1
|
Jin L, Xu L, Jin H, Zhao S, Jia Y, Li J, Hua J. Accuracy of Genomic Predictions Cross Populations with Different Linkage Disequilibrium Patterns. Genes (Basel) 2024; 15:1419. [PMID: 39596619 PMCID: PMC11594128 DOI: 10.3390/genes15111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES There is a considerable global population of beef cattle, with numerous small-scale groups. Establishing separate reference groups for each breed in breeding practices is challenging, severely limiting the genome selection (GS) application. Combining data from multiple populations becomes particularly attractive and practical for small-scale populations, offering increased reference population size, operational ease, and data sharing. METHODS To evaluate potential for Chinese indigenous cattle, we evaluated the influence of combining multiple populations on genomic prediction reliability for 10 breeds using simulated data. RESULTS Within-breed evaluations consistently yielded the highest accuracies across various simulated genetic architectures. Genomic selection accuracy was lower in Group B populations referencing a Group A population (n = 400), but significantly higher in Group A populations with the addition of a small Group B (n = 200). However, accuracy remained low when using the Group A reference group (n = 400) to predict Group B. Incorporating a few Group B individuals (n = 200) into the reference group resulted in relatively high accuracy (~60% of Group A predictions). Accuracy increased with the growing number of individuals from Group B joining the reference group. CONCLUSIONS Our results suggested that multi-breed genomic selection was feasible for Chinese indigenous cattle populations with genetic relationships. This study's results also offer valuable insights into genome selection of multipopulations.
Collapse
Affiliation(s)
- Lei Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China;
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (L.X.); (H.J.); (S.Z.); (Y.J.)
| | - Lei Xu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (L.X.); (H.J.); (S.Z.); (Y.J.)
| | - Hai Jin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (L.X.); (H.J.); (S.Z.); (Y.J.)
| | - Shuanping Zhao
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (L.X.); (H.J.); (S.Z.); (Y.J.)
| | - Yutang Jia
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (L.X.); (H.J.); (S.Z.); (Y.J.)
| | - Junya Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinling Hua
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China;
| |
Collapse
|
2
|
Guerrero LFN, Rogberg-Muñoz A, Rodríguez N, Herrera LGG. Genomic diversity study of highly crossbred cattle population in a Low and Middle Tropical environment. Trop Anim Health Prod 2024; 56:258. [PMID: 39289187 PMCID: PMC11408572 DOI: 10.1007/s11250-024-04011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/02/2024] [Indexed: 09/19/2024]
Abstract
Milk production in tropical regions plays a crucial role both economically and socially. Typically, animals are utilized for dual purposes and are genetically obtained by an intense crossbreeding between Zebu and/or locally adapted breeds, alongside specialized breeds for dairy production. However, uncontrolled mating and crossbreeding may affect the establishment of an effective animal breeding program. The objective of this study was to evaluate Genomic diversity of highly crossbred cattle population in a Low and Middle Tropical environment. All sampled animals were genotyped using the Genessek GGP Bovine 100 chip (n = 859) and public genomic information from eight breeds were employed as reference. The genetic structure of the population was estimated using a Principal Component, Bayesian clustering and a linkage disequilibrium analysis. PCA results revealed that PC1 explained 44.39% of the variation, associated with the indicus/taurus differentiation, and PC2 explained 14.6% of the variation, attributed to the differentiation of Creole and European components. This analysis underscored a low population structure, attributed to the absence of genealogical tracking and the implementation of non-directed crossbreeding. The clustering shows an average contribution of Zebu, Creole, and European Taurine components in the population was 53.26%, 27.60%, and 19.13%, respectively. While an average LD of 0.096 was obtained for a maximum distance of 400 kb. The LD value was low in this population, probably due to the almost no selection applied and the recombination events that occurred during its development. These findings underscore the value of crossbreeding in tropical dairy production but emphasize the importance of directing the mattings.
Collapse
Affiliation(s)
| | - Andrés Rogberg-Muñoz
- Universidad de Buenos Aires, Facultad de Agronomía. Cátedra de Mejoramiento Genético Animal, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina
| | - Nancy Rodríguez
- Grupo de investigación GIPAB, sede Medellín, Colombia
- Universidad Francisco de Paula Santander, seccional Ocaña, Colombia
| | - Luis Gabriel González Herrera
- Grupo de Investigación en Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia, sede Medellín, Colombia
| |
Collapse
|
3
|
Nisa FU, Kaul H, Asif M, Amin I, Mrode R, Mansoor S, Mukhtar Z. Genetic insights into crossbred dairy cattle of Pakistan: exploring allele frequency, linkage disequilibrium, and effective population size at a genome-wide scale. Mamm Genome 2023; 34:602-614. [PMID: 37804434 DOI: 10.1007/s00335-023-10019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/09/2023]
Abstract
Linkage disequilibrium (LD) affects genomic studies accuracy. High-density genotyping platforms identify SNPs across animal genomes, increasing LD evaluation resolution for accurate analysis. This study aimed to evaluate the decay and magnitude of LD in a cohort of 81 crossbred dairy cattle using the GGP_HDv3_C Bead Chip. After quality control, 116,710 Single Nucleotide Polymorphisms (SNPs) across 2520.241 Mb of autosomes were retained. LD extent was assessed between autosomal SNPs within a 10 Mb range using the r2 statistics. LD value declined as inter-marker distance increased. The average r2 value was 0.24 for SNP pairs < 10 kb apart, decreasing to 0.13 for 50-100 kb distances. Minor allele frequency (MAF) and sample size significantly impact LD. Lower MAF thresholds result in smaller r2 values, while higher thresholds show increased r2 values. Additionally, smaller sample sizes exhibit higher average r2 values, especially for larger physical distance intervals (> 50 kb) between SNP pairs. Effective population size and inbreeding coefficient were 150 and 0.028 for the present generation, indicating a decrease in genetic diversity over time. These findings imply that the utilization of high-density SNP panels and customized/breed-specific SNP panels represent a highly favorable approach for conducting genome-wide association studies (GWAS) and implementing genomic selection (GS) in the Bos indicus cattle breeds, whose genomes are still largely unexplored. Furthermore, it is imperative to devise a meticulous breeding strategy tailored to each herd, aiming to enhance desired traits while simultaneously preserving genetic diversity.
Collapse
Affiliation(s)
- Fakhar Un Nisa
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haiba Kaul
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Raphael Mrode
- Animal Biosciences, International Livestock Research Institute, Nairobi, Kenya
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, UK
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan.
| |
Collapse
|
4
|
Peters SO, Kızılkaya K, Sinecen M, Mestav B, Thiruvenkadan AK, Thomas MG. Genomic Prediction Accuracies for Growth and Carcass Traits in a Brangus Heifer Population. Animals (Basel) 2023; 13:ani13071272. [PMID: 37048528 PMCID: PMC10093372 DOI: 10.3390/ani13071272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
The predictive abilities and accuracies of genomic best linear unbiased prediction (GBLUP) and the Bayesian (BayesA, BayesB, BayesC and Lasso) genomic selection (GS) methods for economically important growth (birth, weaning, and yearling weights) and carcass (depth of rib fat, apercent intramuscular fat and longissimus muscle area) traits were characterized by estimating the linkage disequilibrium (LD) structure in Brangus heifers using single nucleotide polymorphisms (SNP) markers. Sharp declines in LD were observed as distance among SNP markers increased. The application of the GBLUP and the Bayesian methods to obtain the GEBV for growth and carcass traits within k-means and random clusters showed that k-means and random clustering had quite similar heritability estimates, but the Bayesian methods resulted in the lower estimates of heritability between 0.06 and 0.21 for growth and carcass traits compared with those between 0.21 and 0.35 from the GBLUP methodologies. Although the prediction ability of the GBLUP and the Bayesian methods were quite similar for growth and carcass traits, the Bayesian methods overestimated the accuracies of GEBV because of the lower estimates of heritability of growth and carcass traits. However, GBLUP resulted in accuracy of GEBV for growth and carcass traits that parallels previous reports.
Collapse
Affiliation(s)
- Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA 30149, USA
| | - Kadir Kızılkaya
- Department of Animal Science, Faculty of Agriculture, Aydin Adnan Menderes University, Aydin 09100, Turkey
| | - Mahmut Sinecen
- Department of Computer Engineering, Faculty of Engineering, Aydin Adnan Menderes University, Aydin 09100, Turkey
| | - Burcu Mestav
- Department of Statistics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Terzioğlu Campus, Çanakkale 17100, Turkey
| | - Aranganoor K Thiruvenkadan
- Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Salem 637002, Tamil Nadu, India
| | | |
Collapse
|
5
|
Pedigree reconstruction and population structure using SNP markers in Gir cattle. J Appl Genet 2023; 64:329-340. [PMID: 36645582 DOI: 10.1007/s13353-023-00747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/24/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Our objective was to establish a SNPs panel for pedigree reconstruction using microarrays of different densities and evaluate the genomic relationship coefficient of the inferred pedigree, in addition to analyzing the population structure based on genomic analyses in Gir cattle. For parentage analysis and genomic relationship, 16,205 genotyped Gir animals (14,458 females and 1747 males) and 1810 common markers to the four SNP microarrays were used. For population structure analyses, including linkage disequilibrium, effective population size, and runs of homozygosity (ROH), genotypes from 21,656 animals were imputed. Likelihood ratio (LR) approach was used to reconstruct the pedigree, deepening the pedigree and showing it is well established in terms of recent information. Coefficients for each relationship category of the inferred pedigree were adequate. Linkage disequilibrium showed rapid decay. We detected a decrease in the effective population size over the last 50 generations, with the average generation interval around 9.08 years. Higher ROH-based inbreeding coefficient in a class of short ROH segments, with moderate to high values, was also detected, suggesting bottlenecks in the Gir genome. Breeding strategies to minimize inbreeding and avoid massive use of few proven sires with high genetic value are suggested to maintain genetic variability in future generations. In addition, we recommend reducing the generation interval to maximize genetic progress and increase effective population size.
Collapse
|
6
|
Estimation of Linkage Disequilibrium, Effective Population Size, and Genetic Parameters of Phenotypic Traits in Dabieshan Cattle. Genes (Basel) 2022; 14:genes14010107. [PMID: 36672850 PMCID: PMC9859230 DOI: 10.3390/genes14010107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Dabieshan cattle (DBSC) are a valuable genetic resource for indigenous cattle breeds in China. It is a small to medium-sized breed with slower growth, but with good meat quality and fat deposition. Genetic markers could be used for the estimation of population genetic structure and genetic parameters. In this work, we genotyped the DBSC breeding population (n = 235) with the GeneSeek Genomic Profiler (GGP) 100 k density genomic chip. Genotype data of 222 individuals and 81,579 SNPs were retained after quality control. The average minor allele frequency (MAF) was 0.20 and the average linkage disequilibrium (LD) level (r2) was 0.67 at a distance of 0-50 Kb. The estimated relationship coefficient and effective population size (Ne) were 0.023 and 86 for the current generation. In addition, we used genotype data to estimate the genetic parameters of the population's phenotypic traits. Among them, height at hip cross (HHC) and shin circumference (SC) were rather high heritability traits, with heritability of 0.41 and 0.54, respectively. The results reflected the current cattle population's extent of inbreeding and history. Through the principal breeding parameters, genomic breeding would significantly improve the genetic progress of breeding.
