1
|
Roussel MR, Soares T. Graph-based, dynamics-preserving reduction of (bio)chemical systems. J Math Biol 2024; 89:42. [PMID: 39271540 DOI: 10.1007/s00285-024-02138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Complex dynamical systems are often governed by equations containing many unknown parameters whose precise values may or may not be important for the system's dynamics. In particular, for chemical and biochemical systems, there may be some reactions or subsystems that are inessential to understanding the bifurcation structure and consequent behavior of a model, such as oscillations, multistationarity and patterning. Due to the size, complexity and parametric uncertainties of many (bio)chemical models, a dynamics-preserving reduction scheme that is able to isolate the necessary contributors to particular dynamical behaviors would be useful. In this contribution, we describe model reduction methods for mass-action (bio)chemical models based on the preservation of instability-generating subnetworks known as critical fragments. These methods focus on structural conditions for instabilities and so are parameter-independent. We apply these results to an existing model for the control of the synthesis of the NO-detoxifying enzyme Hmp in Escherichia coli that displays bistability.
Collapse
Affiliation(s)
- Marc R Roussel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Talmon Soares
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
2
|
Byun JH, Jeon HS, Yun HY, Kim JK. Validity conditions of approximations for a target-mediated drug disposition model: A novel first-order approximation and its comparison to other approximations. PLoS Comput Biol 2024; 20:e1012066. [PMID: 38656966 PMCID: PMC11090311 DOI: 10.1371/journal.pcbi.1012066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/13/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Target-mediated drug disposition (TMDD) is a phenomenon characterized by a drug's high-affinity binding to a target molecule, which significantly influences its pharmacokinetic profile within an organism. The comprehensive TMDD model delineates this interaction, yet it may become overly complex and computationally demanding in the absence of specific concentration data for the target or its complexes. Consequently, simplified TMDD models employing quasi-steady state approximations (QSSAs) have been introduced; however, the precise conditions under which these models yield accurate results require further elucidation. Here, we establish the validity of three simplified TMDD models: the Michaelis-Menten model reduced with the standard QSSA (mTMDD), the QSS model reduced with the total QSSA (qTMDD), and a first-order approximation of the total QSSA (pTMDD). Specifically, we find that mTMDD is applicable only when initial drug concentrations substantially exceed total target concentrations, while qTMDD can be used for all drug concentrations. Notably, pTMDD offers a simpler and faster alternative to qTMDD, with broader applicability than mTMDD. These findings are confirmed with antibody-drug conjugate real-world data. Our findings provide a framework for selecting appropriate simplified TMDD models while ensuring accuracy, potentially enhancing drug development and facilitating safer, more personalized treatments.
Collapse
Affiliation(s)
- Jong Hyuk Byun
- Department of Mathematics and Institute of Mathematical Science, Pusan National University, Busan, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Hye Seon Jeon
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hwi-yeol Yun
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Kyoung Kim
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Shimada M, Behrad P, De Giuli E. Universal slow dynamics of chemical reaction networks. Phys Rev E 2024; 109:044105. [PMID: 38755882 DOI: 10.1103/physreve.109.044105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/04/2024] [Indexed: 05/18/2024]
Abstract
Understanding the emergent behavior of chemical reaction networks (CRNs) is a fundamental aspect of biology and its origin from inanimate matter. A closed CRN monotonically tends to thermal equilibrium, but when it is opened to external reservoirs, a range of behaviors is possible, including transition to a new equilibrium state, a nonequilibrium state, or indefinite growth. This study shows that slowly driven CRNs are governed by the conserved quantities of the closed system, which are generally far fewer in number than the species. Considering both deterministic and stochastic dynamics, a universal slow-dynamics equation is derived with singular perturbation methods and is shown to be thermodynamically consistent. The slow dynamics is highly robust against microscopic details of the network, which may be unknown in practical situations. In particular, nonequilibrium states of realistic large CRNs can be sought without knowledge of bulk reaction rates. The framework is successfully tested against a suite of networks of increasing complexity and argued to be relevant in the treatment of open CRNs as chemical machines.
Collapse
Affiliation(s)
- Masanari Shimada
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| | - Pegah Behrad
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| | - Eric De Giuli
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| |
Collapse
|
4
|
Gasparyan M, Rao S. Parameter Estimation for Kinetic Models of Chemical Reaction Networks from Partial Experimental Data of Species' Concentrations. Bioengineering (Basel) 2023; 10:1056. [PMID: 37760158 PMCID: PMC10526083 DOI: 10.3390/bioengineering10091056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The current manuscript addresses the problem of parameter estimation for kinetic models of chemical reaction networks from observed time series partial experimental data of species concentrations. It is demonstrated how the Kron reduction method of kinetic models, in conjunction with the (weighted) least squares optimization technique, can be used as a tool to solve the above-mentioned ill-posed parameter estimation problem. First, a new trajectory-independent measure is introduced to quantify the dynamical difference between the original mathematical model and the corresponding Kron-reduced model. This measure is then crucially used to estimate the parameters contained in the kinetic model so that the corresponding values of the species' concentrations predicted by the model fit the available experimental data. The new parameter estimation method is tested on two real-life examples of chemical reaction networks: nicotinic acetylcholine receptors and Trypanosoma brucei trypanothione synthetase. Both weighted and unweighted least squares techniques, combined with Kron reduction, are used to find the best-fitting parameter values. The method of leave-one-out cross-validation is utilized to determine the preferred technique. For nicotinic receptors, the training errors due to the application of unweighted and weighted least squares are 3.22 and 3.61 respectively, while for Trypanosoma synthetase, the application of unweighted and weighted least squares result in training errors of 0.82 and 0.70 respectively. Furthermore, the problem of identifiability of dynamical systems, i.e., the possibility of uniquely determining the parameters from certain types of output, has also been addressed.
Collapse
Affiliation(s)
- Manvel Gasparyan
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon 21985, Republic of Korea;
- Department of Data Analysis and Mathematical Modelling, Ghent University, 9000 Ghent, Belgium
| | - Shodhan Rao
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon 21985, Republic of Korea;
- Department of Data Analysis and Mathematical Modelling, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Zinovyev A, Sadovsky M, Calzone L, Fouché A, Groeneveld CS, Chervov A, Barillot E, Gorban AN. Modeling Progression of Single Cell Populations Through the Cell Cycle as a Sequence of Switches. Front Mol Biosci 2022; 8:793912. [PMID: 35178429 PMCID: PMC8846220 DOI: 10.3389/fmolb.2021.793912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Cell cycle is a biological process underlying the existence and propagation of life in time and space. It has been an object for mathematical modeling for long, with several alternative mechanistic modeling principles suggested, describing in more or less details the known molecular mechanisms. Recently, cell cycle has been investigated at single cell level in snapshots of unsynchronized cell populations, exploiting the new methods for transcriptomic and proteomic molecular profiling. This raises a need for simplified semi-phenomenological cell cycle models, in order to formalize the processes underlying the cell cycle, at a higher abstracted level. Here we suggest a modeling framework, recapitulating the most important properties of the cell cycle as a limit trajectory of a dynamical process characterized by several internal states with switches between them. In the simplest form, this leads to a limit cycle trajectory, composed by linear segments in logarithmic coordinates describing some extensive (depending on system size) cell properties. We prove a theorem connecting the effective embedding dimensionality of the cell cycle trajectory with the number of its linear segments. We also develop a simplified kinetic model with piecewise-constant kinetic rates describing the dynamics of lumps of genes involved in S-phase and G2/M phases. We show how the developed cell cycle models can be applied to analyze the available single cell datasets and simulate certain properties of the observed cell cycle trajectories. Based on our model, we can predict with good accuracy the cell line doubling time from the length of cell cycle trajectory.
