1
|
Cardoso JMS, Manadas B, Abrantes I, Robertson L, Arcos SC, Troya MT, Navas A, Fonseca L. Pine wilt disease: what do we know from proteomics? BMC PLANT BIOLOGY 2024; 24:98. [PMID: 38331735 PMCID: PMC10854151 DOI: 10.1186/s12870-024-04771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Pine wilt disease (PWD) is a devastating forest disease caused by the pinewood nematode (PWN), Bursaphelenchus xylophilus, a migratory endoparasite that infects several coniferous species. During the last 20 years, advances have been made for understanding the molecular bases of PWN-host trees interactions. Major advances emerged from transcriptomic and genomic studies, which revealed some unique features related to PWN pathogenicity and constituted fundamental data that allowed the development of postgenomic studies. Here we review the proteomic approaches that were applied to study PWD and integrated the current knowledge on the molecular basis of the PWN pathogenicity. Proteomics has been useful for understanding cellular activities and protein functions involved in PWN-host trees interactions, shedding light into the mechanisms associated with PWN pathogenicity and being promising tools to better clarify host trees PWN resistance/susceptibility.
Collapse
Affiliation(s)
- Joana M S Cardoso
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal.
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I, Coimbra, 3004-504, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga - Faculdade de Medicina, 1ºandar - POLO I, Coimbra, 3004-504, Portugal
| | - Isabel Abrantes
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal
| | - Lee Robertson
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC. Instituto de Ciencias Forestales (ICIFOR), Ctra. de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Susana C Arcos
- Museo Nacional de Ciencias Naturales, CSIC. Dpto Biodiversidad y Biología Evolutiva, C/ José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Maria Teresa Troya
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC. Instituto de Ciencias Forestales (ICIFOR), Ctra. de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Alfonso Navas
- Museo Nacional de Ciencias Naturales, CSIC. Dpto Biodiversidad y Biología Evolutiva, C/ José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Luís Fonseca
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal
| |
Collapse
|
2
|
Schwartz HT, Tan CH, Peraza J, Raymundo KLT, Sternberg PW. Molecular identification of a peroxidase gene controlling body size in the entomopathogenic nematode Steinernema hermaphroditum. Genetics 2024; 226:iyad209. [PMID: 38078889 PMCID: PMC11491526 DOI: 10.1093/genetics/iyad209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024] Open
Abstract
The entomopathogenic nematode Steinernema hermaphroditum was recently rediscovered and is being developed as a genetically tractable experimental system for the study of previously unexplored biology, including parasitism of its insect hosts and mutualism with its bacterial endosymbiont Xenorhabdus griffiniae. Through whole-genome re-sequencing and genetic mapping we have for the first time molecularly identified the gene responsible for a mutationally defined phenotypic locus in an entomopathogenic nematode. In the process we observed an unexpected mutational spectrum following ethyl methansulfonate mutagenesis in this species. We find that the ortholog of the essential Caenorhabditis elegans peroxidase gene skpo-2 controls body size and shape in S. hermaphroditum. We confirmed this identification by generating additional loss-of-function mutations in the gene using CRISPR-Cas9. We propose that the identification of skpo-2 will accelerate gene targeting in other Steinernema entomopathogenic nematodes used commercially in pest control, as skpo-2 is X-linked and males hemizygous for loss of its function can mate, making skpo-2 an easily recognized and maintained marker for use in co-CRISPR.
Collapse
Affiliation(s)
- Hillel T Schwartz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jackeline Peraza
- Department of Biology, Barnard College of Columbia University, NewYork, NY 10027, USA
| | | | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
3
|
Villegas LI, Ferretti L, Wiehe T, Waldvogel A, Schiffer PH. Parthenogenomics: Insights on mutation rates and nucleotide diversity in parthenogenetic Panagrolaimus nematodes. Ecol Evol 2024; 14:e10831. [PMID: 38192904 PMCID: PMC10771965 DOI: 10.1002/ece3.10831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Asexual reproduction is assumed to lead to the accumulation of deleterious mutations, and reduced heterozygosity due to the absence of recombination. Panagrolaimid nematode species display different modes of reproduction. Sexual reproduction with distinct males and females, asexual reproduction through parthenogenesis in the genus Panagrolaimus, and hermaphroditism in Propanagrolaimus. Here, we compared genomic features of free-living nematodes in populations and species isolated from geographically distant regions to study diversity, and genome-wide differentiation under different modes of reproduction. We firstly estimated genome-wide spontaneous mutation rates in a triploid parthenogenetic Panagrolaimus, and a diploid hermaphroditic Propanagrolaimus via long-term mutation accumulation lines. Secondly, we calculated population genetic parameters including nucleotide diversity, and fixation index (F ST) between populations of asexually and sexually reproducing nematodes. Thirdly, we used phylogenetic network methods on sexually and asexually reproducing Panagrolaimus populations to understand evolutionary relationships between them. The estimated mutation rate was slightly lower for the asexual population, as expected for taxa with this reproductive mode. Natural polyploid asexual populations revealed higher nucleotide diversity. Despite their common ancestor, a gene network revealed a high level of genetic differentiation among asexual populations. The elevated heterozygosity found in the triploid parthenogens could be explained by the third genome copy. Given their tendentially lower mutation rates it can be hypothesized that this is part of the mechanism to evade Muller's ratchet. Our findings in parthenogenetic triploid nematode populations seem to challenge common expectations of evolution under asexuality.
Collapse
Affiliation(s)
| | | | - Thomas Wiehe
- Institute for GeneticsUniversity of CologneKölnGermany
| | | | | |
Collapse
|
4
|
Cao M. CRISPR-Cas9 genome editing in Steinernema entomopathogenic nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568619. [PMID: 38045388 PMCID: PMC10690278 DOI: 10.1101/2023.11.24.568619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Molecular tool development in traditionally non-tractable animals opens new avenues to study gene functions in the relevant ecological context. Entomopathogenic nematodes (EPN) Steinernema and their symbiotic bacteria of Xenorhabdus spp are a valuable experimental system in the laboratory and are applicable in the field to promote agricultural productivity. The infective juvenile (IJ) stage of the nematode packages mutualistic symbiotic bacteria in the intestinal pocket and invades insects that are agricultural pests. The lack of consistent and heritable genetics tools in EPN targeted mutagenesis severely restricted the study of molecular mechanisms underlying both parasitic and mutualistic interactions. Here, I report a protocol for CRISPR-Cas9 based genome-editing that is successful in two EPN species, S. carpocapsae and S. hermaphroditum . I adapted a gonadal microinjection technique in S. carpocapsae , which created on-target modifications of a homologue Sc-dpy-10 (cuticular collagen) by homology-directed repair. A similar delivery approach was used to introduce various alleles in S. hermaphroditum including Sh-dpy-10 and Sh-unc-22 (a muscle gene), resulting in visible and heritable phenotypes of dumpy and twitching, respectively. Using conditionally dominant alleles of Sh-unc-22 as a co-CRISPR marker, I successfully modified a second locus encoding Sh-Daf-22 (a homologue of human sterol carrier protein SCPx), predicted to function as a core enzyme in the biosynthesis of nematode pheromone that is required for IJ development. As a proof of concept, Sh-daf-22 null mutant showed IJ developmental defects in vivo ( in insecta) . This research demonstrates that Steinernema spp are highly tractable for targeted mutagenesis and has great potential in the study of gene functions under controlled laboratory conditions within the relevant context of its ecological niche.
Collapse
|