Collapse
|
7
|
Marceau A, Gao Y, Baldwin RL, Li CJ, Jiang J, Liu GE, Ma L. Investigation of rumen long noncoding RNA before and after weaning in cattle. BMC Genomics 2022; 23:531. [PMID: 35869425 PMCID: PMC9308236 DOI: 10.1186/s12864-022-08758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed to identify long non-coding RNA (lncRNA) from the rumen tissue in dairy cattle, explore their features including expression and conservation levels, and reveal potential links between lncRNA and complex traits that may indicate important functional impacts of rumen lncRNA during the transition to the weaning period. Results A total of six cattle rumen samples were taken with three replicates from before and after weaning periods, respectively. Total RNAs were extracted and sequenced with lncRNA discovered based on size, coding potential, sequence homology, and known protein domains. As a result, 404 and 234 rumen lncRNAs were identified before and after weaning, respectively. However, only nine of them were shared under two conditions, with 395 lncRNAs found only in pre-weaning tissues and 225 only in post-weaning samples. Interestingly, none of the nine common lncRNAs were differentially expressed between the two weaning conditions. LncRNA averaged shorter length, lower expression, and lower conservation scores than the genome overall, which is consistent with general lncRNA characteristics. By integrating rumen lncRNA before and after weaning with large-scale GWAS results in cattle, we reported significant enrichment of both pre- and after-weaning lncRNA with traits of economic importance including production, reproduction, health, and body conformation phenotypes. Conclusions The majority of rumen lncRNAs are uniquely expressed in one of the two weaning conditions, indicating a functional role of lncRNA in rumen development and transition of weaning. Notably, both pre- and post-weaning lncRNA showed significant enrichment with a variety of complex traits in dairy cattle, suggesting the importance of rumen lncRNA for cattle performance in the adult stage. These relationships should be further investigated to better understand the specific roles lncRNAs are playing in rumen development and cow performance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08758-4.
Collapse
|
8
|
Alvarenga AB, Oliveira HR, Miller SP, Silva FF, Brito LF. Genetic Modeling and Genomic Analyses of Yearling Temperament in American Angus Cattle and Its Relationship With Productive Efficiency and Resilience Traits. Front Genet 2022; 13:794625. [PMID: 35444687 PMCID: PMC9014094 DOI: 10.3389/fgene.2022.794625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cattle temperament has been considered by farmers as a key breeding goal due to its relevance for cattlemen's safety, animal welfare, resilience, and longevity and its association with many economically important traits (e.g., production and meat quality). The definition of proper statistical models, accurate variance component estimates, and knowledge on the genetic background of the indicator trait evaluated are of great importance for accurately predicting the genetic merit of breeding animals. Therefore, 266,029 American Angus cattle with yearling temperament records (1-6 score) were used to evaluate statistical models and estimate variance components; investigate the association of sex and farm management with temperament; assess the weighted correlation of estimated breeding values for temperament and productive, reproductive efficiency and resilience traits; and perform a weighted single-step genome-wide association analysis using 69,559 animals genotyped for 54,609 single-nucleotide polymorphisms. Sex and extrinsic factors were significantly associated with temperament, including conception type, age of dam, birth season, and additional animal-human interactions. Similar results were observed among models including only the direct additive genetic effect and when adding other maternal effects. Estimated heritability of temperament was equal to 0.39 on the liability scale. Favorable genetic correlations were observed between temperament and other relevant traits, including growth, feed efficiency, meat quality, and reproductive traits. The highest approximated genetic correlations were observed between temperament and growth traits (weaning weight, 0.28; yearling weight, 0.28). Altogether, we identified 11 genomic regions, located across nine chromosomes including BTAX, explaining 3.33% of the total additive genetic variance. The candidate genes identified were enriched in pathways related to vision, which could be associated with reception of stimulus and/or cognitive abilities. This study encompasses large and diverse phenotypic, genomic, and pedigree datasets of US Angus cattle. Yearling temperament is a highly heritable and polygenic trait that can be improved through genetic selection. Direct selection for temperament is not expected to result in unfavorable responses on other relevant traits due to the favorable or low genetic correlations observed. In summary, this study contributes to a better understanding of the impact of maternal effects, extrinsic factors, and various genomic regions associated with yearling temperament in North American Angus cattle.
Collapse
Affiliation(s)
- Amanda B Alvarenga
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States.,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Stephen P Miller
- American Angus Association, Angus Genetics Inc., St Joseph, MO, United States
| | - Fabyano F Silva
- Department of Animal Sciences, Federal University of Vicosa, Viçosa, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
9
|
Li J, Wang Y, Mukiibi R, Karisa B, Plastow GS, Li C. Integrative analyses of genomic and metabolomic data reveal genetic mechanisms associated with carcass merit traits in beef cattle. Sci Rep 2022; 12:3389. [PMID: 35232965 PMCID: PMC8888742 DOI: 10.1038/s41598-022-06567-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
Improvement of carcass merit traits is a priority for the beef industry. Discovering DNA variants and genes associated with variation in these traits and understanding biological functions/processes underlying their associations are of paramount importance for more effective genetic improvement of carcass merit traits in beef cattle. This study integrates 10,488,742 imputed whole genome DNA variants, 31 plasma metabolites, and animal phenotypes to identify genes and biological functions/processes that are associated with carcass merit traits including hot carcass weight (HCW), rib eye area (REA), average backfat thickness (AFAT), lean meat yield (LMY), and carcass marbling score (CMAR) in a population of 493 crossbred beef cattle. Regression analyses were performed to identify plasma metabolites associated with the carcass merit traits, and the results showed that 4 (3-hydroxybutyric acid, acetic acid, citric acid, and choline), 6 (creatinine, L-glutamine, succinic acid, pyruvic acid, L-lactic acid, and 3-hydroxybutyric acid), 4 (fumaric acid, methanol, D-glucose, and glycerol), 2 (L-lactic acid and creatinine), and 5 (succinic acid, fumaric acid, lysine, glycine, and choline) plasma metabolites were significantly associated with HCW, REA, AFAT, LMY, and CMAR (P-value < 0.1), respectively. Combining the results of metabolome-genome wide association studies using the 10,488,742 imputed SNPs, 103, 160, 83, 43, and 109 candidate genes were identified as significantly associated with HCW, REA, AFAT, LMY, and CMAR (P-value < 1 × 10-5), respectively. By applying functional enrichment analyses for candidate genes of each trait, 26, 24, 26, 24, and 28 significant cellular and molecular functions were predicted for HCW, REA, AFAT, LMY, and CMAR, respectively. Among the five topmost significantly enriched biological functions for carcass merit traits, molecular transport and small molecule biochemistry were two top biological functions associated with all carcass merit traits. Lipid metabolism was the most significant biological function for LMY and CMAR and it was also the second and fourth highest biological function for REA and HCW, respectively. Candidate genes and enriched biological functions identified by the integrative analyses of metabolites with phenotypic traits and DNA variants could help interpret the results of previous genome-wide association studies for carcass merit traits. Our integrative study also revealed additional potential novel genes associated with these economically important traits. Therefore, our study improves understanding of the molecular and biological functions/processes that influence carcass merit traits, which could help develop strategies to enhance genomic prediction of carcass merit traits with incorporation of metabolomic data. Similarly, this information could guide management practices, such as nutritional interventions, with the purpose of boosting specific carcass merit traits.
Collapse
Affiliation(s)
- Jiyuan Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Yining Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Brian Karisa
- Results Driven Agriculture Research, Edmonton, AB, Canada
| | - Graham S Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| | - Changxi Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada. .,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada.
| |
Collapse
|
10
|
Rodriguez Neira JD, Peripolli E, de Negreiros MPM, Espigolan R, López-Correa R, Aguilar I, Lobo RB, Baldi F. Prediction ability for growth and maternal traits using SNP arrays based on different marker densities in Nellore cattle using the ssGBLUP. J Appl Genet 2022; 63:389-400. [PMID: 35133621 DOI: 10.1007/s13353-022-00685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the prediction ability for growth and maternal traits using different low-density customized SNP arrays selected by informativeness and distribution of markers across the genome employing single-step genomic BLUP (ssGBLUP). Phenotypic records for adjusted weight at 210 and 450 days of age were utilized. A total of 945 animals were genotyped with high-density chip, and 267 individuals born after 2008 were selected as validation population. We evaluated 11 scenarios using five customized density arrays (40 k, 20 k, 10 k, 5 k and 2 k) and the HD array was used as desirable scenario. The GEBV predictions and BIF (Beef Improvement Federation) accuracy were obtained with BLUPF90 family programs. Linear regression was used to evaluate the prediction ability, inflation, and bias of GEBV of each customized array. An overestimation of partial GEBVs in contrast with complete GEBVs and increase of BIF accuracy with the density arrays diminished were observed. For all traits, the prediction ability was higher as the array density increased and it was similar with customized arrays higher than 10 k SNPs. Level of inflation was lower as the density array increased of and was higher for MW210 effect. The bias was susceptible to overestimation of GEBVs when the density customized arrays decreased. These results revealed that the BIF accuracy is sensible to overestimation using low-density customized arrays while the prediction ability with least 10,000 informative SNPs obtained from the Illumina BovineHD BeadChip shows accurate and less biased predictions. Low-density customized arrays under ssGBLUP method could be feasible and cost-effective in genomic selection.
Collapse
Affiliation(s)
- Juan Diego Rodriguez Neira
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, 14884-900, Brazil.
| | - Elisa Peripolli
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, 14884-900, Brazil
| | - Maria Paula Marinho de Negreiros
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (Usp), Pirassununga, 13535-900, Brazil
| | - Rafael Espigolan
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (Usp), Pirassununga, 13535-900, Brazil
| | - Rodrigo López-Correa
- Departamento de Genética y Mejoramiento Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Ignacio Aguilar
- Instituto Nacional de Investigación Agropecuaria (INIA), Montevideo, Uruguay
| | - Raysildo B Lobo
- Associação Nacional de Criadores e Pesquisadores (ANCP), Ribeirão Preto, Brazil
| | - Fernando Baldi
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, 14884-900, Brazil
| |
Collapse
|
11
|
Rahimmadar S, Ghaffari M, Mokhber M, Williams JL. Linkage Disequilibrium and Effective Population Size of Buffalo Populations of Iran, Turkey, Pakistan, and Egypt Using a Medium Density SNP Array. Front Genet 2021; 12:608186. [PMID: 34950186 PMCID: PMC8689148 DOI: 10.3389/fgene.2021.608186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
Linkage disequilibrium (LD) across the genome provides information to identify the genes and variations related to quantitative traits in genome-wide association studies (GWAS) and for the implementation of genomic selection (GS). LD can also be used to evaluate genetic diversity and population structure and reveal genomic regions affected by selection. LD structure and Ne were assessed in a set of 83 water buffaloes, comprising Azeri (AZI), Khuzestani (KHU), and Mazandarani (MAZ) breeds from Iran, Kundi (KUN) and Nili-Ravi (NIL) from Pakistan, Anatolian (ANA) buffalo from Turkey, and buffalo from Egypt (EGY). The values of corrected r2 (defined as the correlation between two loci) of adjacent SNPs for three pooled Iranian breeds (IRI), ANA, EGY, and two pooled Pakistani breeds (PAK) populations were 0.24, 0.28, 0.27, and 0.22, respectively. The corrected r2 between SNPs decreased with increasing physical distance from 100 Kb to 1 Mb. The LD values for IRI, ANA, EGY, and PAK populations were 0.16, 0.23, 0.24, and 0.21 for less than 100Kb, respectively, which reduced rapidly to 0.018, 0.042, 0.059, and 0.024, for a distance of 1 Mb. In all the populations, the decay rate was low for distances greater than 2Mb, up to the longest studied distance (15 Mb). The r2 values for adjacent SNPs in unrelated samples indicated that the Affymetrix Axiom 90 K SNP genomic array was suitable for GWAS and GS in these populations. The persistency of LD phase (PLDP) between populations was assessed, and results showed that PLPD values between the populations were more than 0.9 for distances of less than 100 Kb. The Ne in the recent generations has declined to the extent that breeding plans are urgently required to ensure that these buffalo populations are not at risk of being lost. We found that results are affected by sample size, which could be partially corrected for; however, additional data should be obtained to be confident of the results.
