1
|
Wang Z, Wang T, Zhang X, Wang J, Yang Y, Sun Y, Guo X, Wu Q, Nepovimova E, Watson AE, Kuca K. Biodiversity conservation in the context of climate change: Facing challenges and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173377. [PMID: 38796025 DOI: 10.1016/j.scitotenv.2024.173377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Biodiversity conservation amidst the uncertainty of climate change presents unique challenges that necessitate precise management strategies. The study reported here was aimed at refining understanding of these challenges and to propose specific, actionable management strategies. Employing a quantitative literature analysis, we meticulously examined 1268 research articles from the Web of Science database between 2005 and 2023. Through Cite Spaces and VOS viewer software, we conducted a bibliometric analysis and thematic synthesis to pinpoint emerging trends, key themes, and the geographical distribution of research efforts. Our methodology involved identifying patterns within the data, such as frequency of keywords, co-authorship networks, and citation analysis, to discern the primary focus areas within the field. This approach allowed us to distinguish between research concentration areas, specifically highlighting a predominant interest in Environmental Sciences Ecology (67.59 %) and Biodiversity Conservation (22.63 %). The identification of adaptive management practices and ecosystem services maintenance are central themes in the research from 2005 to 2023. Moreover, challenges such as understanding phenological shifts, invasive species dynamics, and anthropogenic pressures critically impact biodiversity conservation efforts. Our findings underscore the urgent need for precise, data-driven decision-making processes in the face of these challenges. Addressing the gaps identified, our study proposes targeted solutions, including the establishment of germplasm banks for at-risk species, the development of advanced genomic and microclimate models, and scenario analysis to predict and mitigate future conservation challenges. These strategies are aimed at enhancing the resilience of biodiversity against the backdrop of climate change through integrated, evidence-based approaches. By leveraging the compiled and analyzed data, this study offers a foundational framework for future research and practical action in biodiversity conservation strategies, demonstrating a path forward through detailed analysis and specified solutions.
Collapse
Affiliation(s)
- Zhirong Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Tongxin Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiujuan Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Junbang Wang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yongsheng Yang
- The Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Yu Sun
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiaohua Guo
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Qinghua Wu
- College Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Alan E Watson
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic.
| |
Collapse
|
2
|
Cuthbert RN, Darriet F, Chabrerie O, Lenoir J, Courchamp F, Claeys C, Robert V, Jourdain F, Ulmer R, Diagne C, Ayala D, Simard F, Morand S, Renault D. Invasive hematophagous arthropods and associated diseases in a changing world. Parasit Vectors 2023; 16:291. [PMID: 37592298 PMCID: PMC10436414 DOI: 10.1186/s13071-023-05887-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Biological invasions have increased significantly with the tremendous growth of international trade and transport. Hematophagous arthropods can be vectors of infectious and potentially lethal pathogens and parasites, thus constituting a growing threat to humans-especially when associated with biological invasions. Today, several major vector-borne diseases, currently described as emerging or re-emerging, are expanding in a world dominated by climate change, land-use change and intensive transportation of humans and goods. In this review, we retrace the historical trajectory of these invasions to better understand their ecological, physiological and genetic drivers and their impacts on ecosystems and human health. We also discuss arthropod management strategies to mitigate future risks by harnessing ecology, public health, economics and social-ethnological considerations. Trade and transport of goods and materials, including vertebrate introductions and worn tires, have historically been important introduction pathways for the most prominent invasive hematophagous arthropods, but sources and pathways are likely to diversify with future globalization. Burgeoning urbanization, climate change and the urban heat island effect are likely to interact to favor invasive hematophagous arthropods and the diseases they can vector. To mitigate future invasions of hematophagous arthropods and novel disease outbreaks, stronger preventative monitoring and transboundary surveillance measures are urgently required. Proactive approaches, such as the use of monitoring and increased engagement in citizen science, would reduce epidemiological and ecological risks and could save millions of lives and billions of dollars spent on arthropod control and disease management. Last, our capacities to manage invasive hematophagous arthropods in a sustainable way for worldwide ecosystems can be improved by promoting interactions among experts of the health sector, stakeholders in environmental issues and policymakers (e.g. the One Health approach) while considering wider social perceptions.
