Anders M, Westphal C, Linden VMG, Weier S, Taylor PJ, Grass I. Complementary effects of pollination and biocontrol services enable ecological intensification in macadamia orchards.
ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024:e3049. [PMID:
39415670 DOI:
10.1002/eap.3049]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/09/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024]
Abstract
In many crops, both pollination and biocontrol determine crop yield, whereby the relative importance of the two ecosystem services can be moderated by the landscape context. However, additive and interactive effects of pollination and biocontrol in different landscape contexts are still poorly understood. We examined both ecosystem services in South African macadamia orchards. Combining observations and experiments, we disentangled their relative additive and interactive effects on crop production with variation in orchard design and landscape context (i.e., cover of natural habitat and altitude). Insect pollination increased the nut set on average by 280% (initial nut set) and 525% (final nut set), while biocontrol provided by bats and birds reduced the insect damage on average by 40%. Pollination services increased in orchards where macadamia tree rows were positioned perpendicular to orchard edges facing natural habitat. Biocontrol services decreased with elevation. Pest damage was reduced by higher cover of natural habitat at landscape scale but increased with elevation. Pollination and biocontrol are both important ecosystem services and complementary in providing high macadamia crop yield. Smart orchard design and the retention of natural habitat can simultaneously enhance both services. Conjoint management of ecosystem services can thus enable the ecological intensification of agricultural production.
Collapse