Collapse
Affiliation(s)
- Shirin Rahimmadar
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, Urmia, Iran
| | - Mokhtar Ghaffari
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, Urmia, Iran
| | - Mahdi Mokhber
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, Urmia, Iran
| | - John L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia.,Department of Animal Science, Food and Nutrition, Università Cattolica Del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
12
|
Ma J, Gao X, Li J, Gao H, Wang Z, Zhang L, Xu L, Gao H, Li H, Wang Y, Zhu B, Cai W, Wang C, Chen Y. Assessing the Genetic Background and Selection Signatures of Huaxi Cattle Using High-Density SNP Array. Animals (Basel) 2021; 11:ani11123469. [PMID: 34944246 PMCID: PMC8698132 DOI: 10.3390/ani11123469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Huaxi cattle, a specialized beef cattle breed in China, has the characteristics of fast growth, high slaughter rate, and net meat rate, good reproductive performance, strong stress resistance, and wide adaptability. In this study, we evaluated the genetic diversity, population structure, and genetic relationships of Huaxi cattle and its ancestor populations at the genome-wide level, as well as detecting the selection signatures of Huaxi cattle. Principal component analysis (PCA) and phylogenetic analysis revealed that Huaxi cattle were obviously separated from other cattle populations. The admixture analysis showed that Huaxi cattle has distinct genetic structures among all populations at K = 4. It can be concluded that Huaxi cattle has formed its own unique genetic features. Using integrated haplotype score (iHS) and composite likelihood ratio (CLR) methods, we identified 143 and 199 potentially selected genes in Huaxi cattle, respectively, among which nine selected genes (KCNK1, PDLIM5, CPXM2, CAPN14, MIR2285D, MYOF, PKDCC, FOXN3, and EHD3) related to ion binding, muscle growth and differentiation, and immunity were detected by both methods. Our study sheds light on the unique genetic feature and phylogenetic relationship of Huaxi cattle, provides a basis for the genetic mechanism analysis of important economic traits, and guides further intensive breeding improvement of Huaxi cattle.
Collapse
Affiliation(s)
- Jun Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Zezhao Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Han Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Hongwei Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Yahui Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Bo Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Congyong Wang
- Beijing Lianyu Beef Cattle Breeding Technology Limited Company, Beijing 100193, China;
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
- Correspondence:
| |
Collapse
|
13
|
Atashi H, Wilmot H, Gengler N. The pattern of linkage disequilibrium in Dual-Purpose Belgian Blue cattle. J Anim Breed Genet 2021; 139:320-329. [PMID: 34859921 DOI: 10.1111/jbg.12662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 11/27/2022]
Abstract
Quantifying the level of linkage disequilibrium (LD), non-random association of alleles at two or more loci, is important to determine the number of markers needed for genomic selection. The aims of this study were to evaluate the extent of LD in Dual-Purpose Belgian Blue (DPBB) and to compare the level of LD in DPBB with that of Walloon Holstein. Data of 28,427 single nucleotide polymorphisms (SNP), located on 29 Bos taurus autosomes (BTA), of 639 DPBB and 398 Holstein bulls were used. The level of LD between pairwise SNPs separated by up to 10 Mb was evaluated, separately for each breed, using the squared correlation of the alleles at two loci. The analysis of molecular variance showed that the percentage of variation within populations (85.48%) was higher than between populations (14.52%). However, permutation tests showed a significant genetic differentiation between the two studied populations (p < .01). The average LD found between adjacent SNP pairs in DPBB (0.16 (SD = 0.22)) was generally lower than in Holstein (0.23 (SD = 0.27)). The proportion of SNPs in useful LD (r2 > 0.30) within a genomic distance of ≤0.10 Mb between SNPs was 18.58% and 28.23% in DPBB and Holstein bulls, respectively. In both breeds, the effective population size decreased over generations; however, the decline was greater in DPBB than that in Holstein. Based on results, it can be concluded that at least 68,000 SNPs are needed for implementing genomic selection in DPBB cattle with enough accuracy.
Collapse
Affiliation(s)
- Hadi Atashi
- TERRA Research and Training Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.,Department of Animal Science, Shiraz University, Shiraz, Iran
| | - Hélène Wilmot
- TERRA Research and Training Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.,National Fund for Scientific Research (F.R.S.-FNRS), Brussels, Belgium
| | - Nicolas Gengler
- TERRA Research and Training Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
14
|
Li J, Mukiibi R, Wang Y, Plastow GS, Li C. Identification of candidate genes and enriched biological functions for feed efficiency traits by integrating plasma metabolites and imputed whole genome sequence variants in beef cattle. BMC Genomics 2021; 22:823. [PMID: 34781903 PMCID: PMC8591823 DOI: 10.1186/s12864-021-08064-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Feed efficiency is one of the key determinants of beef industry profitability and sustainability. However, the cellular and molecular background behind feed efficiency is largely unknown. This study combines imputed whole genome DNA variants and 31 plasma metabolites to dissect genes and biological functions/processes that are associated with residual feed intake (RFI) and its component traits including daily dry matter intake (DMI), average daily gain (ADG), and metabolic body weight (MWT) in beef cattle. RESULTS Regression analyses between feed efficiency traits and plasma metabolites in a population of 493 crossbred beef cattle identified 5 (L-valine, lysine, L-tyrosine, L-isoleucine, and L-leucine), 4 (lysine, L-lactic acid, L-tyrosine, and choline), 1 (citric acid), and 4 (L-glutamine, glycine, citric acid, and dimethyl sulfone) plasma metabolites associated with RFI, DMI, ADG, and MWT (P-value < 0.1), respectively. Combining the results of metabolome-genome wide association studies using 10,488,742 imputed SNPs, 40, 66, 15, and 40 unique candidate genes were identified as associated with RFI, DMI, ADG, and MWT (P-value < 1 × 10-5), respectively. These candidate genes were found to be involved in some key metabolic processes including metabolism of lipids, molecular transportation, cellular function and maintenance, cell morphology and biochemistry of small molecules. CONCLUSIONS This study identified metabolites, candidate genes and enriched biological functions/processes associated with RFI and its component traits through the integrative analyses of metabolites with phenotypic traits and DNA variants. Our findings could enhance the understanding of biochemical mechanisms of feed efficiency traits and could lead to improvement of genomic prediction accuracy via incorporating metabolite data.
Collapse
Affiliation(s)
- Jiyuan Li
- Department of Agriculture, Food & Nutritional Science, University of Alberta, T6G 2P5, Edmonton, Alberta, Canada
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Yining Wang
- Department of Agriculture, Food & Nutritional Science, University of Alberta, T6G 2P5, Edmonton, Alberta, Canada
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Alberta, T4L 1W1, Lacombe, Canada
| | - Graham S Plastow
- Department of Agriculture, Food & Nutritional Science, University of Alberta, T6G 2P5, Edmonton, Alberta, Canada.
| | - Changxi Li
- Department of Agriculture, Food & Nutritional Science, University of Alberta, T6G 2P5, Edmonton, Alberta, Canada.
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Alberta, T4L 1W1, Lacombe, Canada.
| |
Collapse
|
15
|
Estimation of linkage disequilibrium levels and allele frequency distribution in crossbred Vrindavani cattle using 50K SNP data. PLoS One 2021; 16:e0259572. [PMID: 34762692 PMCID: PMC8584695 DOI: 10.1371/journal.pone.0259572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to calculate the extent and decay of linkage disequilibrium (LD) in 96 crossbred Vrindavani cattle genotyped with Bovine SNP50K Bead Chip. After filtering, 43,821 SNPs were retained for final analysis, across 2500.3 Mb of autosome. A significant percentage of SNPs was having minor allele frequency of less than 0.20. The extent of LD between autosomal SNPs up to 10 Mb apart across the genome was measured using r2 statistic. The mean r2 value was 0.43, if pairwise distance of marker was less than10 kb and it decreased further to 0.21 for 25–50 kb markers distance. Further, the effect of minor allele frequency and sample size on LD estimate was investigated. The LD value decreased with the increase in inter-marker distance, and increased with the increase of minor allelic frequency. The estimated inbreeding coefficient and effective population size were 0.04, and 46 for present generation, which indicated small and unstable population of Vrindavani cattle. These findings suggested that a denser or breed specific SNP panel would be required to cover all genome of Vrindavani cattle for genome wide association studies (GWAS).
Collapse
|
16
|
Exploring the size of reference population for expected accuracy of genomic prediction using simulated and real data in Japanese Black cattle. BMC Genomics 2021; 22:799. [PMID: 34742249 PMCID: PMC8572443 DOI: 10.1186/s12864-021-08121-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Background Size of reference population is a crucial factor affecting the accuracy of prediction of the genomic estimated breeding value (GEBV). There are few studies in beef cattle that have compared accuracies achieved using real data to that achieved with simulated data and deterministic predictions. Thus, extent to which traits of interest affect accuracy of genomic prediction in Japanese Black cattle remains obscure. This study aimed to explore the size of reference population for expected accuracy of genomic prediction for simulated and carcass traits in Japanese Black cattle using a large amount of samples. Results A simulation analysis showed that heritability and size of reference population substantially impacted the accuracy of GEBV, whereas the number of quantitative trait loci did not. The estimated numbers of independent chromosome segments (Me) and the related weighting factor (w) derived from simulation results and a maximum likelihood (ML) approach were 1900–3900 and 1, respectively. The expected accuracy for trait with heritability of 0.1–0.5 fitted well with empirical values when the reference population comprised > 5000 animals. The heritability for carcass traits was estimated to be 0.29–0.41 and the accuracy of GEBVs was relatively consistent with simulation results. When the reference population comprised 7000–11,000 animals, the accuracy of GEBV for carcass traits can range 0.73–0.79, which is comparable to estimated breeding value obtained in the progeny test. Conclusion Our simulation analysis demonstrated that the expected accuracy of GEBV for a polygenic trait with low-to-moderate heritability could be practical in Japanese Black cattle population. For carcass traits, a total of 7000–11,000 animals can be a sufficient size of reference population for genomic prediction. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08121-z.
Collapse
|
17
|
Verardo LL, E Silva FF, Machado MA, do Carmo Panetto JC, de Lima Reis Faza DR, Otto PI, de Almeida Regitano LC, da Silva LOC, do Egito AA, do Socorro Maués Albuquerque M, Zanella R, da Silva MVGB. Genome-Wide Analyses Reveal the Genetic Architecture and Candidate Genes of Indicine, Taurine, Synthetic Crossbreds, and Locally Adapted Cattle in Brazil. Front Genet 2021; 12:702822. [PMID: 34386042 PMCID: PMC8353373 DOI: 10.3389/fgene.2021.702822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
Cattle population history, breeding systems, and geographic subdivision may be reflected in runs of homozygosity (ROH), effective population size (Ne), and linkage disequilibrium (LD) patterns. Thus, the assessment of this information has become essential to the implementation of genomic selection on purebred and crossbred cattle breeding programs. In this way, we assessed the genotype of 19 cattle breeds raised in Brazil belonging to taurine, indicine, synthetic crossbreds, and Iberian-derived locally adapted ancestries to evaluate the overall LD decay patterns, Ne, ROH, and breed composition. We were able to obtain a general overview of the genomic architecture of cattle breeds currently raised in Brazil and other tropical countries. We found that, among the evaluated breeds, different marker densities should be used to improve the genomic prediction accuracy and power of genome-wide association studies. Breeds showing low Ne values indicate a recent inbreeding, also reflected by the occurrence of longer ROH, which demand special attention in the matting schemes to avoid extensive inbreeding. Candidate genes (e.g., ABCA7, PENK, SPP1, IFNAR1, IFNAR2, SPEF2, PRLR, LRRTM1, and LRRTM4) located in the identified ROH islands were evaluated, highlighting biological processes involved with milk production, behavior, rusticity, and fertility. Furthermore, we were successful in obtaining the breed composition regarding the taurine and indicine composition using single-nucleotide polymorphism (SNP) data. Our results were able to observe in detail the genomic backgrounds that are present in each breed and allowed to better understand the various contributions of ancestor breeds to the modern breed composition to the Brazilian cattle.