Collapse
Affiliation(s)
- Andrei Zinovyev
- Institut Curie, PSL Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
- *Correspondence: Andrei Zinovyev,
| | - Michail Sadovsky
- Institute of Computational Modeling (RAS), Krasnoyarsk, Russia
- Laboratory of Medical Cybernetics, V.F.Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
- Federal Research and Clinic Center of FMBA of Russia, Krasnoyarsk, Russia
- Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Laurence Calzone
- Institut Curie, PSL Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Aziz Fouché
- Institut Curie, PSL Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Clarice S. Groeneveld
- Cartes d’Identité des Tumeurs (CIT) Program, Ligue Nationale Contre le Cancer, Paris, France
- Oncologie Moleculaire, UMR144, Institut Curie, Paris, France
| | - Alexander Chervov
- Institut Curie, PSL Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Alexander N. Gorban
- Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky University, Nizhniy Novgorod, Russia
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
6
|
HillTau: A fast, compact abstraction for model reduction in biochemical signaling networks. PLoS Comput Biol 2021; 17:e1009621. [PMID: 34843454 PMCID: PMC8659295 DOI: 10.1371/journal.pcbi.1009621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/09/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022] Open
Abstract
Signaling networks mediate many aspects of cellular function. The conventional, mechanistically motivated approach to modeling such networks is through mass-action chemistry, which maps directly to biological entities and facilitates experimental tests and predictions. However such models are complex, need many parameters, and are computationally costly. Here we introduce the HillTau form for signaling models. HillTau retains the direct mapping to biological observables, but it uses far fewer parameters, and is 100 to over 1000 times faster than ODE-based methods. In the HillTau formalism, the steady-state concentration of signaling molecules is approximated by the Hill equation, and the dynamics by a time-course tau. We demonstrate its use in implementing several biochemical motifs, including association, inhibition, feedforward and feedback inhibition, bistability, oscillations, and a synaptic switch obeying the BCM rule. The major use-cases for HillTau are system abstraction, model reduction, scaffolds for data-driven optimization, and fast approximations to complex cellular signaling. Chemical signals mediate many computations in cells, from housekeeping functions in all cells to memory and pattern selectivity in neurons. These signals form complex networks of interactions. Computer models are a powerful way to study how such networks behave, but it is hard to get all the chemical details for typical models, and it is slow to run them with standard numerical approaches to chemical kinetics. We introduce HillTau as a simplified way to model complex chemical networks. HillTau models condense multiple reaction steps into single steps defined by a small number of parameters for activation and settling time. As a result the models are simple, easy to find values for, and they run quickly. Remarkably, they fit the full chemical formulations rather well. We illustrate the utility of HillTau for modeling several signaling network functions, and for fitting complicated signaling networks.
Collapse
|
7
|
Küken A, Wendering P, Langary D, Nikoloski Z. A structural property for reduction of biochemical networks. Sci Rep 2021; 11:17415. [PMID: 34465818 PMCID: PMC8408245 DOI: 10.1038/s41598-021-96835-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022] Open
Abstract
Large-scale biochemical models are of increasing sizes due to the consideration of interacting organisms and tissues. Model reduction approaches that preserve the flux phenotypes can simplify the analysis and predictions of steady-state metabolic phenotypes. However, existing approaches either restrict functionality of reduced models or do not lead to significant decreases in the number of modelled metabolites. Here, we introduce an approach for model reduction based on the structural property of balancing of complexes that preserves the steady-state fluxes supported by the network and can be efficiently determined at genome scale. Using two large-scale mass-action kinetic models of Escherichia coli, we show that our approach results in a substantial reduction of 99% of metabolites. Applications to genome-scale metabolic models across kingdoms of life result in up to 55% and 85% reduction in the number of metabolites when arbitrary and mass-action kinetics is assumed, respectively. We also show that predictions of the specific growth rate from the reduced models match those based on the original models. Since steady-state flux phenotypes from the original model are preserved in the reduced, the approach paves the way for analysing other metabolic phenotypes in large-scale biochemical networks.
Collapse
Affiliation(s)
- Anika Küken
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Philipp Wendering
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Damoun Langary
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| |
Collapse
|
8
|
Seiferth D, Sollich P, Klumpp S. Coarse graining of biochemical systems described by discrete stochastic dynamics. Phys Rev E 2021; 102:062149. [PMID: 33466014 DOI: 10.1103/physreve.102.062149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 11/07/2022]
Abstract
Many biological systems can be described by finite Markov models. A general method for simplifying master equations is presented that is based on merging adjacent states. The approach preserves the steady-state probability distribution and all steady-state fluxes except the one between the merged states. Different levels of coarse graining of the underlying microscopic dynamics can be obtained by iteration, with the result being independent of the order in which states are merged. A criterion for the optimal level of coarse graining or resolution of the process is proposed via a tradeoff between the simplicity of the coarse-grained model and the information loss relative to the original model. As a case study, the method is applied to the cycle kinetics of the molecular motor kinesin.
Collapse
Affiliation(s)
- David Seiferth
- Institute for the Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Peter Sollich
- Institute for Theoretical Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Abstract
We propose a new approach to the model reduction of biochemical reaction networks governed by various types of enzyme kinetics rate laws with non-autocatalytic reactions, each of which can be reversible or irreversible. This method extends the approach for model reduction previously proposed by Rao et al. which proceeds by the step-wise reduction in the number of complexes by Kron reduction of the weighted Laplacian corresponding to the complex graph of the network. The main idea in the current manuscript is based on rewriting the mathematical model of a reaction network as a model of a network consisting of linkage classes that contain more than one reaction. It is done by joining certain distinct linkage classes into a single linkage class by using the conservation laws of the network. We show that this adjustment improves the extent of applicability of the method proposed by Rao et al. We automate the entire reduction procedure using Matlab. We test our automated model reduction to two real-life reaction networks, namely, a model of neural stem cell regulation and a model of hedgehog signaling pathway. We apply our reduction approach to meaningfully reduce the number of complexes in the complex graph corresponding to these networks. When the number of species’ concentrations in the model of neural stem cell regulation is reduced by 33.33%, the difference between the dynamics of the original model and the reduced model, quantified by an error integral, is only 4.85%. Likewise, when the number of species’ concentrations is reduced by 33.33% in the model of hedgehog signaling pathway, the difference between the dynamics of the original model and the reduced model is only 6.59%.
