1
|
González-Ferreras AM, Barquín J, Blyth PSA, Hawksley J, Kinsella H, Lauridsen R, Morris OF, Peñas FJ, Thomas GE, Woodward G, Zhao L, O'Gorman EJ. Chronic exposure to environmental temperature attenuates the thermal sensitivity of salmonids. Nat Commun 2023; 14:8309. [PMID: 38097543 PMCID: PMC10721842 DOI: 10.1038/s41467-023-43478-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Metabolism, the biological processing of energy and materials, scales predictably with temperature and body size. Temperature effects on metabolism are normally studied via acute exposures, which overlooks the capacity for organisms to moderate their metabolism following chronic exposure to warming. Here, we conduct respirometry assays in situ and after transplanting salmonid fish among different streams to disentangle the effects of chronic and acute thermal exposure. We find a clear temperature dependence of metabolism for the transplants, but not the in-situ assays, indicating that chronic exposure to warming can attenuate salmonid thermal sensitivity. A bioenergetic model accurately captures the presence of fish in warmer streams when accounting for chronic exposure, whereas it incorrectly predicts their local extinction with warming when incorporating the acute temperature dependence of metabolism. This highlights the need to incorporate the potential for thermal acclimation or adaptation when forecasting the consequences of global warming on ecosystems.
Collapse
Affiliation(s)
- Alexia M González-Ferreras
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, C/Isabel Torres 15, 39011, Santander, Spain.
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Jose Barquín
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, C/Isabel Torres 15, 39011, Santander, Spain
| | - Penelope S A Blyth
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jack Hawksley
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Hugh Kinsella
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Trinity College Dublin, Dublin, Ireland
| | - Rasmus Lauridsen
- Game & Wildlife Conservation Trust, Salmon and Trout Research Centre, East Stoke, Wareham, BH20 6BB, UK
- Six Rivers Iceland, Reykjavik, 101, Iceland
| | - Olivia F Morris
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Francisco J Peñas
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, C/Isabel Torres 15, 39011, Santander, Spain
| | - Gareth E Thomas
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Lei Zhao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
2
|
Diack G, Bull C, Akenhead SA, van der Stap T, Johnson BT, Rivot E, Patin R, Hernvann PY, Schubert A, Bird T, Saunders M, Crozier W. Enhancing data mobilisation through a centralised data repository for Atlantic salmon (Salmo salar L.): Providing the resources to promote an ecosystem-based management framework. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Dobson B, Barry S, Maes-Prior R, Mijic A, Woodward G, Pearse WD. Predicting catchment suitability for biodiversity at national scales. WATER RESEARCH 2022; 221:118764. [PMID: 35752096 DOI: 10.1016/j.watres.2022.118764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Biomonitoring of water quality and catchment management are often disconnected, due to mismatching scales. Considerable effort and money are spent each year on routine reach-scale surveying across many sites, particularly in countries like the UK, where nationwide sampling has been conducted using standardised techniques for many decades. Most of these traditional freshwater biomonitoring schemes focus on pre-defined indicators of organic pollution to compare observed vs expected subsets of common macroinvertebrate indicator species. Other taxa, including many threatened species, are often ignored due to their rarity, as are many invasive species, which are seen as undesirable despite becoming increasingly common and widespread in freshwaters, especially in urban ecosystems. Both these types of taxa are often monitored separately for reasons related to biodiversity concerns rather than for gauging water quality. Repurposing such data could therefore provide important new biomonitoring tools that can help catchment managers to directly link the water quality they aim to control with the biodiversity they are trying to protect. Here we used extensive data held in the England Non-Native and Rare/Protected species records that track these two groups of species as a proof-of-concept for linking catchment scale management of freshwater ecosystems and biodiversity to a range of potential drivers across England. We used national land use (Centre for Ecology and Hydrology land cover map) and water quality indicator (Environment Agency water quality data archive) datasets to predict, at the catchment scale, the presence or absence of 48 focal threatened or invasive species of concern routinely sampled by the English Environment Agency, with a median accuracy of 0.81 area under the receiver operating characteristic curve. A variety of water quality indicators and land-use types were useful in predictions, highlighting that future biomonitoring schemes could use such complementary measures to capture a wider spectrum of drivers and responses. In particular, the percentage of a catchment covered by freshwater was the single most important metric, reinforcing the need for space/habitat to support biodiversity, but we were also able to resolve a range of key environmental drivers for particular focal species. We show how our method could inform new catchment management approaches, by highlighting how key relationships can be identified and how to understand, visualise and prioritise catchments that are most suitable for restoration or water quality interventions. The scale of this work, in terms of number of species, drivers and locations, represents a significant step towards forging a new approach to catchment management that enables managers to link drivers they can control (water quality and land use) to the biota they are trying to protect (biodiversity).
Collapse
Affiliation(s)
- Barnaby Dobson
- Department of Civil and Environmental Engineering, Faculty of Engineering, Imperial College London.
| | - Saoirse Barry
- Department of Civil and Environmental Engineering, Faculty of Engineering, Imperial College London
| | - Robin Maes-Prior
- Department of Civil and Environmental Engineering, Faculty of Engineering, Imperial College London
| | - Ana Mijic
- Department of Civil and Environmental Engineering, Faculty of Engineering, Imperial College London
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire SL5 7PY, U.K
| | - William D Pearse
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire SL5 7PY, U.K
| |
Collapse
|
4
|
de Eyto E, Kelly S, Rogan G, French A, Cooney J, Murphy M, Nixon P, Hughes P, Sweeney D, McGinnity P, Dillane M, Poole R. Decadal Trends in the Migration Phenology of Diadromous Fishes Native to the Burrishoole Catchment, Ireland. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.915854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Migration is an important ecological trait that allows animals to exploit resources in different habitats, obtaining extra energy for growth and reproduction. The phenology (or timing) of migration is a highly heritable trait, but is also controlled by environmental factors. Numerous studies have reported the advancement of species life-events with climate change, but the rate and significance of such advancement is likely to be species specific, spatially variable and dependent on interactions with population and ecosystem changes. This is particularly true for diadromous fishes which are sentinels of change in both freshwater and marine domains, and are subject to considerable multiple stressors including overfishing and habitat degradation. Here, we describe trends in the migration phenology of three native Irish migratory fishes over half a century, Atlantic salmon (Salmo salar), brown trout (Salmo trutta) and European eel (Anguilla anguilla). The trends were derived from daily counts of 745,263 fish moving upstream and downstream through the fish traps of the Burrishoole catchment, an internationally important monitoring infrastructure allowing a full census of migrating fish. We found that the start of the seaward migration of eel has advanced by one month since 1970. The commencement of the salmon smolt migration has advanced by one week, although the rest of the migration, and the entirety of the trout smolt run has remained stable. The beginning of the upstream migration of trout to freshwater has advanced by 20 days, while the end of the run is more than one month later than in the 1970’s. The greatest phenological shift has been in the upstream migration of adult salmon, with at least half of migrating fish returning between one and two months earlier from the marine environment compared to the 1970’s. The earlier return of these salmon is coincident with reduced marine survival and decreasing body size, indicating considerable oceanic challenges for this species. Our results demonstrate that the impacts of climate change on the phenology of diadromous fish are context-dependent and may interact with other factors. The mobilization of long-term datasets are crucial to parse the ecological impacts of climate change from other anthropogenic stresses.
Collapse
|