Collapse
Affiliation(s)
- Lucas Lima Verardo
- Animal Breeding Lab, Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | | | | | | | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | | | | | - Ricardo Zanella
- Department of Veterinary Medicine, Universidade de Passo Fundo, Passo Fundo, Brazil
| | | |
Collapse
|
18
|
Short communication: Genome wide association study for gastrointestinal nematodes resistance in Bos taurus x Bos indicus crossbred cattle. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
McEwin RA, Hebart ML, Oakey H, Pitchford WS. Within-breed selection is sufficient to improve terminal crossbred beef marbling: a review of reciprocal recurrent genomic selection. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reciprocal recurrent selection is the selection of purebreds for crossbred performance and takes advantage of additive and non-additive variance by using pedigreed progeny performance records. Developed in maize, the adoption of this approach in livestock breeding has been limited to the pork and poultry industries; genomic selection may facilitate its extension into the beef industry by replacing pedigree. The literature regarding the relative importance of additive versus non-additive variance and reciprocal recurrent genomic selection models was reviewed. The potential for using reciprocal recurrent genomic selection in a terminal Wagyu × Angus cross scenario was examined. Non-additive variance is more important for fitness traits and accounts for a small proportion of variance related to production traits such as marbling. In general, reciprocal recurrent selection was not significantly better at improving performance of crossbreds than was traditional selection within parental breeds using only additive variance in the studies examined. Simulation studies showed benefits of including dominance or breed-specific allele effects in prediction models but advantages were small as more realistic simulations were examined. On the basis of the evidence, it is likely that in a terminal two-way cross-beef scenario utilising Wagyu sires and Angus dams, where selection emphasis is on marbling, selection of purebreds on the basis of additive variance will allow substantial progress to be realised.
Collapse
|
20
|
Rodríguez-Valera Y, Rocha D, Naves M, Renand G, Pérez-Pineda E, Ramayo-Caldas Y, Ramos-Onsins SE. The Identification of Runs of Homozygosity Gives a Focus on the Genetic Diversity and Adaptation of the "Charolais de Cuba" Cattle. Animals (Basel) 2020; 10:ani10122233. [PMID: 33261195 PMCID: PMC7760288 DOI: 10.3390/ani10122233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The Charolais de Cuba cattle is a tropical adapted breed founded in Cuba around 120 years ago from Charolais French specimens. Nowadays, it is still a closed breed and remains as a small population. In this work, we analyzed the inbreeding and diversity patterns, as well as the population size, of this recent adapted breed via a run of homozygosity (ROH) analysis. We found that the genomic inbreeding levels are higher in the Charolais de Cuba breed compared to French and British Charolais populations. Nevertheless, we detected that the effective population size experienced a very similar decline during the last century in the three Charolais populations studied. Finally, a number of regions with exceptional patterns of long homozygosity were identified in this breed, and these could be related to processes of adaptation to tropical conditions. Abstract Inbreeding and effective population size (Ne) are fundamental indicators for the management and conservation of genetic diversity in populations. Genomic inbreeding gives accurate estimates of inbreeding, and the Ne determines the rate of the loss of genetic variation. The objective of this work was to study the distribution of runs of homozygosity (ROHs) in order to estimate genomic inbreeding (FROH) and an effective population size using 38,789 Single Nucleotide Polymorphisms (SNPs) from the Illumina Bovine 50K BeadChip in 86 samples from populations of Charolais de Cuba (n = 40) cattle and to compare this information with French (n = 20) and British Charolais (n = 26) populations. In the Cuban, French, and British Charolais populations, the average estimated genomic inbreeding values using the FROH statistics were 5.7%, 3.4%, and 4%, respectively. The dispersion measured by variation coefficient was high at 43.9%, 37.0%, and 54.2%, respectively. The effective population size experienced a very similar decline during the last century in Charolais de Cuba (from 139 to 23 individuals), in French Charolais (from 142 to 12), and in British Charolais (from 145 to 14) for the ~20 last generations. However, the high variability found in the ROH indicators and FROH reveals an opportunity for maintaining the genetic diversity of this breed with an adequate mating strategy, which can be favored with the use of molecular markers. Moreover, the detected ROH were compared to previous results obtained on the detection of signatures of selection in the same breed. Some of the observed signatures were confirmed by the ROHs, emphasizing the process of adaptation to tropical climate experienced by the Charolais de Cuba population.
Collapse
Affiliation(s)
- Yoel Rodríguez-Valera
- Faculty of Agricultural Sciences, University of Granma, Bayamo 95100, Cuba; (Y.R.-V.); (E.P.-P.)
| | - Dominique Rocha
- GABI, INRAE, AgroParisTech, University Paris-Saclay, F-78350 Jouy-en-Josas, France; (D.R.); (G.R.)
| | - Michel Naves
- INRAE, URZ, 97170 Petit Bourg, Guadeloupe, France;
| | - Gilles Renand
- GABI, INRAE, AgroParisTech, University Paris-Saclay, F-78350 Jouy-en-Josas, France; (D.R.); (G.R.)
| | - Eliecer Pérez-Pineda
- Faculty of Agricultural Sciences, University of Granma, Bayamo 95100, Cuba; (Y.R.-V.); (E.P.-P.)
| | - Yuliaxis Ramayo-Caldas
- GABI, INRAE, AgroParisTech, University Paris-Saclay, F-78350 Jouy-en-Josas, France; (D.R.); (G.R.)
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
- Correspondence: (Y.R.-C.); (S.E.R.-O.)
| | - Sebastian E. Ramos-Onsins
- Plant and Animal Genomics, Centre of Research in Agricultural Genomics (CRAG) Consortium CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
- Correspondence: (Y.R.-C.); (S.E.R.-O.)
| |
Collapse
|
21
|
Li J, Akanno EC, Valente TS, Abo-Ismail M, Karisa BK, Wang Z, Plastow GS. Genomic Heritability and Genome-Wide Association Studies of Plasma Metabolites in Crossbred Beef Cattle. Front Genet 2020; 11:538600. [PMID: 33193612 PMCID: PMC7542097 DOI: 10.3389/fgene.2020.538600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022] Open
Abstract
Metabolites, substrates or products of metabolic processes, are involved in many biological functions, such as energy metabolism, signaling, stimulatory and inhibitory effects on enzymes and immunological defense. Metabolomic phenotypes are influenced by combination of genetic and environmental effects allowing for metabolome-genome-wide association studies (mGWAS) as a powerful tool to investigate the relationship between these phenotypes and genetic variants. The objectives of this study were to estimate genomic heritability and perform mGWAS and in silico functional enrichment analyses for a set of plasma metabolites in Canadian crossbred beef cattle. Thirty-three plasma metabolites and 45,266 single nucleotide polymorphisms (SNPs) were available for 475 animals. Genomic heritability for all metabolites was estimated using genomic best linear unbiased prediction (GBLUP) including genomic breed composition as covariates in the model. A single-step GBLUP implemented in BLUPF90 programs was used to determine SNP P values and the proportion of genetic variance explained by SNP windows containing 10 consecutive SNPs. The top 10 SNP windows that explained the largest genetic variation for each metabolite were identified and mapped to detect corresponding candidate genes. Functional enrichment analyses were performed on metabolites and their candidate genes using the Ingenuity Pathway Analysis software. Eleven metabolites showed low to moderate heritability that ranged from 0.09 ± 0.15 to 0.36 ± 0.15, while heritability estimates for 22 metabolites were zero or negligible. This result indicates that while variations in 11 metabolites were due to genetic variants, the majority are largely influenced by environment. Three significant SNP associations were detected for betaine (rs109862186), L-alanine (rs81117935), and L-lactic acid (rs42009425) based on Bonferroni correction for multiple testing (family wise error rate <0.05). The SNP rs81117935 was found to be located within the Catenin Alpha 2 gene (CTNNA2) showing a possible association with the regulation of L-alanine concentration. Other candidate genes were identified based on additive genetic variance explained by SNP windows of 10 consecutive SNPs. The observed heritability estimates and the candidate genes and networks identified in this study will serve as baseline information for research into the utilization of plasma metabolites for genetic improvement of crossbred beef cattle.
Collapse
Affiliation(s)
- Jiyuan Li
- Livestock Gentec, Department of Agriculture, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Everestus C Akanno
- Livestock Gentec, Department of Agriculture, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tiago S Valente
- Livestock Gentec, Department of Agriculture, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Animal Science, Ethology and Animal Ecology Research Group, São Paulo State University, Jaboticabal, Brazil
| | - Mohammed Abo-Ismail
- Livestock Gentec, Department of Agriculture, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Animal Science, College of Agriculture, Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Brian K Karisa
- Ministry of Agriculture and Forestry, Edmonton, AB, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agriculture, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Graham S Plastow
- Livestock Gentec, Department of Agriculture, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Sudrajad P, Subiharta S, Adinata Y, Lathifah A, Lee JH, Lenstra JA, Lee SH. An insight into the evolutionary history of Indonesian cattle assessed by whole genome data analysis. PLoS One 2020; 15:e0241038. [PMID: 33170846 PMCID: PMC7654832 DOI: 10.1371/journal.pone.0241038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/07/2020] [Indexed: 12/01/2022] Open
Abstract
The domestication of Indonesian cattle was investigated through a study of their genetic diversity, up to the genome level. Little documentation exists regarding the history of domestication of Indonesian cattle and questions remain despite a growing body of molecular evidence. In this study, we genotyped seven Indonesian cattle breeds using an Illumina BovineSNP50 Bead Chip to provide insight into their domestication and demographic history in a worldwide population context. Our analyses indicated the presence of hybrid cattle, with Bos javanicus and Bos indicus ancestries being most prevalent, as well as purebred cattle. We revealed that all the breeds were interconnected through several migration events. However, their demographic status varied widely. Although almost all the Indonesian cattle had an effective population size higher than the minimum level required to ensure breed fitness, efforts are still needed to maintain their genetic variability and purity.
Collapse
Affiliation(s)
- Pita Sudrajad
- Assessment Institute for Agricultural Technology–Central Java, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Kabupaten Semarang, Indonesia
- * E-mail:
| | - Subiharta Subiharta
- Assessment Institute for Agricultural Technology–Central Java, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Kabupaten Semarang, Indonesia
| | - Yudi Adinata
- Beef Cattle Research Station, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Kabupaten Semarang, Indonesia
| | | | - Jun Heon Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | | | - Seung Hwan Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
23
|
Alves AAC, da Costa RM, Bresolin T, Fernandes Júnior GA, Espigolan R, Ribeiro AMF, Carvalheiro R, de Albuquerque LG. Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods. J Anim Sci 2020; 98:5849339. [PMID: 32474602 DOI: 10.1093/jas/skaa179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/22/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to compare the predictive performance of the Genomic Best Linear Unbiased Predictor (GBLUP) and machine learning methods (Random Forest, RF; Support Vector Machine, SVM; Artificial Neural Network, ANN) in simulated populations presenting different levels of dominance effects. Simulated genome comprised 50k SNP and 300 QTL, both biallelic and randomly distributed across 29 autosomes. A total of six traits were simulated considering different values for the narrow and broad-sense heritability. In the purely additive scenario with low heritability (h2 = 0.10), the predictive ability obtained using GBLUP was slightly higher than the other methods whereas ANN provided the highest accuracies for scenarios with moderate heritability (h2 = 0.30). The accuracies of dominance deviations predictions varied from 0.180 to 0.350 in GBLUP extended for dominance effects (GBLUP-D), from 0.06 to 0.185 in RF and they were null using the ANN and SVM methods. Although RF has presented higher accuracies for total genetic effect predictions, the mean-squared error values in such a model were worse than those observed for GBLUP-D in scenarios with large additive and dominance variances. When applied to prescreen important regions, the RF approach detected QTL with high additive and/or dominance effects. Among machine learning methods, only the RF was capable to cover implicitly dominance effects without increasing the number of covariates in the model, resulting in higher accuracies for the total genetic and phenotypic values as the dominance ratio increases. Nevertheless, whether the interest is to infer directly on dominance effects, GBLUP-D could be a more suitable method.