Collapse
|
10
|
Bravi B, Rubin KJ, Sollich P. Systematic model reduction captures the dynamics of extrinsic noise in biochemical subnetworks. J Chem Phys 2020; 153:025101. [DOI: 10.1063/5.0008304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Barbara Bravi
- Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Katy J. Rubin
- Department of Mathematics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| | - Peter Sollich
- Department of Mathematics, King’s College London, Strand, London WC2R 2LS, United Kingdom
- Institute for Theoretical Physics, Georg-August-University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
11
|
It's about time: Analysing simplifying assumptions for modelling multi-step pathways in systems biology. PLoS Comput Biol 2020; 16:e1007982. [PMID: 32598362 PMCID: PMC7351226 DOI: 10.1371/journal.pcbi.1007982] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 07/10/2020] [Accepted: 05/27/2020] [Indexed: 11/19/2022] Open
Abstract
Thoughtful use of simplifying assumptions is crucial to make systems biology models tractable while still representative of the underlying biology. A useful simplification can elucidate the core dynamics of a system. A poorly chosen assumption can, however, either render a model too complicated for making conclusions or it can prevent an otherwise accurate model from describing experimentally observed dynamics. Here, we perform a computational investigation of sequential multi-step pathway models that contain fewer pathway steps than the system they are designed to emulate. We demonstrate when such models will fail to reproduce data and how detrimental truncation of a pathway leads to detectable signatures in model dynamics and its optimised parameters. An alternative assumption is suggested for simplifying such pathways. Rather than assuming a truncated number of pathway steps, we propose to use the assumption that the rates of information propagation along the pathway is homogeneous and, instead, letting the length of the pathway be a free parameter. We first focus on linear pathways that are sequential and have first-order kinetics, and we show how this assumption results in a three-parameter model that consistently outperforms its truncated rival and a delay differential equation alternative in recapitulating observed dynamics. We then show how the proposed assumption allows for similarly terse and effective models of non-linear pathways. Our results provide a foundation for well-informed decision making during model simplifications.
Collapse
|
12
|
Yang Q, Sing-Long CA, Reed EJ. Rapid data-driven model reduction of nonlinear dynamical systems including chemical reaction networks using ℓ 1-regularization. CHAOS (WOODBURY, N.Y.) 2020; 30:053122. [PMID: 32491878 DOI: 10.1063/1.5139463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/17/2020] [Indexed: 05/21/2023]
Abstract
Large-scale nonlinear dynamical systems, such as models of atmospheric hydrodynamics, chemical reaction networks, and electronic circuits, often involve thousands or more interacting components. In order to identify key components in the complex dynamical system as well as to accelerate simulations, model reduction is often desirable. In this work, we develop a new data-driven method utilizing ℓ1-regularization for model reduction of nonlinear dynamical systems, which involves minimal parameterization and has polynomial-time complexity, allowing it to easily handle large-scale systems with as many as thousands of components in a matter of minutes. A primary objective of our model reduction method is interpretability, that is to identify key components of the dynamical system that contribute to behaviors of interest, rather than just finding an efficient projection of the dynamical system onto lower dimensions. Our method produces a family of reduced models that exhibit a trade-off between model complexity and estimation error. We find empirically that our method chooses reduced models with good extrapolation properties, an important consideration in practical applications. The reduction and extrapolation performance of our method are illustrated by applications to the Lorenz model and chemical reaction rate equations, where performance is found to be competitive with or better than state-of-the-art approaches.
Collapse
Affiliation(s)
- Q Yang
- Computer Science and Engineering Department, University of Connecticut, Storrs, Connecticut 06269, USA
| | - C A Sing-Long
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - E J Reed
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
13
|
Abroudi A, Samarasinghe S, Kulasiri D. Towards abstraction of computational modelling of mammalian cell cycle: Model reduction pipeline incorporating multi-level hybrid petri nets. J Theor Biol 2020; 496:110212. [PMID: 32142804 DOI: 10.1016/j.jtbi.2020.110212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 12/13/2019] [Accepted: 02/23/2020] [Indexed: 12/31/2022]
Abstract
Cell cycle is a large biochemical network and it is crucial to simplify it to gain a clearer understanding and insights into the cell cycle. This is also true for other biochemical networks. In this study, we present a model abstraction scheme/pipeline to create a minimal abstract model of the whole mammalian cell cycle system from a large Ordinary Differential Equation model of cell cycle we published previously (Abroudi et al., 2017). The abstract model is developed in a way that it captures the main characteristics (dynamics of key controllers), responses (G1-S and G2-M transitions and DNA damage) and the signalling subsystems (Growth Factor, G1-S and G2-M checkpoints, and DNA damage) of the original model (benchmark). Further, our model exploits: (i) separation of time scales (slow and fast reactions), (ii) separation of levels of complexity (high-level and low-level interactions), (iii) cell-cycle stages (temporality), (iv) functional subsystems (as mentioned above), and (v) represents the whole cell cycle - within a Multi-Level Hybrid Petri Net (MLHPN) framework. Although hybrid Petri Nets is not new, the abstraction of interactions and timing we introduced here is new to cell cycle and Petri Nets. Importantly, our models builds on the significant elements, representing the core cell cycle system, found through a novel Global Sensitivity Analysis on the benchmark model, using Self Organising Maps and Correlation Analysis that we introduced in (Abroudi et al., 2017). Taken the two aspects together, our study proposes a 2-stage model reduction pipeline for large systems and the main focus of this paper is on stage 2, Petri Net model, put in the context of the pipeline. With the MLHPN model, the benchmark model with 61 continuous variables (ODEs) and 148 parameters were reduced to 14 variables (4 continuous (Cyc_Cdks - the main controllers of cell cycle) and 10 discrete (regulators of Cyc_Cdks)) and 31 parameters. Additional 9 discrete elements represented the temporal progression of cell cycle. Systems dynamics simulation results of the MLHPN model were in close agreement with the benchmark model with respect to the crucial metrics selected for comparison: order and pattern of Cyc_Cdk activation, timing of G1-S and G2-M transitions with or without DNA damage, efficiency of the two cell cycle checkpoints in arresting damaged cells and passing healthy cells, and response to two types of global parameter perturbations. The results show that the MLHPN provides a close approximation to the comprehensive benchmark model in robustly representing systems dynamics and emergent properties while presenting the core cell cycle controller in an intuitive, transparent and subsystems format.
Collapse
Affiliation(s)
- Ali Abroudi
- Complex Systems, Big Data and Informatics Initiative (CSBII), Lincoln University, New Zealand
| | - Sandhya Samarasinghe
- Complex Systems, Big Data and Informatics Initiative (CSBII), Lincoln University, New Zealand.
| | - Don Kulasiri
- Complex Systems, Big Data and Informatics Initiative (CSBII), Lincoln University, New Zealand
| |
Collapse
|
14
|
Pucci F, Rooman M. Deciphering noise amplification and reduction in open chemical reaction networks. J R Soc Interface 2019; 15:20180805. [PMID: 30958227 DOI: 10.1098/rsif.2018.0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The impact of fluctuations on the dynamical behaviour of complex biological systems is a longstanding issue, whose understanding would elucidate how evolutionary pressure tends to modulate intrinsic noise. Using the Itō stochastic differential equation formalism, we performed analytic and numerical analyses of model systems containing different molecular species in contact with the environment and interacting with each other through mass-action kinetics. For networks of zero deficiency, which admit a detailed- or complex-balanced steady state, all molecular species are uncorrelated and their Fano factors are Poissonian. Systems of higher deficiency have non-equilibrium steady states and non-zero reaction fluxes flowing between the complexes. When they model homo-oligomerization, the noise on each species is reduced when the flux flows from the oligomers of lowest to highest degree, and amplified otherwise. In the case of hetero-oligomerization systems, only the noise on the highest-degree species shows this behaviour.