Collapse
Affiliation(s)
- Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | | | - Olivier Chabrerie
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80037, Amiens Cedex 1, France
| | - Jonathan Lenoir
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80037, Amiens Cedex 1, France
| | - Franck Courchamp
- Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, Gif sur Yvette, France
| | - Cecilia Claeys
- Centre de Recherche sur les Sociétés et les Environnement Méditerranéens (CRESEM), UR 7397 UPVD, Université de Perpignan, Perpignan, France
| | - Vincent Robert
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Frédéric Jourdain
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
- Santé Publique France, Saint-Maurice, France
| | - Romain Ulmer
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80037, Amiens Cedex 1, France
| | - Christophe Diagne
- CBGP, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, 755 Avenue du Campus Agropolis, 34988, Cedex, Montferrier-Sur-Lez, France
| | - Diego Ayala
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
- Medical Entomology Unit, Institut Pasteur de Madagascar, BP 1274, Antananarivo, Madagascar
| | - Frédéric Simard
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Serge Morand
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
- Faculty of Veterinary Technology, CNRS - CIRAD, Kasetsart University, Bangkok, Thailand
| | - David Renault
- Université de Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution) - UMR 6553, Rennes, France
- Institut Universitaire de France, 1 Rue Descartes, Paris, France
| |
Collapse
|
3
|
Willner W, Wessely J, Gattringer A, Moser D, Záveská E, Dullinger S, Schönswetter P, Hülber K. Post-glacial range formation of temperate forest understorey herbs - Insights from a spatio-temporally explicit modelling approach. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2023; 32:1046-1058. [PMID: 38504871 PMCID: PMC10947399 DOI: 10.1111/geb.13677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 03/21/2024]
Abstract
Aim Our knowledge of Pleistocene refugia and post-glacial recolonization routes of forest understorey plants is still very limited. The geographical ranges of these species are often rather narrow and show highly idiosyncratic, often fragmented patterns indicating either narrow and species-specific ecological tolerances or strong dispersal limitations. However, the relative roles of these factors are inherently difficult to disentangle. Location Central and south-eastern Europe. Time period 17,100 BP - present. Major taxa studied Five understorey herbs of European beech forests: Aposeris foetida, Cardamine trifolia, Euphorbia carniolica, Hacquetia epipactis and Helleborus niger. Methods We used spatio-temporally explicit modelling to reconstruct the post-glacial range dynamics of the five forest understorey herbs. We varied niche requirements, demographic rates and dispersal abilities across plausible ranges and simulated the spread of species from potential Pleistocene refugia identified by phylogeographical analyses. Then we identified the parameter settings allowing for the most accurate reconstruction of their current geographical ranges. Results We found a largely homogenous pattern of optimal parameter settings among species. Broad ecological niches had to be combined with very low but non-zero rates of long-distance dispersal via chance events and low rates of seed dispersal over moderate distances by standard dispersal vectors. However, long-distance dispersal events, although rare, led to high variation among replicated simulation runs. Main conclusions Small and fragmented ranges of many forest understorey species are best explained by a combination of broad ecological niches and rare medium- and long-distance dispersal events. Stochasticity is thus an important determinant of current species ranges, explaining the idiosyncratic distribution patterns of the study species despite strong similarities in refugia, ecological tolerances and dispersal abilities.
Collapse
Affiliation(s)
- Wolfgang Willner
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14Vienna1030Austria
| | - Johannes Wessely
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14Vienna1030Austria
| | - Andreas Gattringer
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14Vienna1030Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE)University of ViennaDjerassiplatz 1Vienna1030Austria
| | - Dietmar Moser
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14Vienna1030Austria
| | - Eliška Záveská
- Department of BotanyUniversity of InnsbruckSternwartestr. 15Innsbruck6020Austria
- Institute of Botany of the Czech Academy of SciencesZámek 1Průhonice252 43Czech Republic
| | - Stefan Dullinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14Vienna1030Austria
| | - Peter Schönswetter
- Department of BotanyUniversity of InnsbruckSternwartestr. 15Innsbruck6020Austria
| | - Karl Hülber
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14Vienna1030Austria
| |
Collapse
|
4
|
Adam MM, Lenzner B, van Kleunen M, Essl F. Call for integrating future patterns of biodiversity into European conservation policy. Conserv Lett 2022. [DOI: 10.1111/conl.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Moritz M. Adam
- Faculty of Science, University of Amsterdam Amsterdam The Netherlands
| | - Bernd Lenzner
- Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| | - Mark van Kleunen
- Department of Biology University of Konstanz Constance Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China
| | - Franz Essl
- Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| |
Collapse
|
5
|
Kracke I, Essl F, Zulka KP, Schindler S. Risks and opportunities of assisted colonization: the perspectives of experts. NATURE CONSERVATION 2021. [DOI: 10.3897/natureconservation.45.72554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Owing to climate change and other anthropogenic environmental changes, the suitability of locations is changing for many biota that consequently have to adapt in situ or to move to other areas. To mitigate the effects of such pressures, assisted colonization is a conservation tool developed to reduce extinction risks by intentionally moving and releasing an organism outside its native range, and thus, to facilitate tracking changing environmental conditions. This conservation tool has been proposed for threatened animals or plants that presumably cannot adapt in situ or follow environmental changes by dispersal or migration. However, there have been contentious debates about the shortcomings and risks of implementing assisted colonization. For this reason, we evaluated the specific opinions of global experts for assisted colonization on potential risks and opportunities that this approach offers. For this purpose, we used an online survey targeted at authors of scientific publications on assisted colonization. The majority (82%) of the 48 respondents were in favor of applying assisted colonization for species that are at risk of global extinction due to anthropogenic environmental change. Most respondents agreed that assisted colonization should be considered only when other conservation tools are not available and that certain preconditions must be met. Some of these were already highlighted in the IUCN guidelines for assisted colonization and include a completed risk assessment, clearly defined management plans and secured political as well as financial support. The advocacy of assisted colonization in response to anthropogenic global environmental changes was only weakly dependent on the geographic origin of the experts and their working background. Regarding possible risks, most of the respondents were concerned about consequences like failure of the long-term establishment of the translocated species and the transmission of diseases and invasiveness potentially endangering native biota. To keep these risks as low as possible most of the experts agreed that a target area must have a reasonable carrying capacity to sustain a minimum viable population and that adaptive management should be implemented. Careful evaluation of assisted colonization projects is required to generate further evidence that needs to be considered for further developing conservation tools for the Anthropocene.
Collapse
|