Collapse
Affiliation(s)
- Anderson Antonio Carvalho Alves
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Rebeka Magalhães da Costa
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Tiago Bresolin
- Department of Animal Sciences, University of Wisconsin, Madison, WI
| | - Gerardo Alves Fernandes Júnior
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Rafael Espigolan
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP, Brazil
| | | | - Roberto Carvalheiro
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University (UNESP), Jaboticabal, SP, Brazil.,National Council of Technological and Scientific Development (CNPq), Brasilia, Brazil
| | - Lucia Galvão de Albuquerque
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University (UNESP), Jaboticabal, SP, Brazil.,National Council of Technological and Scientific Development (CNPq), Brasilia, Brazil
| |
Collapse
|
24
|
Genetic effects of MOGAT1 gene SNP in growth traits of Chinese cattle. Gene 2020; 769:145201. [PMID: 33035617 DOI: 10.1016/j.gene.2020.145201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022]
Abstract
Single nucleotide polymorphism (SNP) has recently become one of the ideal genetic markers. SNP refers to the DNA sequence polymorphism caused by double nucleotide variation in the genome, including the conversion or transversion of segmented bases. The synthesis and metabolism of triglycerides are related to the changes of energy in the body of livestock, which in turn affects their growth and development. Studies have shown that MOGAT1 gene plays a role in the route of triglyceride synthesis. PCR-RFLP and agarose gel electrophoresis technology were used to type the SNP site of MOGAT1 gene at g.25940T > C in this study. Association analysis between typing results and growth trait data was detected by SPSS 20.0 software. Results show that MOGAT1 gene was in a low level of heterozygosity in Xianan, Qinchuan and Pinan cattle population (0 < PIC < 0.25), and in middle level of heterozygosity in YL cattle population(0.25 < PIC < 0.5). And genotype 'AA' was dominant gene in Chinese cattle population. In QC and XN cattle, genotype of GG possess advantage on Body weight (P < 0.05); in YL cattle, individuals with genotype of homozygous mutation decreased significantly on Chest depth (P < 0.05). The purpose of this research is to provide theoretical materials for molecular breeding of yellow cattle and to promote the process of improving the growth traits of Chinese local yellow cattle.
Collapse
|
25
|
Fabbri MC, Dadousis C, Bozzi R. Estimation of Linkage Disequilibrium and Effective Population Size in Three Italian Autochthonous Beef Breeds. Animals (Basel) 2020; 10:ani10061034. [PMID: 32545850 PMCID: PMC7341513 DOI: 10.3390/ani10061034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
The objective was to investigate the pattern of linkage disequilibrium (LD) in three local beef breeds, namely, Calvana (n = 174), Mucca Pisana (n = 270), and Pontremolese (n = 44). As a control group, samples of the Italian Limousin breed (n = 100) were used. All cattle were genotyped with the GeneSeek GGP-LDv4 33k SNP chip containing 30,111 SNPs. The genotype quality control for each breed was conducted separately, and SNPs with call rate < 0.95 and minor allele frequency (MAF) > 1% were used for the analysis. LD extent was estimated in PLINK v1.9 using the squared correlation between pairs of loci (r2) across autosomes. Moreover, r2 values were used to calculate historical and contemporary effective population size (Ne) in each breed. Average r2 was similar in Calvana and Mucca Pisana (~0.14) and higher in Pontremolese (0.17); Limousin presented the lowest LD extent (0.07). LD up to 0.11-0.15 was persistent in the local breeds up to 0.75 Mbp, while in Limousin, it showed a more rapid decay. Variation of different LD levels across autosomes was observed in all the breeds. The results demonstrated a rapid decrease in Ne across generations for local breeds, and the contemporary population size observed in the local breeds, ranging from 41.7 in Calvana to 17 in Pontremolese, underlined the demographic alarming situation.
Collapse
|
26
|
Cardoso DF, Fernandes Júnior GA, Scalez DCB, Alves AAC, Magalhães AFB, Bresolin T, Ventura RV, Li C, de Sena Oliveira MC, Porto-Neto LR, Carvalheiro R, de Oliveira HN, Tonhati H, Albuquerque LG. Uncovering Sub-Structure and Genomic Profiles in Across-Countries Subpopulations of Angus Cattle. Sci Rep 2020; 10:8770. [PMID: 32471998 PMCID: PMC7260210 DOI: 10.1038/s41598-020-65565-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/04/2020] [Indexed: 11/09/2022] Open
Abstract
Highlighting genomic profiles for geographically distinct subpopulations of the same breed may provide insights into adaptation mechanisms to different environments, reveal genomic regions divergently selected, and offer initial guidance to joint genomic analysis. Here, we characterized similarities and differences between the genomic patterns of Angus subpopulations, born and raised in Canada (N = 382) and Brazil (N = 566). Furthermore, we systematically scanned for selection signatures based on the detection of autozygosity islands common between the two subpopulations, and signals of divergent selection, via FST and varLD tests. The principal component analysis revealed a sub-structure with a close connection between the two subpopulations. The averages of genomic relationships, inbreeding coefficients, and linkage disequilibrium at varying genomic distances were rather similar across them, suggesting non-accentuated differences in overall genomic diversity. Autozygosity islands revealed selection signatures common to both subpopulations at chromosomes 13 (63.77-65.25 Mb) and 14 (22.81-23.57 Mb), which are notably known regions affecting growth traits. Nevertheless, further autozygosity islands along with FST and varLD tests unravel particular sites with accentuated population subdivision at BTAs 7 and 18 overlapping with known QTL and candidate genes of reproductive performance, thermoregulation, and resistance to infectious diseases. Our findings indicate overall genomic similarity between Angus subpopulations, with noticeable signals of divergent selection in genomic regions associated with the adaptation in different environments.
Collapse
Affiliation(s)
- Diercles Francisco Cardoso
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil.
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
| | - Gerardo Alves Fernandes Júnior
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Daiane Cristina Becker Scalez
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Anderson Antonio Carvalho Alves
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Ana Fabrícia Braga Magalhães
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Tiago Bresolin
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Ricardo Vieira Ventura
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Pirassununga, SP, Brazil
| | - Changxi Li
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, AB, Canada
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | | | | | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- National Council for Science and Technological Development, Brasília, Distrito Federal, Brazil
| | - Henrique Nunes de Oliveira
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- National Council for Science and Technological Development, Brasília, Distrito Federal, Brazil
| | - Humberto Tonhati
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- National Council for Science and Technological Development, Brasília, Distrito Federal, Brazil
| | - Lucia Galvão Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP, Brazil.
- National Council for Science and Technological Development, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
27
|
Getachew T, Haile A, Mészáros G, Rischkowsky B, Huson H, Gizaw S, Wurzinger M, Mwai A, Sölkner J. Genetic diversity, population structure and runs of homozygosity in Ethiopian short fat-tailed and Awassi sheep breeds using genome-wide 50k SNP markers. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Zhang F, Wang Y, Mukiibi R, Chen L, Vinsky M, Plastow G, Basarab J, Stothard P, Li C. Genetic architecture of quantitative traits in beef cattle revealed by genome wide association studies of imputed whole genome sequence variants: I: feed efficiency and component traits. BMC Genomics 2020; 21:36. [PMID: 31931702 PMCID: PMC6956504 DOI: 10.1186/s12864-019-6362-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Genome wide association studies (GWAS) on residual feed intake (RFI) and its component traits including daily dry matter intake (DMI), average daily gain (ADG), and metabolic body weight (MWT) were conducted in a population of 7573 animals from multiple beef cattle breeds based on 7,853,211 imputed whole genome sequence variants. The GWAS results were used to elucidate genetic architectures of the feed efficiency related traits in beef cattle. RESULTS The DNA variant allele substitution effects approximated a bell-shaped distribution for all the traits while the distribution of additive genetic variances explained by single DNA variants followed a scaled inverse chi-squared distribution to a greater extent. With a threshold of P-value < 1.00E-05, 16, 72, 88, and 116 lead DNA variants on multiple chromosomes were significantly associated with RFI, DMI, ADG, and MWT, respectively. In addition, lead DNA variants with potentially large pleiotropic effects on DMI, ADG, and MWT were found on chromosomes 6, 14 and 20. On average, missense, 3'UTR, 5'UTR, and other regulatory region variants exhibited larger allele substitution effects in comparison to other functional classes. Intergenic and intron variants captured smaller proportions of additive genetic variance per DNA variant. Instead 3'UTR and synonymous variants explained a greater amount of genetic variance per DNA variant for all the traits examined while missense, 5'UTR and other regulatory region variants accounted for relatively more additive genetic variance per sequence variant for RFI and ADG, respectively. In total, 25 to 27 enriched cellular and molecular functions were identified with lipid metabolism and carbohydrate metabolism being the most significant for the feed efficiency traits. CONCLUSIONS RFI is controlled by many DNA variants with relatively small effects whereas DMI, ADG, and MWT are influenced by a few DNA variants with large effects and many DNA variants with small effects. Nucleotide polymorphisms in regulatory region and synonymous functional classes play a more important role per sequence variant in determining variation of the feed efficiency traits. The genetic architecture as revealed by the GWAS of the imputed 7,853,211 DNA variants will improve our understanding on the genetic control of feed efficiency traits in beef cattle.
Collapse
Affiliation(s)
- Feng Zhang
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Present Address: Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yining Wang
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Robert Mukiibi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Liuhong Chen
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Michael Vinsky
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - John Basarab
- Alberta Agriculture and Forestry, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, AB, Canada
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Changxi Li
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada. .,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
29
|
Wang Y, Zhang F, Mukiibi R, Chen L, Vinsky M, Plastow G, Basarab J, Stothard P, Li C. Genetic architecture of quantitative traits in beef cattle revealed by genome wide association studies of imputed whole genome sequence variants: II: carcass merit traits. BMC Genomics 2020; 21:38. [PMID: 31931697 PMCID: PMC6958779 DOI: 10.1186/s12864-019-6273-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genome wide association studies (GWAS) were conducted on 7,853,211 imputed whole genome sequence variants in a population of 3354 to 3984 animals from multiple beef cattle breeds for five carcass merit traits including hot carcass weight (HCW), average backfat thickness (AFAT), rib eye area (REA), lean meat yield (LMY) and carcass marbling score (CMAR). Based on the GWAS results, genetic architectures of the carcass merit traits in beef cattle were elucidated. RESULTS The distributions of DNA variant allele substitution effects approximated a bell-shaped distribution for all the traits while the distribution of additive genetic variances explained by single DNA variants conformed to a scaled inverse chi-squared distribution to a greater extent. At a threshold of P-value < 10-5, 51, 33, 46, 40, and 38 lead DNA variants on multiple chromosomes were significantly associated with HCW, AFAT, REA, LMY, and CMAR, respectively. In addition, lead DNA variants with potentially large pleiotropic effects on HCW, AFAT, REA, and LMY were found on chromosome 6. On average, missense variants, 3'UTR variants, 5'UTR variants, and other regulatory region variants exhibited larger allele substitution effects on the traits in comparison to other functional classes. The amounts of additive genetic variance explained per DNA variant were smaller for intergenic and intron variants on all the traits whereas synonymous variants, missense variants, 3'UTR variants, 5'UTR variants, downstream and upstream gene variants, and other regulatory region variants captured a greater amount of additive genetic variance per sequence variant for one or more carcass merit traits investigated. In total, 26 enriched cellular and molecular functions were identified with lipid metabolisms, small molecular biochemistry, and carbohydrate metabolism being the most significant for the carcass merit traits. CONCLUSIONS The GWAS results have shown that the carcass merit traits are controlled by a few DNA variants with large effects and many DNA variants with small effects. Nucleotide polymorphisms in regulatory, synonymous, and missense functional classes have relatively larger impacts per sequence variant on the variation of carcass merit traits. The genetic architecture as revealed by the GWAS will improve our understanding on genetic controls of carcass merit traits in beef cattle.