Collapse
Affiliation(s)
- Fabrizio Pucci
- 2 Department of BioModeling, BioInformatics and BioProcesses, Université Libre de Bruxelles , 50 Roosevelt Ave, 1050 Brussels , Belgium
| | - Marianne Rooman
- 1 Department of Theoretical Physics, BioInformatics and BioProcesses, Université Libre de Bruxelles , 50 Roosevelt Ave, 1050 Brussels , Belgium.,2 Department of BioModeling, BioInformatics and BioProcesses, Université Libre de Bruxelles , 50 Roosevelt Ave, 1050 Brussels , Belgium
| |
Collapse
|
15
|
Smith S, Dalchau N. Model reduction enables Turing instability analysis of large reaction-diffusion models. J R Soc Interface 2019. [PMID: 29540540 PMCID: PMC5908523 DOI: 10.1098/rsif.2017.0805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Synthesizing a genetic network which generates stable Turing patterns is one of the great challenges of synthetic biology, but a significant obstacle is the disconnect between the mathematical theory and the biological reality. Current mathematical understanding of patterning is typically restricted to systems of two or three chemical species, for which equations are tractable. However, when models seek to combine descriptions of intercellular signal diffusion and intracellular biochemistry, plausible genetic networks can consist of dozens of interacting species. In this paper, we suggest a method for reducing large biochemical systems that relies on removing the non-diffusible species, leaving only the diffusibles in the model. Such model reduction enables analysis to be conducted on a smaller number of differential equations. We provide conditions to guarantee that the full system forms patterns if the reduced system does, and vice versa. We confirm our technique with three examples: the Brusselator, an example proposed by Turing, and a biochemically plausible patterning system consisting of 17 species. These examples show that our method significantly simplifies the study of pattern formation in large systems where several species can be considered immobile.
Collapse
Affiliation(s)
- Stephen Smith
- Biological Computation group, Microsoft Research, Cambridge CB1 2FB, UK.,School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Neil Dalchau
- Biological Computation group, Microsoft Research, Cambridge CB1 2FB, UK
| |
Collapse
|
16
|
Loskot P, Atitey K, Mihaylova L. Comprehensive Review of Models and Methods for Inferences in Bio-Chemical Reaction Networks. Front Genet 2019; 10:549. [PMID: 31258548 PMCID: PMC6588029 DOI: 10.3389/fgene.2019.00549] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/24/2019] [Indexed: 01/30/2023] Open
Abstract
The key processes in biological and chemical systems are described by networks of chemical reactions. From molecular biology to biotechnology applications, computational models of reaction networks are used extensively to elucidate their non-linear dynamics. The model dynamics are crucially dependent on the parameter values which are often estimated from observations. Over the past decade, the interest in parameter and state estimation in models of (bio-) chemical reaction networks (BRNs) grew considerably. The related inference problems are also encountered in many other tasks including model calibration, discrimination, identifiability, and checking, and optimum experiment design, sensitivity analysis, and bifurcation analysis. The aim of this review paper is to examine the developments in literature to understand what BRN models are commonly used, and for what inference tasks and inference methods. The initial collection of about 700 documents concerning estimation problems in BRNs excluding books and textbooks in computational biology and chemistry were screened to select over 270 research papers and 20 graduate research theses. The paper selection was facilitated by text mining scripts to automate the search for relevant keywords and terms. The outcomes are presented in tables revealing the levels of interest in different inference tasks and methods for given models in the literature as well as the research trends are uncovered. Our findings indicate that many combinations of models, tasks and methods are still relatively unexplored, and there are many new research opportunities to explore combinations that have not been considered-perhaps for good reasons. The most common models of BRNs in literature involve differential equations, Markov processes, mass action kinetics, and state space representations whereas the most common tasks are the parameter inference and model identification. The most common methods in literature are Bayesian analysis, Monte Carlo sampling strategies, and model fitting to data using evolutionary algorithms. The new research problems which cannot be directly deduced from the text mining data are also discussed.
Collapse
Affiliation(s)
- Pavel Loskot
- College of Engineering, Swansea University, Swansea, United Kingdom
| | - Komlan Atitey
- College of Engineering, Swansea University, Swansea, United Kingdom
| | - Lyudmila Mihaylova
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
17
|
A Large-Scale Assessment of Exact Model Reduction in the BioModels Repository. COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY 2019. [DOI: 10.1007/978-3-030-31304-3_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
|
19
|
Kalinin N, Guzmán-Sáenz A, Prieto Y, Shkolnikov M, Kalinina V, Lupercio E. Self-organized criticality and pattern emergence through the lens of tropical geometry. Proc Natl Acad Sci U S A 2018; 115:E8135-E8142. [PMID: 30111541 PMCID: PMC6126730 DOI: 10.1073/pnas.1805847115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Tropical geometry, an established field in pure mathematics, is a place where string theory, mirror symmetry, computational algebra, auction theory, and so forth meet and influence one another. In this paper, we report on our discovery of a tropical model with self-organized criticality (SOC) behavior. Our model is continuous, in contrast to all known models of SOC, and is a certain scaling limit of the sandpile model, the first and archetypical model of SOC. We describe how our model is related to pattern formation and proportional growth phenomena and discuss the dichotomy between continuous and discrete models in several contexts. Our aim in this context is to present an idealized tropical toy model (cf. Turing reaction-diffusion model), requiring further investigation.
Collapse
Affiliation(s)
- N Kalinin
- The Laboratory of Game Theory and Decision Making, National Research University Higher School of Economics, Saint-Petersburg 194100, Russia
| | - A Guzmán-Sáenz
- Computational Genomics, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
| | - Y Prieto
- Institut de Mathématiques de Toulouse, Université de Toulouse III Paul Sabatier, 31400 Toulouse, France
| | - M Shkolnikov
- Hausel Group, Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - V Kalinina
- Institute of Cytology, Russian Academy of Science, 194064 Saint-Petersburg, Russia
| | - E Lupercio
- Department of Mathematics, CINVESTAV, Mexico City CP 07360, Mexico
| |
Collapse
|
20
|
Frøysa HG, Fallahi S, Blaser N. Evaluating model reduction under parameter uncertainty. BMC SYSTEMS BIOLOGY 2018; 12:79. [PMID: 30053887 PMCID: PMC6062951 DOI: 10.1186/s12918-018-0602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 07/09/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND The dynamics of biochemical networks can be modelled by systems of ordinary differential equations. However, these networks are typically large and contain many parameters. Therefore model reduction procedures, such as lumping, sensitivity analysis and time-scale separation, are used to simplify models. Although there are many different model reduction procedures, the evaluation of reduced models is difficult and depends on the parameter values of the full model. There is a lack of a criteria for evaluating reduced models when the model parameters are uncertain. RESULTS We developed a method to compare reduced models and select the model that results in similar dynamics and uncertainty as the original model. We simulated different parameter sets from the assumed parameter distributions. Then, we compared all reduced models for all parameter sets using cluster analysis. The clusters revealed which of the reduced models that were similar to the original model in dynamics and variability. This allowed us to select the smallest reduced model that best approximated the full model. Through examples we showed that when parameter uncertainty was large, the model should be reduced further and when parameter uncertainty was small, models should not be reduced much. CONCLUSIONS A method to compare different models under parameter uncertainty is developed. It can be applied to any model reduction method. We also showed that the amount of parameter uncertainty influences the choice of reduced models.
