1
|
Beatty AE, Barnes-Tompkins TM, Long KM, Tobiansky DJ. Comparative analysis of meningeal transcriptomes in birds: Potential pathways of resilience to repeated impacts. Anat Rec (Hoboken) 2024. [PMID: 39376204 DOI: 10.1002/ar.25583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The meninges and associated vasculature (MAV) play a crucial role in maintaining cerebral integrity and homeostasis. Recent advances in transcriptomic analysis have illuminated the significance of the MAV in understanding the complex physiological interactions at the interface between the skull and the brain after exposure to mechanical stress. To investigate how physiological responses may confer resilience against repetitive mechanical stress, we performed the first transcriptomic analysis of avian MAV tissues using the Downy Woodpecker (Dryobates pubescens) and Tufted Titmouse (Baeolophus bicolor) as the comparison species. Our findings reveal divergences in gene expression profiles related to immune response, cellular stress management, and protein translation machinery. The male woodpeckers exhibit a tailored immune modulation strategy that potentially dampens neuroinflammation while preserving protective immunity. Overrepresented genes involved in cellular stress responses suggest enhanced mechanisms for mitigating damage and promoting repair. Additionally, the enrichment of translation-associated pathways hints at increased capacity for protein turnover and cellular remodeling vital for recovery. Our study not only fills a critical gap in avian neurobiology but also lays the groundwork for research in comparative neuroprotection.
Collapse
Affiliation(s)
- Abby E Beatty
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
| | | | - Kira M Long
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana-Champaign, Illinois, USA
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| | - Daniel J Tobiansky
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
- Program in Neuroscience, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
| |
Collapse
|
2
|
Smoliga JM. From beaks to brains-Challenges in translating woodpecker biology into traumatic brain injury innovation. Anat Rec (Hoboken) 2024. [PMID: 39166436 DOI: 10.1002/ar.25567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
The biomechanics of woodpeckers have captivated researchers for decades. These birds' unique ability to withstand repeated impacts, seemingly without apparent harm, has piqued the interests of scientists and clinicians across multiple disciplines. Historical and recent studies have dissected the anatomical and physiological underpinnings of woodpeckers' protective mechanisms and sparked interest in the development of woodpecker-inspired safety equipment. Despite the intuitive appeal of translating woodpecker adaptations into strategies for human traumatic brain injury (TBI) prevention, significant challenges hinder such innovation. Critical examinations reveal a lack of direct applicability of these findings to human TBI prevention, attributed to fundamental biological and mechanical dissimilarities between humans and woodpeckers. Additionally, some commercial endeavors attempting to capitalize on our fascination with woodpeckers are rooted in unsubstantiated claims about these birds. This paper explores the narrative surrounding woodpecker biomimicry, including its origins and history, and highlights the challenges of translating findings from unconventional animal models of TBI into effective human medical interventions.
Collapse
Affiliation(s)
- James M Smoliga
- Department of Rehabilitation Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Snell-Rood EC, Smirnoff D. Biology for biomimetics I: function as an interdisciplinary bridge in bio-inspired design. BIOINSPIRATION & BIOMIMETICS 2023; 18:052001. [PMID: 37429293 DOI: 10.1088/1748-3190/ace5fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
In bio-inspired design, the concept of 'function' allows engineers and designers to move between biological models and human applications. Abstracting a problem to general functions allows designers to look to traits that perform analogous functions in biological organisms. However, the idea of function can mean different things across fields, presenting challenges for interdisciplinary research. Here we review core ideas in biology that relate to the concept of 'function,' including adaptation, tradeoffs, and fitness, as a companion to bio-inspired design approaches. We align these ideas with a top-down approach in biomimetics, where engineers or designers start with a problem of interest and look to biology for ideas. We review how one can explore a range of biological analogies for a given function by considering function across different parts of an organism's life, such as acquiring nutrients or avoiding disease. Engineers may also draw inspiration from biological traits or systems that exhibit a particular function, but did not necessarily evolve to do so. Such an evolutionary perspective is important to how biodesigners search biological space for ideas. A consideration of the evolution of trait function can also clarify potential trade-offs and biological models that may be more promising for an application. This core set of concepts from evolutionary and organismal biology can aid engineers and designers in their search for biological inspiration.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, United States of America
| | - Dimitri Smirnoff
- Department of Curriculum and Instruction, University of Minnesota, Minneapolis, MN, United States of America
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
4
|
Krishnan A. Biomechanics illuminates form-function relationships in bird bills. J Exp Biol 2023; 226:297128. [PMID: 36912385 DOI: 10.1242/jeb.245171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The field of comparative biomechanics examines how form, mechanical properties and environmental interactions shape the function of biological structures. Biomechanics has advanced by leaps and bounds as rapid technological progress opens up new research horizons. In this Review, I describe how our understanding of the avian bill, a morphologically diverse multifunctional appendage, has been transformed by employing a biomechanical perspective. Across functions from feeding to excavating hollows in trees and as a vocal apparatus, the study of the bill spans both solid and fluid biomechanics, rendering it useful to understand general principles across disciplines. The different shapes of the bill across bird species result in functional and mechanical trade-offs, thus representing a microcosm of many broader form-function questions. Using examples from diverse studies, I discuss how research into bird bills has been shaped over recent decades, and its influence on our understanding of avian ecology and evolution. Next, I examine how bill material properties and geometry influence performance in dietary and non-dietary contexts, simultaneously imposing trade-offs on other functions. Following an examination of the interactions of bills with fluids and their role as part of the vocal apparatus, I end with a discussion of the sensory biomechanics of the bill, focusing specifically on the bill-tip mechanosensory organ. With these case studies, I highlight how this burgeoning and consequential field represents a roadmap for our understanding of the function and evolution of biological structures.