Collapse
Affiliation(s)
- Yining Wang
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Feng Zhang
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi China
- Present Address: Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi China
| | - Robert Mukiibi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Liuhong Chen
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Michael Vinsky
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - John Basarab
- Alberta Agriculture and Forestry, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, AB Canada
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Changxi Li
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
30
|
Jahuey-Martínez FJ, Parra-Bracamonte GM, Garrick DJ, López-Villalobos N, Martínez-González JC, Sifuentes-Rincón AM, López-Bustamante LA. Accuracies of direct genomic breeding values for birth and weaning weights of registered Charolais cattle in Mexico. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Genomic prediction is now routinely used in many livestock species to rank individuals based on genomic breeding values (GEBV).
Aims
This study reports the first assessment aimed to evaluate the accuracy of direct GEBV for birth (BW) and weaning (WW) weights of registered Charolais cattle in Mexico.
Methods
The population assessed included 823 animals genotyped with an array of 77000 single nucleotide polymorphisms. Genomic prediction used genomic best linear unbiased prediction (GBLUP), Bayes C (BC), and single-step Bayesian regression (SSBR) methods in comparison with a pedigree-based BLUP method.
Key results
Our results show that the genomic prediction methods provided low and similar accuracies to BLUP. The prediction accuracy of GBLUP and BC were identical at 0.31 for BW and 0.29 for WW, similar to BLUP. Prediction accuracies of SSBR for BW and WW were up to 4% higher than those by BLUP.
Conclusions
Genomic prediction is feasible under current conditions, and provides a slight improvement using SSBR.
Implications
Some limitations on reference population size and structure were identified and need to be addressed to obtain more accurate predictions in liveweight traits under the prevalent cattle breeding conditions of Mexico.
Collapse
|
31
|
Linkage disequilibrium in the estimation of genetic and demographic parameters of extensively raised chicken populations. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933915002202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Wang Q, Yu Y, Zhang Q, Zhang X, Yuan J, Huang H, Xiang J, Li F. A Novel Candidate Gene Associated With Body Weight in the Pacific White Shrimp Litopenaeus vannamei. Front Genet 2019; 10:520. [PMID: 31214248 PMCID: PMC6555256 DOI: 10.3389/fgene.2019.00520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Improvements of growth traits are always the focus in selective breeding programs for the Pacific white shrimp Litopenaeus vannamei (L. vannamei). Identification of growth-related genes or markers can contribute to the application of modern breeding technologies, and thus accelerate the genetic improvement of growth traits. The aim of this study was to identify the genes and molecular markers associated with the growth traits of L. vannamei. A population of 200 individuals was genotyped using 2b-RAD techniques for genome-wide linkage disequilibrium (LD) analysis and genome-wide association study (GWAS). The results showed that the LD decayed fast in the studied population, which suggest that it is feasible to fine map the growth-related genes with GWAS in L. vannamei. One gene designated as LvSRC, encoding the class C scavenger receptor (SRC), was identified as a growth-related candidate gene by GWAS. Further targeted sequencing of the candidate gene in another population of 322 shrimps revealed that several non-synonymous mutations within LvSRC were significantly associated with the body weight (P < 0.01), and the most significant marker (SRC_24) located in the candidate gene could explain 13% of phenotypic variance. The current results provide not only molecular markers for genetic improvement in L. vannamei, but also new insights for understanding the growth regulation mechanism in penaeid shrimp.
Collapse
Affiliation(s)
- Quanchao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hao Huang
- Hainan Grand Suntop Ocean Breeding Co., Ltd., Wenchang, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
33
|
Barría A, Christensen KA, Yoshida G, Jedlicki A, Leong JS, Rondeau EB, Lhorente JP, Koop BF, Davidson WS, Yáñez JM. Whole Genome Linkage Disequilibrium and Effective Population Size in a Coho Salmon ( Oncorhynchus kisutch) Breeding Population Using a High-Density SNP Array. Front Genet 2019; 10:498. [PMID: 31191613 PMCID: PMC6539196 DOI: 10.3389/fgene.2019.00498] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
The estimation of linkage disequilibrium between molecular markers within a population is critical when establishing the minimum number of markers required for association studies, genomic selection, and inferring historical events influencing different populations. This work aimed to evaluate the extent and decay of linkage disequilibrium in a coho salmon breeding population using a high-density SNP array. Linkage disequilibrium was estimated between a total of 93,502 SNPs found in 64 individuals (33 dams and 31 sires) from the breeding population. The markers encompass all 30 coho salmon chromosomes and comprise 1,684.62 Mb of the genome. The average density of markers per chromosome ranged from 48.31 to 66 per 1 Mb. The minor allele frequency averaged 0.26 (with a range from 0.22 to 0.27). The overall average linkage disequilibrium among SNPs pairs measured as r2 was 0.10. The Average r2 value decreased with increasing physical distance, with values ranging from 0.21 to 0.07 at a distance lower than 1 kb and up to 10 Mb, respectively. An r2 threshold of 0.2 was reached at distance of approximately 40 Kb. Chromosomes Okis05, Okis15 and Okis28 showed high levels of linkage disequilibrium (>0.20 at distances lower than 1 Mb). Average r2 values were lower than 0.15 for all chromosomes at distances greater than 4 Mb. An effective population size of 43 was estimated for the population 10 generations ago, and 325, for 139 generations ago. Based on the effective number of chromosome segments, we suggest that at least 74,000 SNPs would be necessary for an association mapping study and genomic predictions. Therefore, the SNP panel used allowed us to capture high-resolution information in the farmed coho salmon population. Furthermore, based on the contemporary Ne, a new mate allocation strategy is suggested to increase the effective population size.
Collapse
Affiliation(s)
- Agustín Barría
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Kris A Christensen
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Grazyella Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Jong S Leong
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Eric B Rondeau
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | | | - Ben F Koop
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.,Nucleo Milenio INVASAL, Concepcion, Chile
| |
Collapse
|
34
|
Xu L, Zhu B, Wang Z, Xu L, Liu Y, Chen Y, Zhang L, Gao X, Gao H, Zhang S, Xu L, Li J. Evaluation of Linkage Disequilibrium, Effective Population Size and Haplotype Block Structure in Chinese Cattle. Animals (Basel) 2019; 9:ani9030083. [PMID: 30845681 PMCID: PMC6466336 DOI: 10.3390/ani9030083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Evaluation of the population structure and linkage disequilibrium can offer important insights to fully understand the genetic diversity and population history of cattle, which can enable us to appropriately design and implement GWAS and GS in cattle. In this study, we characterized the extent of genome-wide LD and the haplotype block structure, and estimated the persistence of phase of Chinese indigenous cattle with Illumina BovineHD BeadChip. According to our study, 58K, 87K, 95K, 52K, and 52K markers would be necessary for SCHC, NCC, SWC, SIM, and WAG, respectively, in the implementation of GWAS and GS and combining a multipopulation with high persistence of phase is feasible for the implication of genomic selection for Chinese beef cattle. Abstract Understanding the linkage disequilibrium (LD) across the genome, haplotype structure, and persistence of phase between breeds can enable us to appropriately design and implement the genome-wide association (GWAS) and genomic selection (GS) in beef cattle. We estimated the extent of genome-wide LD, haplotype block structure, and the persistence of phase in 10 Chinese cattle population using high density BovinHD BeadChip. The overall LD measured by r2 between adjacent SNPs were 0.60, 0.67, 0.58, 0.73, and 0.71 for South Chinese cattle (SCHC), North Chinese cattle (NCC), Southwest Chinese cattle (SWC), Simmental (SIM), and Wagyu (WAG). The highest correlation (0.53) for persistence of phase across groups was observed for SCHC vs. SWC at distances of 0–50 kb, while the lowest correlation was 0.13 for SIM vs. SCHC at the same distances. In addition, the estimated current effective population sizes were 27, 14, 31, 34, and 43 for SCHC, NCC, SWC, SIM, and WAG, respectively. Our result showed that 58K, 87K, 95K, 52K, and 52K markers were required for implementation of GWAS and GS in SCHC, NCC, SWC, SIM, and WAG, respectively. Also, our findings suggested that the implication of genomic selection for multipopulation with high persistence of phase is feasible for Chinese cattle.
Collapse
Affiliation(s)
- Lei Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Institute of Animal Husbandry and Veterinary Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Bo Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Zezhao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ling Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ying Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yan Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Lupei Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xue Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Huijiang Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Shengli Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Lingyang Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Junya Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
35
|
Na W, Yu JQ, Xu ZC, Zhang XY, Yang LL, Cao ZP, Li H, Zhang H. Important candidate genes for abdominal fat content identified by linkage disequilibrium and fixation index information. Poult Sci 2019; 98:581-589. [PMID: 30285249 DOI: 10.3382/ps/pey426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/21/2018] [Indexed: 11/20/2022] Open
Abstract
Selection for rapid growth in chickens has always been accompanied by increased fat deposition and excessive fat deposition, especially abdominal fat, cannot only decrease feed efficiency but also cause many diseases. Finding the candidate genes associated with abdominal fat deposition is essential for breeding. To identify these candidate genes, we applied linkage disequilibrium and selection signature analysis using chicken 60 k single nucleotide polymorphism (SNP) chips in two broiler lines divergently selected for abdominal fat content for 11 generations. After quality control, 46,033 SNPs were left for analysis. Using these SNPs, we found that r2 was 0.06 to 0.14 in the lean line and 0.07 to 0.13 in the fat line for all 28 chromosomes (except GGA16). Pairwise SNP distances <25 kb showed a mean r2 = 0.33 in the lean line and r2 = 0.32 in the fat line. The fixation index (FST) analysis was carried out and 46 SNPs with the top 0.1% of the FST value was detected as the loci with selection signatures. Besides FST, hapFLK was also used to detect selection signatures for abdominal fat content. A total of 11 genes, including transient receptor potential cation channel subfamily C member 4, estrogen related receptor gamma, fibroblast growth factor 13, G-protein-signaling modulator 2, RAR related orphan receptor A, phospholipase A2 group X, mitochondrial ribosomal protein L28, metadherin, calcitonin receptor like receptor, serine/threonine kinase 39, and nuclear factor I A, were detected as the important candidate genes for abdominal fat deposition based on their basic functions. The results of the present study may benefit the understanding of genetic mechanism of abdominal fat deposition in chicken.
Collapse
Affiliation(s)
- Wei Na
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province.,College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jia-Qiang Yu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province.,College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zi-Chun Xu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province.,College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xin-Yang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province.,College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Li-Li Yang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province.,College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhi-Ping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province.,College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province.,College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province.,College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
36
|
Deng T, Liang A, Liu J, Hua G, Ye T, Liu S, Campanile G, Plastow G, Zhang C, Wang Z, Salzano A, Gasparrini B, Cassandro M, Riaz H, Liang X, Yang L. Genome-Wide SNP Data Revealed the Extent of Linkage Disequilibrium, Persistence of Phase and Effective Population Size in Purebred and Crossbred Buffalo Populations. Front Genet 2019; 9:688. [PMID: 30671082 PMCID: PMC6332145 DOI: 10.3389/fgene.2018.00688] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/11/2018] [Indexed: 02/04/2023] Open
Abstract
Linkage disequilibrium (LD) is a useful parameter for guiding the accuracy and power of both genome-wide association studies (GWAS) and genomic selection (GS) among different livestock species. The present study evaluated the extent of LD, persistence of phase and effective population size (Ne) for the purebred (Mediterranean buffalo; n = 411) and crossbred [Mediterranean × Jianghan × Nili-Ravi buffalo, n = 9; Murrah × Nili-Ravi × local (Xilin or Fuzhong) buffalo, n = 36] buffalo populations using the 90K Buffalo SNP genotyping array. The results showed that the average square of correlation coefficient (r 2) between adjacent SNP was 0.13 ± 0.19 across all autosomes for purebred and 0.09 ± 0.13 for crossbred, and the most rapid decline in LD was observed over the first 200 kb. Estimated r 2 ≥ 0.2 extended up to ~50 kb in crossbred and 170 kb in purebred populations, while average r 2 values ≥0.3 were respectively observed in the ~10 and 60 kb in the crossbred and purebred populations. The largest phase correlation (R P, C = 0.47) was observed at the distance of 100 kb, suggesting that this phase was not actively preserved between the two populations. Estimated Ne for the purebred and crossbred population at the current generation was 387 and 113 individuals, respectively. These findings may provide useful information to guide the GS and GWAS in buffaloes.