Collapse
Affiliation(s)
- Håvard G Frøysa
- Department of Mathematics, University of Bergen, Mailbox 7803, Bergen, 5020, Norway.
| | - Shirin Fallahi
- Department of Mathematics, University of Bergen, Mailbox 7803, Bergen, 5020, Norway
| | - Nello Blaser
- Department of Mathematics, University of Bergen, Mailbox 7803, Bergen, 5020, Norway
| |
Collapse
|
21
|
Straube R. Operating regimes of covalent modification cycles at high enzyme concentrations. J Theor Biol 2017; 431:39-48. [PMID: 28782551 DOI: 10.1016/j.jtbi.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
The Goldbeter-Koshland model has been a paradigm for ultrasensitivity in biological networks for more than 30 years. Despite its simplicity the validity of this model is restricted to conditions when the substrate is in excess over the converter enzymes - a condition that is easy to satisfy in vitro, but which is rarely satisfied in vivo. Here, we analyze the Goldbeter-Koshland model by means of the total quasi-steady state approximation which yields a comprehensive classification of the steady state operating regimes under conditions when the enzyme concentrations are comparable to or larger than that of the substrate. Where possible we derive simple expressions characterizing the input-output behavior of the system. Our analysis suggests that enhanced sensitivity occurs if the concentration of at least one of the converter enzymes is smaller (but not necessarily much smaller) than that of the substrate and if that enzyme is saturated. Conversely, if both enzymes are saturated and at least one of the enzyme concentrations exceeds that of the substrate the system exhibits concentration robustness with respect to changes in that enzyme concentration. Also, depending on the enzyme's saturation degrees and the ratio between their maximal reaction rates the total fraction of phosphorylated substrate may increase, decrease or change nonmonotonically as a function of the total substrate concentration. The latter finding may aid the interpretation of experiments involving genetic perturbations of enzyme and substrate abundances.
Collapse
Affiliation(s)
- Ronny Straube
- Department of Mathematics, Friedrich-Alexander-University Erlangen-Nuernberg, Cauerstr. 11, D-91058 Erlangen, Germany.
| |
Collapse
|
22
|
Yang Q, Sing-Long CA, Reed EJ. Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics. Chem Sci 2017; 8:5781-5796. [PMID: 28989618 PMCID: PMC5625287 DOI: 10.1039/c7sc01052d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022] Open
Abstract
We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our method on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. The framework described in this work paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.
Collapse
Affiliation(s)
- Qian Yang
- Institute for Computational and Mathematical Engineering , Stanford University , Stanford , 94305 , USA .
| | - Carlos A Sing-Long
- Mathematical and Computational Engineering , School of Engineering , Pontificia Universidad Catolica de Chile , Santiago , Chile .
| | - Evan J Reed
- Institute for Computational and Mathematical Engineering , Stanford University , Stanford , 94305 , USA .
- Department of Materials Science and Engineering , Stanford University , Stanford , 94305 , USA .
| |
Collapse
|
23
|
Bravi B, Sollich P. Statistical physics approaches to subnetwork dynamics in biochemical systems. Phys Biol 2017; 14:045010. [PMID: 28510539 DOI: 10.1088/1478-3975/aa7363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We apply a Gaussian variational approximation to model reduction in large biochemical networks of unary and binary reactions. We focus on a small subset of variables (subnetwork) of interest, e.g. because they are accessible experimentally, embedded in a larger network (bulk). The key goal is to write dynamical equations reduced to the subnetwork but still retaining the effects of the bulk. As a result, the subnetwork-reduced dynamics contains a memory term and an extrinsic noise term with non-trivial temporal correlations. We first derive expressions for this memory and noise in the linearized (Gaussian) dynamics and then use a perturbative power expansion to obtain first order nonlinear corrections. For the case of vanishing intrinsic noise, our description is explicitly shown to be equivalent to projection methods up to quadratic terms, but it is applicable also in the presence of stochastic fluctuations in the original dynamics. An example from the epidermal growth factor receptor signalling pathway is provided to probe the increased prediction accuracy and computational efficiency of our method.
Collapse
Affiliation(s)
- B Bravi
- Current affiliation: Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
24
|
Snowden TJ, van der Graaf PH, Tindall MJ. Methods of Model Reduction for Large-Scale Biological Systems: A Survey of Current Methods and Trends. Bull Math Biol 2017; 79:1449-1486. [PMID: 28656491 PMCID: PMC5498684 DOI: 10.1007/s11538-017-0277-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 03/30/2017] [Indexed: 01/31/2023]
Abstract
Complex models of biochemical reaction systems have become increasingly common in the systems biology literature. The complexity of such models can present a number of obstacles for their practical use, often making problems difficult to intuit or computationally intractable. Methods of model reduction can be employed to alleviate the issue of complexity by seeking to eliminate those portions of a reaction network that have little or no effect upon the outcomes of interest, hence yielding simplified systems that retain an accurate predictive capacity. This review paper seeks to provide a brief overview of a range of such methods and their application in the context of biochemical reaction network models. To achieve this, we provide a brief mathematical account of the main methods including timescale exploitation approaches, reduction via sensitivity analysis, optimisation methods, lumping, and singular value decomposition-based approaches. Methods are reviewed in the context of large-scale systems biology type models, and future areas of research are briefly discussed.
Collapse
Affiliation(s)
- Thomas J Snowden
- Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK.,Certara QSP, University of Kent Innovation Centre, Canterbury, CT2 7FG, UK
| | - Piet H van der Graaf
- Certara QSP, University of Kent Innovation Centre, Canterbury, CT2 7FG, UK.,Leiden Academic Centre for Drug Research, Universiteit Leiden, Leiden, 2333 CC, Netherlands
| | - Marcus J Tindall
- Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK. .,The Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, RG6 6AX, UK.
| |
Collapse
|
25
|
Abstract
Known graphical conditions for the generic and global convergence to equilibria of the dynamical system arising from a reaction network are shown to be invariant under the so-called successive removal of intermediates, a systematic procedure to simplify the network, making the graphical conditions considerably easier to check.