Collapse
Affiliation(s)
- Anand Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri 462066, Madhya Pradesh, India
| |
Collapse
|
6
|
Fuxjager MJ, Ryder TB, Moody NM, Alfonso C, Balakrishnan CN, Barske J, Bosholn M, Boyle WA, Braun EL, Chiver I, Dakin R, Day LB, Driver R, Fusani L, Horton BM, Kimball RT, Lipshutz S, Mello CV, Miller ET, Webster MS, Wirthlin M, Wollman R, Moore IT, Schlinger BA. Systems biology as a framework to understand the physiological and endocrine bases of behavior and its evolution-From concepts to a case study in birds. Horm Behav 2023; 151:105340. [PMID: 36933440 DOI: 10.1016/j.yhbeh.2023.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Organismal behavior, with its tremendous complexity and diversity, is generated by numerous physiological systems acting in coordination. Understanding how these systems evolve to support differences in behavior within and among species is a longstanding goal in biology that has captured the imagination of researchers who work on a multitude of taxa, including humans. Of particular importance are the physiological determinants of behavioral evolution, which are sometimes overlooked because we lack a robust conceptual framework to study mechanisms underlying adaptation and diversification of behavior. Here, we discuss a framework for such an analysis that applies a "systems view" to our understanding of behavioral control. This approach involves linking separate models that consider behavior and physiology as their own networks into a singular vertically integrated behavioral control system. In doing so, hormones commonly stand out as the links, or edges, among nodes within this system. To ground our discussion, we focus on studies of manakins (Pipridae), a family of Neotropical birds. These species have numerous physiological and endocrine specializations that support their elaborate reproductive displays. As a result, manakins provide a useful example to help imagine and visualize the way systems concepts can inform our appreciation of behavioral evolution. In particular, manakins help clarify how connectedness among physiological systems-which is maintained through endocrine signaling-potentiate and/or constrain the evolution of complex behavior to yield behavioral differences across taxa. Ultimately, we hope this review will continue to stimulate thought, discussion, and the emergence of research focused on integrated phenotypes in behavioral ecology and endocrinology.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02906, USA.
| | - T Brandt Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Nicole M Moody
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02906, USA
| | - Camilo Alfonso
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | | | - Julia Barske
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Mariane Bosholn
- Animal Behavior Lab, Ecology Department, National Institute for Amazon Research, Manaus, Amazonas, Brazil
| | - W Alice Boyle
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ioana Chiver
- GIGA Neurosciences, University of Liège, Liege, Belgium
| | - Roslyn Dakin
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Lainy B Day
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Robert Driver
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Leonida Fusani
- Department of Behavioral and Cognitive Biology, University of Vienna, and Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna
| | - Brent M Horton
- Department of Biology, Millersville University, Millersville, PA 17551, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Sara Lipshutz
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Michael S Webster
- Cornell Lab of Ornithology, Ithaca, NY 14853, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Morgan Wirthlin
- Computational Biology Department, Carnegie Melon University, Pittsburgh, PA 15213, USA
| | - Roy Wollman
- Department of Physiology and Integrative Biology, University of California, Los Angeles, CA 90095, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Barney A Schlinger
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; Department of Physiology and Integrative Biology, University of California, Los Angeles, CA 90095, USA; Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|
7
|
Forebrain nuclei linked to woodpecker territorial drum displays mirror those that enable vocal learning in songbirds. PLoS Biol 2022; 20:e3001751. [PMID: 36125990 PMCID: PMC9488818 DOI: 10.1371/journal.pbio.3001751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022] Open
Abstract