Collapse
Affiliation(s)
- Tingxian Deng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Aixin Liang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jiajia Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Tingzhu Ye
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shenhe Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Graham Plastow
- Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Chunyan Zhang
- Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Bianca Gasparrini
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Martino Cassandro
- Department of Agronomy Food Natural Resources Animal Environmental, University of Padova, Legnaro, Italy
| | - Hasan Riaz
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Xianwei Liang
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
37
|
Barria A, López ME, Yoshida G, Carvalheiro R, Lhorente JP, Yáñez JM. Population Genomic Structure and Genome-Wide Linkage Disequilibrium in Farmed Atlantic Salmon ( Salmo salar L.) Using Dense SNP Genotypes. Front Genet 2018; 9:649. [PMID: 30619473 PMCID: PMC6302115 DOI: 10.3389/fgene.2018.00649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/30/2018] [Indexed: 01/15/2023] Open
Abstract
Chilean Farmed Atlantic salmon (Salmo salar) populations were established with individuals of both European and North American origins. These populations are expected to be highly genetically differentiated due to evolutionary history and poor gene flow between ancestral populations from different continents. The extent and decay of linkage disequilibrium (LD) among single nucleotide polymorphism (SNP) impacts the implementation of genome-wide association studies and genomic selection and provides relevant information about demographic processes of fish populations. We assessed the population structure and characterized the extent and decay of LD in three Chilean commercial populations of Atlantic salmon with North American (NAM), Scottish (SCO), and Norwegian (NOR) origin. A total of 123 animals were genotyped using a 159 K SNP Axiom® myDesignTM Genotyping Array. A total of 32 K SNP markers, representing the common SNPs along the three populations after quality control were used. The principal component analysis explained 78.9% of the genetic diversity between populations, clearly discriminating between populations of North American and European origin, and also between European populations. NAM had the lowest effective population size, followed by SCO and NOR. Large differences in the LD decay were observed between populations of North American and European origin. An r 2 threshold of 0.2 was estimated for marker pairs separated by 7,800, 64, and 50 kb in the NAM, SCO, and NOR populations, respectively. In this study we show that this SNP panel can be used to detect association between markers and traits of interests and also to capture high-resolution information for genome-enabled predictions. Also, we suggest the feasibility to achieve similar prediction accuracies using a smaller SNP data set for the NAM population, compared with samples with European origin which would need a higher density SNP array.
Collapse
Affiliation(s)
- Agustin Barria
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Maria E. López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Grazyella Yoshida
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | - Roberto Carvalheiro
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | | | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
- Benchmark Genetic S.A., Puerto Montt, Chile
- Nucleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
38
|
Akanno EC, Chen L, Abo-Ismail MK, Crowley JJ, Wang Z, Li C, Basarab JA, MacNeil MD, Plastow GS. Genome-wide association scan for heterotic quantitative trait loci in multi-breed and crossbred beef cattle. Genet Sel Evol 2018; 50:48. [PMID: 30290764 PMCID: PMC6173862 DOI: 10.1186/s12711-018-0405-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 06/11/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Heterosis has been suggested to be caused by dominance effects. We performed a joint genome-wide association analysis (GWAS) using data from multi-breed and crossbred beef cattle to identify single nucleotide polymorphisms (SNPs) with significant dominance effects associated with variation in growth and carcass traits and to understand the mode of action of these associations. METHODS Illumina BovineSNP50 genotypes and phenotypes for 11 growth and carcass traits were available for 6796 multi-breed and crossbred beef cattle. After performing quality control, 42,610 SNPs and 6794 animals were used for further analyses. A single-SNP GWAS for the joint association of additive and dominance effects was conducted in purebred, crossbred, and combined datasets using the ASReml software. Genomic breed composition predicted from admixture analyses was included in the mixed effect model to account for possible population stratification and breed effects. A threshold of 10% genome-wide false discovery rate was applied to declare associations as significant. The significant SNPs with dominance association were mapped to their corresponding genes at 100 kb. RESULTS Seven SNPs with significant dominance associations were detected for birth weight, weaning weight, pre-weaning daily gain, yearling weight and marbling score across the three datasets at a false discovery rate of 10%. These SNPs were located on bovine chromosomes 1, 3, 4, 6 and 21 and mapped to six putative candidate genes: U6atac, AGBL4, bta-mir-2888-1, REPIN1, ICA1 and NXPH1. These genes have interesting biological functions related to the regulation of gene expression, glucose and lipid metabolism and body fat mass. For most of the identified loci, we observed over-dominance association with the studied traits, such that the heterozygous individuals at any of these loci had greater genotypic values for the trait than either of the homozygous individuals. CONCLUSIONS Our results revealed very few regions with significant dominance genetic effects across all the traits studied in the three datasets used. Regarding the SNPs that were detected with dominance associations, further investigation is needed to determine their relevance in crossbreeding programs assuming that dominance effects are the main cause of (or contribute usefully to) heterosis.
Collapse
Affiliation(s)
- Everestus C Akanno
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| | - Liuhong Chen
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Mohammed K Abo-Ismail
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Department of Animal and Poultry Production, Damanhour University, Damanhour, Egypt
| | - John J Crowley
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Canadian Beef Breeds Council, 6815 8th Street N.E., Calgary, AB, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Changxi Li
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, AB, Canada
| | - John A Basarab
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Alberta Agriculture and Forestry, 6000 C & E Trail, Lacombe, AB, Canada
| | - Michael D MacNeil
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Delta G, Miles City, MT, USA.,Department of Animal, Wildlife and Grassland Sciences, University Free State, Bloemfontein, South Africa
| | - Graham S Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
39
|
Song JS, Seong HS, Choi BH, Lee CW, Hwang NH, Lim D, Lee JH, Kim JS, Kim JD, Park YS, Choi JW, Kim JB. Genome-wide analysis of Hanwoo and Chikso populations using the BovineSNP50 genotyping array. Genes Genomics 2018; 40:1373-1382. [DOI: 10.1007/s13258-018-0733-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/22/2018] [Indexed: 02/04/2023]
|
40
|
Genome-wide analyses of the Jeju, Thoroughbred, and Jeju crossbred horse populations using the high density SNP array. Genes Genomics 2018; 40:1249-1258. [PMID: 30099720 DOI: 10.1007/s13258-018-0722-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022]
Abstract
The Jeju horse is an indigenous Korean horse breed that is currently registered with the Food and Agriculture Organization of the United Nations. However, there is severe lack of genomic studies on Jeju horse. This study was conducted to investigate genetic characteristics of horses including Jeju horse, Thoroughbred and Jeju crossbred (Jeju × Thoroughbred) populations. We compared the genomes of three horse populations using the Equine SNP70 Beadchip array. Short-range Linkage disequilibrium was the highest in Thoroughbred, whereas r2 values were lowest in Jeju horse. Expected heterozygosity was the highest in Jeju crossbred (0.351), followed by the Thoroughbred (0.337) and Jeju horse (0.311). The level of inbreeding was slightly higher in Thoroughbred (- 0.009) than in Jeju crossbred (- 0.035) and Jeju horse (- 0.038). FST value was the highest between Jeju horse and Thoroughbred (0.113), whereas Jeju crossbred and Thoroughbred showed the lowest value (0.031). The genetic relationship was further assessed by principal component analysis, suggesting that Jeju crossbred is more genetically similar to Thoroughbred than Jeju horse population. Additionally, we detected potential selection signatures, for example, in loci located on LCORL/NCAPG and PROP1 genes that are known to influence body. Genome-wide analyses of the three horse populations showed that all the breeds had somewhat a low level of inbreeding within each population. In the population structure analysis, we found that Jeju crossbred was genetically closer to Thoroughbred than Jeju horse. Furthermore, we identified several signatures of selection which might be associated with traits of interest. To our current knowledge, this study is the first genomic research, analyzing genetic relationships of Jeju horse, Thoroughbred and Jeju crossbred.
Collapse
|
41
|
Aliloo H, Mrode R, Okeyo AM, Ni G, Goddard ME, Gibson JP. The feasibility of using low-density marker panels for genotype imputation and genomic prediction of crossbred dairy cattle of East Africa. J Dairy Sci 2018; 101:9108-9127. [PMID: 30077450 DOI: 10.3168/jds.2018-14621] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/26/2018] [Indexed: 11/19/2022]
Abstract
Cost-effective high-density (HD) genotypes of livestock species can be obtained by genotyping a proportion of the population using a HD panel and the remainder using a cheaper low-density panel, and then imputing the missing genotypes that are not directly assayed in the low-density panel. The efficacy of genotype imputation can largely be affected by the structure and history of the specific target population and it should be checked before incorporating imputation in routine genotyping practices. Here, we investigated the efficacy of imputation in crossbred dairy cattle populations of East Africa using 4 different commercial single nucleotide polymorphisms (SNP) panels, 3 reference populations, and 3 imputation algorithms. We found that Minimac and a reference population, which included a mixture of crossbred and ancestral purebred animals, provided the highest imputation accuracy compared with other scenarios of imputation. The accuracies of imputation, measured as the correlation between real and imputed genotypes averaged across SNP, were around 0.76 and 0.94 for 7K and 40K SNP, respectively, when imputed up to a 770K panel. We also presented a method to maximize the imputation accuracy of low-density panels, which relies on the pairwise (co)variances between SNP and the minor allele frequency of SNP. The performance of the developed method was tested in a 5-fold cross-validation process where various densities of SNP were selected using the (co)variance method and also by alternative SNP selection methods and then imputed up to the HD panel. The (co)variance method provided the highest imputation accuracies at almost all marker densities, with accuracies being up to 0.19 higher than the random selection of SNP. The accuracies of imputation from 7K and 40K panels selected using the (co)variance method were around 0.80 and 0.94, respectively. The presented method also achieved higher accuracy of genomic prediction at lower densities of selected SNP. The squared correlation between genomic breeding values estimated using imputed genotypes and those from the real 770K HD panel was 0.95 when the accuracy of imputation was 0.64. The presented method for SNP selection is straightforward in its application and can ensure high accuracies in genotype imputation of crossbred dairy populations in East Africa.
Collapse
Affiliation(s)
- H Aliloo
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2350, Australia.
| | - R Mrode
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi, Kenya; Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, Scotland, United Kingdom
| | - A M Okeyo
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi, Kenya
| | - G Ni
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2350, Australia
| | - M E Goddard
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; Faculty of Veterinary and Agricultural Sciences, Department of Agriculture and Food Systems, The University of Melbourne, Parkville, VIC 3010, Australia
| | - J P Gibson
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2350, Australia
| |
Collapse
|
42
|
Alvarenga AB, Rovadoscki GA, Petrini J, Coutinho LL, Morota G, Spangler ML, Pinto LFB, Carvalho GGP, Mourão GB. Linkage disequilibrium in Brazilian Santa Inês breed, Ovis aries. Sci Rep 2018; 8:8851. [PMID: 29892085 PMCID: PMC5995818 DOI: 10.1038/s41598-018-27259-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
For genomic selection to be successful, there must be sufficient linkage disequilibrium between the markers and the causal mutations. The objectives of this study were to evaluate the extent of LD in ovine using the Santa Inês breed and to infer the minimum number of markers required to reach reasonable prediction accuracy. In total, 38,168 SNPs and 395 samples were used. The mean LD between adjacent marker pairs measured by r2 and |D′| were 0.166 and 0.617, respectively. LD values between adjacent marker pairs ranged from 0.135 to 0.194 and from 0.568 to 0.650 for r2 for |D′| across all chromosomes. The average r2 between all pairwise SNPs on each chromosome was 0.018. SNPs separated by between 0.10 to 0.20 Mb had an estimated average r2 equal to 0.1033. The identified haplotype blocks consisted of 2 to 21 markers. Moreover, estimates of average coefficients of inbreeding and effective population size were 0.04 and 96, respectively. LD estimated in this study was lower than that reported in other species and was characterized by short haplotype blocks. Our results suggest that the use of a higher density SNP panel is recommended for the implementation of genomic selection in the Santa Inês breed.