Collapse
Affiliation(s)
| | - Carsten Wiuf
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisenda Feliu
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Kondofersky I, Theis FJ, Fuchs C. Inferring catalysis in biological systems. IET Syst Biol 2016; 10:210-218. [PMID: 27879475 PMCID: PMC8687166 DOI: 10.1049/iet-syb.2015.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/24/2016] [Accepted: 04/06/2016] [Indexed: 09/22/2023] Open
Abstract
In systems biology, one is often interested in the communication patterns between several species, such as genes, enzymes or proteins. These patterns become more recognisable when temporal experiments are performed. This temporal communication can be structured by reaction networks such as gene regulatory networks or signalling pathways. Mathematical modelling of data arising from such networks can reveal important details, thus helping to understand the studied system. In many cases, however, corresponding models still deviate from the observed data. This may be due to unknown but present catalytic reactions. From a modelling perspective, the question of whether a certain reaction is catalysed leads to a large increase of model candidates. For large networks the calibration of all possible models becomes computationally infeasible. We propose a method which determines a substantially reduced set of appropriate model candidates and identifies the catalyst of each reaction at the same time. This is incorporated in a multiple-step procedure which first extends the network by additional latent variables and subsequently identifies catalyst candidates using similarity analysis methods. Results from synthetic data examples suggest a good performance even for non-informative data with few observations. Applied on CD95 apoptotic pathway our method provides new insights into apoptosis regulation.
Collapse
Affiliation(s)
- Ivan Kondofersky
- Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
| | - Fabian J Theis
- Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
| | - Christiane Fuchs
- Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany.
| |
Collapse
|
27
|
Maiwald T, Hass H, Steiert B, Vanlier J, Engesser R, Raue A, Kipkeew F, Bock HH, Kaschek D, Kreutz C, Timmer J. Driving the Model to Its Limit: Profile Likelihood Based Model Reduction. PLoS One 2016; 11:e0162366. [PMID: 27588423 PMCID: PMC5010240 DOI: 10.1371/journal.pone.0162366] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 01/22/2023] Open
Abstract
In systems biology, one of the major tasks is to tailor model complexity to information content of the data. A useful model should describe the data and produce well-determined parameter estimates and predictions. Too small of a model will not be able to describe the data whereas a model which is too large tends to overfit measurement errors and does not provide precise predictions. Typically, the model is modified and tuned to fit the data, which often results in an oversized model. To restore the balance between model complexity and available measurements, either new data has to be gathered or the model has to be reduced. In this manuscript, we present a data-based method for reducing non-linear models. The profile likelihood is utilised to assess parameter identifiability and designate likely candidates for reduction. Parameter dependencies are analysed along profiles, providing context-dependent suggestions for the type of reduction. We discriminate four distinct scenarios, each associated with a specific model reduction strategy. Iterating the presented procedure eventually results in an identifiable model, which is capable of generating precise and testable predictions. Source code for all toy examples is provided within the freely available, open-source modelling environment Data2Dynamics based on MATLAB available at http://www.data2dynamics.org/, as well as the R packages dMod/cOde available at https://github.com/dkaschek/. Moreover, the concept is generally applicable and can readily be used with any software capable of calculating the profile likelihood.
Collapse
Affiliation(s)
- Tim Maiwald
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Helge Hass
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bernhard Steiert
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Joep Vanlier
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Raphael Engesser
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Andreas Raue
- Merrimack Pharmaceuticals, Boston, MA, United States of America
| | - Friederike Kipkeew
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Hans H. Bock
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Daniel Kaschek
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Clemens Kreutz
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany
- Center for Biosystems Analysis (ZBSA), University of Freiburg, Freiburg im Breisgau, Germany
| | - Jens Timmer
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany
- Center for Biosystems Analysis (ZBSA), University of Freiburg, Freiburg im Breisgau, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
- * E-mail:
| |
Collapse
|
28
|
Madelaine G, Lhoussaine C, Niehren J, Tonello E. Structural simplification of chemical reaction networks in partial steady states. Biosystems 2016; 149:34-49. [PMID: 27521766 DOI: 10.1016/j.biosystems.2016.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 07/23/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
We study the structural simplification of chemical reaction networks with partial steady state semantics assuming that the concentrations of some but not all species are constant. We present a simplification rule that can eliminate intermediate species that are in partial steady state, while preserving the dynamics of all other species. Our simplification rule can be applied to general reaction networks with some but few restrictions on the possible kinetic laws. We can also simplify reaction networks subject to conservation laws. We prove that our simplification rule is correct when applied to a module of a reaction network, as long as the partial steady state is assumed with respect to the complete network. Michaelis-Menten's simplification rule for enzymatic reactions falls out as a special case. We have implemented an algorithm that applies our simplification rules repeatedly and applied it to reaction networks from systems biology.
Collapse
Affiliation(s)
- Guillaume Madelaine
- CRIStAL, UMR 9189, 59650 Villeneuve d'Ascq, France; University of Lille, France.
| | - Cédric Lhoussaine
- CRIStAL, UMR 9189, 59650 Villeneuve d'Ascq, France; University of Lille, France
| | - Joachim Niehren
- CRIStAL, UMR 9189, 59650 Villeneuve d'Ascq, France; INRIA Lille, France
| | | |
Collapse
|
29
|
Biktashev VN, Tsyganov MA. Quasisolitons in self-diffusive excitable systems, or Why asymmetric diffusivity obeys the Second Law. Sci Rep 2016; 6:30879. [PMID: 27491430 PMCID: PMC4974638 DOI: 10.1038/srep30879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/07/2016] [Indexed: 11/30/2022] Open
Abstract
Solitons, defined as nonlinear waves which can reflect from boundaries or transmit through each other, are found in conservative, fully integrable systems. Similar phenomena, dubbed quasi-solitons, have been observed also in dissipative, "excitable" systems, either at finely tuned parameters (near a bifurcation) or in systems with cross-diffusion. Here we demonstrate that quasi-solitons can be robustly observed in excitable systems with excitable kinetics and with self-diffusion only. This includes quasi-solitons of fixed shape (like KdV solitons) or envelope quasi-solitons (like NLS solitons). This can happen in systems with more than two components, and can be explained by effective cross-diffusion, which emerges via adiabatic elimination of a fast but diffusing component. We describe here a reduction procedure can be used for the search of complicated wave regimes in multi-component, stiff systems by studying simplified, soft systems.
Collapse
Affiliation(s)
- V. N. Biktashev
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, EX4 4QJ, UK
| | - M. A. Tsyganov
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
30
|
Jang H, Kim KKK, Braatz RD, Gopaluni RB, Lee JH. Regularized maximum likelihood estimation of sparse stochastic monomolecular biochemical reaction networks. Comput Chem Eng 2016. [DOI: 10.1016/j.compchemeng.2016.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Abstract
Molecular noise in gene regulatory networks has two intrinsic components, one part being due to fluctuations caused by the birth and death of protein or mRNA molecules which are often present in small numbers and the other part arising from gene state switching, a single molecule event. Stochastic dynamics of gene regulatory circuits appears to be largely responsible for bifurcations into a set of multi-attractor states that encode different cell phenotypes. The interplay of dichotomous single molecule gene noise with the nonlinear architecture of genetic networks generates rich and complex phenomena. In this paper, we elaborate on an approximate framework that leads to simple hybrid multi-scale schemes well suited for the quantitative exploration of the steady state properties of large-scale cellular genetic circuits. Through a path sum based analysis of trajectory statistics, we elucidate the connection of these hybrid schemes to the underlying master equation and provide a rigorous justification for using dichotomous noise based models to study genetic networks. Numerical simulations of circuit models reveal that the contribution of the genetic noise of single molecule origin to the total noise is significant for a wide range of kinetic regimes.
