east). The former occasionally migrates to eastern Mongolia and Transbaikalia where introgression of nuclear, but not mitochondrial DNA was evident. Bioacoustic investigations showed differences between the subspecies in speed and structure of vocalization. We discovered intermediate calls of hybrid magpies and bilingual birds alternating calls that are typical for the two taxa. Furthermore, we found dramatically decreased reproductive success in hybridogeneous populations. By complementing our results with established phylogeographic patterns of P. pica s.l. based on a mitochondrial marker sequence, and considering indications of sterility of hybrids in the contact zone, we propose to elevate the two corresponding subspecies to species level: P. pica for the western form and P. serica for the eastern form.
Collapse
|
8
|
Brazier T, Cherif E, Martin JF, Gilles A, Blanchet S, Zhao Y, Combe M, McCairns RJS, Gozlan RE. The influence of native populations’ genetic history on the reconstruction of invasion routes: the case of a highly invasive aquatic species. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Pack KE, Mieszkowska N, Rius M. Rapid niche shifts as drivers for the spread of a non‐indigenous species under novel environmental conditions. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kathryn E. Pack
- School of Ocean and Earth Science National Oceanography Centre Southampton University of Southampton Southampton UK
- Marine Biological Association Plymouth UK
| | - Nova Mieszkowska
- Marine Biological Association Plymouth UK
- School of Environmental Sciences University of Liverpool Liverpool UK
| | - Marc Rius
- Centre for Ecological Genomics and Wildlife Conservation Department of Zoology University of Johannesburg Auckland Park South Africa
- Centre for Advanced Studies of Blanes (CEAB, CSIC) Accés a la Cala Sant FrancescBlanes Spain
| |
Collapse
|