Vocal learning is thought to have evolved in 3 orders of birds (songbirds, parrots, and hummingbirds), with each showing similar brain regions that have comparable gene expression specializations relative to the surrounding forebrain motor circuitry. Here, we searched for signatures of these same gene expression specializations in previously uncharacterized brains of 7 assumed vocal non-learning bird lineages across the early branches of the avian family tree. Our findings using a conserved marker for the song system found little evidence of specializations in these taxa, except for woodpeckers. Instead, woodpeckers possessed forebrain regions that were anatomically similar to the pallial song nuclei of vocal learning birds. Field studies of free-living downy woodpeckers revealed that these brain nuclei showed increased expression of immediate early genes (IEGs) when males produce their iconic drum displays, the elaborate bill-hammering behavior that individuals use to compete for territories, much like birdsong. However, these specialized areas did not show increased IEG expression with vocalization or flight. We further confirmed that other woodpecker species contain these brain nuclei, suggesting that these brain regions are a common feature of the woodpecker brain. We therefore hypothesize that ancient forebrain nuclei for refined motor control may have given rise to not only the song control systems of vocal learning birds, but also the drumming system of woodpeckers. Vocal learning is thought to have evolved in three orders of birds (songbirds, parrots, and hummingbirds). This study shows that woodpeckers have evolved a set of brain nuclei to mediate their drum displays, and these regions closely mirror those that underlie song learning in songbirds.
Collapse
|
8
|
Moody NM, Vivlamore EK, Fuxjager MJ. Woodpecker drum evolution: An analysis of covariation in elements of a multicomponent acoustic display among and within species. Evolution 2022; 76:1469-1480. [PMID: 35665503 DOI: 10.1111/evo.14535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 01/22/2023]
Abstract
Multicomponent signals are found throughout the animal kingdom, but how these elaborate displays evolve and diversify is still unclear. Here, we explore the evolution of the woodpecker drum display. Two components of this territorial sexually selected signal, drum speed and drum length, are used by territory holders to assess the threat level of an intruding drummer. We explore the coevolution of these display components both among and within species. Among species, we find evidence for strong coevolution of drum speed and length. Within species, we find that drum speed and length vary largely independent of each other. However, in some species, there is evidence of covariation in certain portions of the drum length distribution. The observed differences in component covariation at the macro- and microevolutionary scales highlight the importance of studying signal structure both among and within species. In all cases of covariation at both evolutionary scales, the relationship between drum speed and length is positive, indicating mutual elaboration of display components and not a performance trade-off.
Collapse
Affiliation(s)
- Nicole M Moody
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, 02912, USA
| | - Emma K Vivlamore
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, 27101, USA
| | - Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, 02912, USA
| |
Collapse
|
9
|
Schuppe ER, Tobiansky D, Goller F, Fuxjager MJ. Specialized androgen synthesis in skeletal muscles that actuate elaborate social displays. J Exp Biol 2022; 225:275472. [PMID: 35587151 DOI: 10.1242/jeb.243730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Androgens mediate the expression of many reproductive behaviors, including the elaborate displays used to navigate courtship and territorial interactions. In some vertebrates, males can produce androgen-dependent sexual behavior even when levels of testosterone (T) is low in the bloodstream. One idea is that select tissues make their own androgens from scratch to support behavioral performance. We first study this phenomenon in the skeletal muscles that actuate elaborate sociosexual displays in downy woodpeckers and two songbirds. We show that the woodpecker display muscle maintains elevated T when the testes are regressed in the non-breeding season. Both the display muscles of woodpeckers, as well as the display muscles in the avian vocal organ (syrinx or SYR) of songbirds, express all transporters and enzymes necessary to convert cholesterol into bioactive androgens locally. In a final analysis, we broaden our study by looking for these same transporters and enzymes in mammalian muscles that operate at different speeds. Using RNA-seq data, we find that the capacity for de novo synthesis is only present in "superfast" extraocular muscle. Together, our results suggest that skeletal muscle specialized to generate extraordinary twitch-times and/or extremely rapid contractile speeds may depend on androgenic hormones produced locally within the muscle itself. Our study therefore uncovers an important new dimension of androgenic regulation of behavior.
Collapse
Affiliation(s)
- Eric R Schuppe
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 14850, USA
| | - Daniel Tobiansky
- Department of Ecology, Evolution, and Organismal Biology, Brown University, 171 Meeting Street, Providence, RI 02912, USA
| | - Franz Goller
- Department of Biology, University of Utah, USA.,Institute for Zoophysiology, University of Münster, Germany
| | - Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, 171 Meeting Street, Providence, RI 02912, USA
| |
Collapse
|