Collapse
Affiliation(s)
- Davit A Potoyan
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
32
|
Sun X, Medvedovic M. Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks. IET Syst Biol 2016; 10:10-6. [PMID: 26816394 DOI: 10.1049/iet-syb.2015.0034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parameter estimation for high dimension complex dynamic system is a hot topic. However, the current statistical model and inference approach is known as a large p small n problem. How to reduce the dimension of the dynamic model and improve the accuracy of estimation is more important. To address this question, the authors take some known parameters and structure of system as priori knowledge and incorporate it into dynamic model. At the same time, they decompose the whole dynamic model into subset network modules, based on different modules, and then they apply different estimation approaches. This technique is called Rao-Blackwellised particle filters decomposition methods. To evaluate the performance of this method, the authors apply it to synthetic data generated from repressilator model and experimental data of the JAK-STAT pathway, but this method can be easily extended to large-scale cases.
Collapse
Affiliation(s)
- Xiaodian Sun
- Department of Environmental Health, Laboratory for Statistical Genomics and Systems Biology, University of Cincinnati College of Medicine, 3223 Eden Ave. ML56, Cincinnati, OH 45267-0056, USA.
| | - Mario Medvedovic
- Department of Environmental Health, Laboratory for Statistical Genomics and Systems Biology, University of Cincinnati College of Medicine, 3223 Eden Ave. ML56, Cincinnati, OH 45267-0056, USA
| |
Collapse
|
33
|
Abstract
To understand the behaviour of complex systems, it is often necessary to use models that describe the dynamics of subnetworks. It has previously been established using projection methods that such subnetwork dynamics generically involves memory of the past and that the memory functions can be calculated explicitly for biochemical reaction networks made up of unary and binary reactions. However, many established network models involve also Michaelis-Menten kinetics, to describe, e.g., enzymatic reactions. We show that the projection approach to subnetwork dynamics can be extended to such networks, thus significantly broadening its range of applicability. To derive the extension, we construct a larger network that represents enzymes and enzyme complexes explicitly, obtain the projected equations, and finally take the limit of fast enzyme reactions that gives back Michaelis-Menten kinetics. The crucial point is that this limit can be taken in closed form. The outcome is a simple procedure that allows one to obtain a description of subnetwork dynamics, including memory functions, starting directly from any given network of unary, binary, and Michaelis-Menten reactions. Numerical tests show that this closed form enzyme elimination gives a much more accurate description of the subnetwork dynamics than the simpler method that represents enzymes explicitly and is also more efficient computationally.
Collapse
Affiliation(s)
- Katy J Rubin
- Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Peter Sollich
- Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
34
|
Tummler K, Kühn C, Klipp E. Dynamic metabolic models in context: biomass backtracking. Integr Biol (Camb) 2016; 7:940-51. [PMID: 26189715 DOI: 10.1039/c5ib00050e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mathematical modeling has proven to be a powerful tool to understand and predict functional and regulatory properties of metabolic processes. High accuracy dynamic modeling of individual pathways is thereby opposed by simplified but genome scale constraint based approaches. A method that links these two powerful techniques would greatly enhance predictive power but is so far lacking. We present biomass backtracking, a workflow that integrates the cellular context in existing dynamic metabolic models via stoichiometrically exact drain reactions based on a genome scale metabolic model. With comprehensive examples, for different species and environmental contexts, we show the importance and scope of applications and highlight the improvement compared to common boundary formulations in existing metabolic models. Our method allows for the contextualization of dynamic metabolic models based on all available information. We anticipate this to greatly increase their accuracy and predictive power for basic research and also for drug development and industrial applications.
Collapse
Affiliation(s)
- Katja Tummler
- Theoretische Biophysik, Humboldt-Universität zu Berlin, Germany.
| | | | | |
Collapse
|
35
|
Samal SS, Grigoriev D, Fröhlich H, Weber A, Radulescu O. A Geometric Method for Model Reduction of Biochemical Networks with Polynomial Rate Functions. Bull Math Biol 2015; 77:2180-211. [DOI: 10.1007/s11538-015-0118-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 10/20/2015] [Indexed: 12/31/2022]
|
36
|
Soliman S, Fages F, Radulescu O. A constraint solving approach to model reduction by tropical equilibration. Algorithms Mol Biol 2014; 9:24. [PMID: 25493095 PMCID: PMC4260239 DOI: 10.1186/s13015-014-0024-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 11/04/2014] [Indexed: 11/26/2022] Open
Abstract
Model reduction is a central topic in systems biology and dynamical systems theory, for reducing the complexity of detailed models, finding important parameters, and developing multi-scale models for instance. While singular perturbation theory is a standard mathematical tool to analyze the different time scales of a dynamical system and decompose the system accordingly, tropical methods provide a simple algebraic framework to perform these analyses systematically in polynomial systems. The crux of these methods is in the computation of tropical equilibrations. In this paper we show that constraint-based methods, using reified constraints for expressing the equilibration conditions, make it possible to numerically solve non-linear tropical equilibration problems, out of reach of standard computation methods. We illustrate this approach first with the detailed reduction of a simple biochemical mechanism, the Michaelis-Menten enzymatic reaction model, and second, with large-scale performance figures obtained on the http://biomodels.net
repository.
Collapse
|
37
|
Rubin KJ, Lawler K, Sollich P, Ng T. Memory effects in biochemical networks as the natural counterpart of extrinsic noise. J Theor Biol 2014; 357:245-67. [PMID: 24928151 DOI: 10.1016/j.jtbi.2014.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/22/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
We show that in the generic situation where a biological network, e.g. a protein interaction network, is in fact a subnetwork embedded in a larger "bulk" network, the presence of the bulk causes not just extrinsic noise but also memory effects. This means that the dynamics of the subnetwork will depend not only on its present state, but also its past. We use projection techniques to get explicit expressions for the memory functions that encode such memory effects, for generic protein interaction networks involving binary and unary reactions such as complex formation and phosphorylation. Remarkably, in the limit of low intrinsic copy-number noise such expressions can be obtained even for nonlinear dependences on the past. We illustrate the method with examples from a protein interaction network around epidermal growth factor receptor (EGFR), which is relevant to cancer signalling. These examples demonstrate that inclusion of memory terms is not only important conceptually but also leads to substantially higher quantitative accuracy in the predicted subnetwork dynamics.
Collapse
Affiliation(s)
- Katy J Rubin
- Department of Mathematics, King׳s College London, Strand, London WC2R 2LS, UK
| | - Katherine Lawler
- Institute for Mathematical and Molecular Biomedicine, King׳s College London, Hodgkin Building, London SE1 1UL, UK
| | - Peter Sollich
- Department of Mathematics, King׳s College London, Strand, London WC2R 2LS, UK.
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King׳s College London, London SE1 1UL, UK; UCL Cancer Institute, Paul O׳Gorman Building, University College London, London WC1E 6DD, UK
| |
Collapse
|
38
|
Korsunsky I, McGovern K, LaGatta T, Olde Loohuis L, Grosso-Applewhite T, Griffeth N, Mishra B. Systems biology of cancer: a challenging expedition for clinical and quantitative biologists. Front Bioeng Biotechnol 2014; 2:27. [PMID: 25191654 PMCID: PMC4137540 DOI: 10.3389/fbioe.2014.00027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/18/2014] [Indexed: 11/25/2022] Open
Abstract
A systems-biology approach to complex disease (such as cancer) is now complementing traditional experience-based approaches, which have typically been invasive and expensive. The rapid progress in biomedical knowledge is enabling the targeting of disease with therapies that are precise, proactive, preventive, and personalized. In this paper, we summarize and classify models of systems biology and model checking tools, which have been used to great success in computational biology and related fields. We demonstrate how these models and tools have been used to study some of the twelve biochemical pathways implicated in but not unique to pancreatic cancer, and conclude that the resulting mechanistic models will need to be further enhanced by various abstraction techniques to interpret phenomenological models of cancer progression.
Collapse
Affiliation(s)
- Ilya Korsunsky
- Department of Computer Science, Courant Institute, New York University, New York, NY, USA
| | - Kathleen McGovern
- Department of Mathematics and Statistics, Hunter College, City University of New York, New York, NY, USA
| | - Tom LaGatta
- Department of Mathematics, Courant Institute, New York University, New York, NY, USA
| | - Loes Olde Loohuis
- Department of Computer Science, The Graduate Center, City University of New York, New York, NY, USA
| | - Terri Grosso-Applewhite
- Department of Computer Science, The Graduate Center, City University of New York, New York, NY, USA
| | - Nancy Griffeth
- Department of Mathematics and Computer Science, Lehman College, City University of New York, New York, NY, USA
| | - Bud Mishra
- Department of Computer Science, Courant Institute, New York University, New York, NY, USA
- Department of Mathematics, Courant Institute, New York University, New York, NY, USA
| |
Collapse
|
39
|
Tøndel K, Niederer SA, Land S, Smith NP. Insight into model mechanisms through automatic parameter fitting: a new methodological framework for model development. BMC SYSTEMS BIOLOGY 2014; 8:59. [PMID: 24886522 PMCID: PMC4078362 DOI: 10.1186/1752-0509-8-59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/29/2014] [Indexed: 11/10/2022]
Abstract
Background Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms. Results The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input–output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard deviation of on average 15% of the mean values over the succeeding parameter sets. Conclusions Our results indicate that the presented approach is effective for comparing model alternatives and reducing models to the minimum complexity replicating measured data. We therefore believe that this approach has significant potential for reparameterising existing frameworks, for identification of redundant model components of large biophysical models and to increase their predictive capacity.
Collapse
Affiliation(s)
- Kristin Tøndel
- Department of Biomedical Engineering, King's College London, St, Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK.
| | | | | | | |
Collapse
|
40
|
Rao S, van der Schaft A, van Eunen K, Bakker BM, Jayawardhana B. A model reduction method for biochemical reaction networks. BMC SYSTEMS BIOLOGY 2014; 8:52. [PMID: 24885656 PMCID: PMC4041147 DOI: 10.1186/1752-0509-8-52] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/23/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND In this paper we propose a model reduction method for biochemical reaction networks governed by a variety of reversible and irreversible enzyme kinetic rate laws, including reversible Michaelis-Menten and Hill kinetics. The method proceeds by a stepwise reduction in the number of complexes, defined as the left and right-hand sides of the reactions in the network. It is based on the Kron reduction of the weighted Laplacian matrix, which describes the graph structure of the complexes and reactions in the network. It does not rely on prior knowledge of the dynamic behaviour of the network and hence can be automated, as we demonstrate. The reduced network has fewer complexes, reactions, variables and parameters as compared to the original network, and yet the behaviour of a preselected set of significant metabolites in the reduced network resembles that of the original network. Moreover the reduced network largely retains the structure and kinetics of the original model. RESULTS We apply our method to a yeast glycolysis model and a rat liver fatty acid beta-oxidation model. When the number of state variables in the yeast model is reduced from 12 to 7, the difference between metabolite concentrations in the reduced and the full model, averaged over time and species, is only 8%. Likewise, when the number of state variables in the rat-liver beta-oxidation model is reduced from 42 to 29, the difference between the reduced model and the full model is 7.5%. CONCLUSIONS The method has improved our understanding of the dynamics of the two networks. We found that, contrary to the general disposition, the first few metabolites which were deleted from the network during our stepwise reduction approach, are not those with the shortest convergence times. It shows that our reduction approach performs differently from other approaches that are based on time-scale separation. The method can be used to facilitate fitting of the parameters or to embed a detailed model of interest in a more coarse-grained yet realistic environment.
Collapse
Affiliation(s)
| | | | | | | | - Bayu Jayawardhana
- Systems Biology Center for Energy Metabolism and Ageing, University of Groningen, ERIBA, Antonius Deusinglaan 1 9713 AV Groningen, Netherlands.
| |
Collapse
|
41
|
Kutumova E, Zinovyev A, Sharipov R, Kolpakov F. Model composition through model reduction: a combined model of CD95 and NF-κB signaling pathways. BMC SYSTEMS BIOLOGY 2013; 7:13. [PMID: 23409788 PMCID: PMC3626841 DOI: 10.1186/1752-0509-7-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/05/2013] [Indexed: 12/22/2022]
Abstract
Background Many mathematical models characterizing mechanisms of cell fate decisions have been constructed recently. Their further study may be impossible without development of methods of model composition, which is complicated by the fact that several models describing the same processes could use different reaction chains or incomparable sets of parameters. Detailed models not supported by sufficient volume of experimental data suffer from non-unique choice of parameter values, non-reproducible results, and difficulty of analysis. Thus, it is necessary to reduce existing models to identify key elements determining their dynamics, and it is also required to design the methods allowing us to combine them. Results Here we propose a new approach to model composition, based on reducing several models to the same level of complexity and subsequent combining them together. Firstly, we suggest a set of model reduction tools that can be systematically applied to a given model. Secondly, we suggest a notion of a minimal complexity model. This model is the simplest one that can be obtained from the original model using these tools and still able to approximate experimental data. Thirdly, we propose a strategy for composing the reduced models together. Connection with the detailed model is preserved, which can be advantageous in some applications. A toolbox for model reduction and composition has been implemented as part of the BioUML software and tested on the example of integrating two previously published models of the CD95 (APO-1/Fas) signaling pathways. We show that the reduced models lead to the same dynamical behavior of observable species and the same predictions as in the precursor models. The composite model is able to recapitulate several experimental datasets which were used by the authors of the original models to calibrate them separately, but also has new dynamical properties. Conclusion Model complexity should be comparable to the complexity of the data used to train the model. Systematic application of model reduction methods allows implementing this modeling principle and finding models of minimal complexity compatible with the data. Combining such models is much easier than of precursor models and leads to new model properties and predictions.
Collapse
Affiliation(s)
- Elena Kutumova
- Institute of Systems Biology, Ltd, 15 Detskiy proezd, Novosibirsk 630090, Russia.
| | | | | | | |
Collapse
|