Collapse
Affiliation(s)
- Amanda Botelho Alvarenga
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil
| | - Gregori Alberto Rovadoscki
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil
| | - Juliana Petrini
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil
| | - Gota Morota
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | | | | | | | - Gerson Barreto Mourão
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, Brazil.
| |
Collapse
|
43
|
Bejarano D, Martínez R, Manrique C, Parra LM, Rocha JF, Gómez Y, Abuabara Y, Gallego J. Linkage disequilibrium levels and allele frequency distribution in Blanco Orejinegro and Romosinuano Creole cattle using medium density SNP chip data. Genet Mol Biol 2018; 41:426-433. [PMID: 30088613 PMCID: PMC6082240 DOI: 10.1590/1678-4685-gmb-2016-0310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 09/20/2017] [Indexed: 11/22/2022] Open
Abstract
The linkage disequilibrium (LD) between molecular markers affects the accuracy of
genome-wide association studies and genomic selection application. High-density
genotyping platforms allow identifying the genotype of thousands of single
nucleotide polymorphisms (SNPs) distributed throughout the animal genomes, which
increases the resolution of LD evaluations. This study evaluated the
distribution of minor allele frequencies (MAF) and the level of LD in the
Colombian Creole cattle breeds Blanco Orejinegro (BON) and Romosinuano (ROMO)
using a medium density SNP panel (BovineSNP50K_v2). The LD decay in these breeds
was lower than those reported for other taurine breeds, achieving optimal LD
values (r2 ≥ 0.3) up to a distance of 70 kb in BON and 100 kb in
ROMO, which is possibly associated with the conservation status of these cattle
populations and their effective population size. The average MAF for both breeds
was 0.27 ± 0.14 with a higher SNP proportion having high MAF values (≥ 0.3). The
LD levels and distribution of allele frequencies found in this study suggest
that it is possible to have adequate coverage throughout the genome of these
breeds using the BovineSNP50K_v2, capturing the effect of most QTL related with
productive traits, and ensuring an adequate prediction capacity in genomic
analysis.
Collapse
Affiliation(s)
- Diego Bejarano
- Corporación Colombiana de Investigación Agropecuaria - Corpoica. Centro de Investigación Tibaitatá, Cundinamarca, Colombia
| | - Rodrigo Martínez
- Corporación Colombiana de Investigación Agropecuaria - Corpoica. Centro de Investigación Tibaitatá, Cundinamarca, Colombia
| | | | - Luis Miguel Parra
- Corporación Colombiana de Investigación Agropecuaria - Corpoica. Centro de Investigación Tibaitatá, Cundinamarca, Colombia
| | - Juan Felipe Rocha
- Corporación Colombiana de Investigación Agropecuaria - Corpoica. Centro de Investigación Obonuco, Nariño, Colombia
| | - Yolanda Gómez
- Corporación Colombiana de Investigación Agropecuaria - Corpoica. Centro de Investigación Tibaitatá, Cundinamarca, Colombia
| | - Yesid Abuabara
- Corporación Colombiana de Investigación Agropecuaria - Corpoica. Centro de Investigación Turipaná, Córdoba, Colombia
| | - Jaime Gallego
- Corporación Colombiana de Investigación Agropecuaria - Corpoica. Centro de Investigación El Nus, Antioquia, Colombia
| |
Collapse
|
44
|
Liu Z, Sun C, Yan Y, Li G, Wu G, Liu A, Yang N. Genome-Wide Association Analysis of Age-Dependent Egg Weights in Chickens. Front Genet 2018; 9:128. [PMID: 29755503 PMCID: PMC5932955 DOI: 10.3389/fgene.2018.00128] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/29/2018] [Indexed: 12/22/2022] Open
Abstract
Egg weight (EW) is an economically-important trait and displays a consecutive increase with the hen's age. Because extremely large eggs cause a range of problems in the poultry industry, we performed a genome-wide association study (GWAS) in order to identify genomic variations that are associated with EW. We utilized the Affymetrix 600 K high density SNP array in a population of 1,078 hens at seven time points from day at first egg to 80 weeks age (EW80). Results reveal that a 90 Kb genomic region (169.42 Mb ~ 169.51 Mb) in GGA1 is significantly associated with EW36 and is also potentially associated with egg weight at 28, 56, and 66 week of age. The leading SNP could account for 3.66% of the phenotypic variation, while two promising genes (DLEU7 and MIR15A) can be mapped to this narrow significant region and may affect EW in a pleiotropic manner. In addition, one gene (CECR2 on GGA1) and two genes (MEIS1 and SPRED2 on GGA3), which involved in the processes of embryogenesis and organogenesis, were also considered to be candidates related to first egg weight (FEW) and EW56, respectively. Findings in our study could provide worthy theoretical basis to generate eggs of ideal size based on marker assisted breeding selection.
Collapse
Affiliation(s)
- Zhuang Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiyuan Yan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Beijing Engineering Research Center of Layer, Beijing, China
| | - Guangqi Li
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Guiqin Wu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Aiqiao Liu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Seo D, Lee DH, Choi N, Sudrajad P, Lee SH, Lee JH. Estimation of linkage disequilibrium and analysis of genetic diversity in Korean chicken lines. PLoS One 2018; 13:e0192063. [PMID: 29425208 PMCID: PMC5806858 DOI: 10.1371/journal.pone.0192063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/16/2018] [Indexed: 11/19/2022] Open
Abstract
The development of genetic markers for animal breeding is an effective strategy to reduce the time and cost required to improve economically important traits. To implement genomic selection in the multibreed chicken population of Korea, an understanding of the linkage disequilibrium (LD) status of the target population is essential. In this study, we performed population genetic analyses to investigate LD decay, the effective population size, and breed diversity using 600K high-density single nucleotide polymorphism genotypes of 189 native chickens in 14 lines (including Korean native chicken, imported and adapted purebred and commercial chickens). The results indicated that commercial native chickens have less calculated LD (average, r2 = 0.13-0.26) and purebred native chickens have more calculated LD (average, r2 = 0.24-0.37) across the entire genome. The effective population sizes of the examined lines showed patterns opposite to those of population LD. The phylogeny and admixture analyses showed that commercial and purebred chickens were well distinguished, except for Rhode Island Red (RIR) purebred lines of NC (NIAS_RIR_C) and ND (NIAS_RIR_D). These lines are difficult to distinguish clearly because they originated from the same respective breeds. The results of this study may provide important information for the development of genetic markers that can be used in breeding to improve the economic traits of native chickens.
Collapse
Affiliation(s)
- Dongwon Seo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Doo Ho Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Nuri Choi
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Pita Sudrajad
- Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, South Jakarta, Indonesia
| | - Seung-Hwan Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Jun-Heon Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
- * E-mail:
| |
Collapse
|
46
|
Genomic diversity and population structure of three autochthonous Greek sheep breeds assessed with genome-wide DNA arrays. Mol Genet Genomics 2018; 293:753-768. [PMID: 29372305 DOI: 10.1007/s00438-018-1421-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
In the present study, genome-wide genotyping was applied to characterize the genetic diversity and population structure of three autochthonous Greek breeds: Boutsko, Karagouniko and Chios. Dairy sheep are among the most significant livestock species in Greece numbering approximately 9 million animals which are characterized by large phenotypic variation and reared under various farming systems. A total of 96 animals were genotyped with the Illumina's OvineSNP50K microarray beadchip, to study the population structure of the breeds and develop a specialized panel of single-nucleotide polymorphisms (SNPs), which could distinguish one breed from the others. Quality control on the dataset resulted in 46,125 SNPs, which were used to evaluate the genetic structure of the breeds. Population structure was assessed through principal component analysis (PCA) and admixture analysis, whereas inbreeding was estimated based on runs of homozygosity (ROHs) coefficients, genomic relationship matrix inbreeding coefficients (FGRM) and patterns of linkage disequilibrium (LD). Associations between SNPs and breeds were analyzed with different inheritance models, to identify SNPs that distinguish among the breeds. Results showed high levels of genetic heterogeneity in the three breeds. Genetic distances among breeds were modest, despite their different ancestries. Chios and Karagouniko breeds were more genetically related to each other compared to Boutsko. Analysis revealed 3802 candidate SNPs that can be used to identify two-breed crosses and purebred animals. The present study provides, for the first time, data on the genetic background of three Greek indigenous dairy sheep breeds as well as a specialized marker panel that can be applied for traceability purposes as well as targeted genetic improvement schemes and conservation programs.
Collapse
|
47
|
de Rezende Neves HH, Carvalheiro R, de Queiroz SA. Trait-specific long-term consequences of genomic selection in beef cattle. Genetica 2017; 146:85-99. [PMID: 29119314 DOI: 10.1007/s10709-017-9999-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 10/31/2017] [Indexed: 11/30/2022]
Abstract
Simulation studies allow addressing consequences of selection schemes, helping to identify effective strategies to enable genetic gain and maintain genetic diversity. The aim of this study was to evaluate the long-term impact of genomic selection (GS) in genetic progress and genetic diversity of beef cattle. Forward-in-time simulation generated a population with pattern of linkage disequilibrium close to that previously reported for real beef cattle populations. Different scenarios of GS and traditional pedigree-based BLUP (PBLUP) selection were simulated for 15 generations, mimicking selection for female reproduction and meat quality. For GS scenarios, an alternative selection criterion was simulated (wGBLUP), intended to enhance long-term gains by attributing more weight to favorable alleles with low frequency. GS allowed genetic progress up to 40% greater than PBLUP, for female reproduction and meat quality. The alternative criterion wGBLUP did not increase long-term response, although allowed reducing inbreeding rates and loss of favorable alleles. The results suggest that GS outperforms PBLUP when the selected trait is under less polygenic background and that attributing more weight to low-frequency favorable alleles can reduce inbreeding rates and loss of favorable alleles in GS.
Collapse
Affiliation(s)
- Haroldo Henrique de Rezende Neves
- Departamento de Zootecnia, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil.,GenSys Consultores Associados S/S Ltda., Rua Guilherme Alves, 170. Cj 304, Porto Alegre, RS, 90680-000, Brazil
| | - Roberto Carvalheiro
- Departamento de Zootecnia, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Sandra Aidar de Queiroz
- Departamento de Zootecnia, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
48
|
Prieur V, Clarke SM, Brito LF, McEwan JC, Lee MA, Brauning R, Dodds KG, Auvray B. Estimation of linkage disequilibrium and effective population size in New Zealand sheep using three different methods to create genetic maps. BMC Genet 2017; 18:68. [PMID: 28732466 PMCID: PMC5521107 DOI: 10.1186/s12863-017-0534-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/11/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Investments in genetic selection have played a major role in the New Zealand sheep industry competitiveness. Selection may erode genetic diversity, which is a crucial factor for the success of breeding programs. Better understanding of linkage disequilibrium (LD) and ancestral effective population size (Ne) through quantifying this diversity and comparison between populations allows for more informed decisions with regards to selective breeding taking population genetic diversity into account. The estimation of N e can be determined via genetic markers and requires knowledge of genetic distances between these markers. Single nucleotide polymorphisms (SNP) data from a sample of 12,597 New Zealand crossbred and purebred sheep genotyped with the Illumina Ovine SNP50 BeadChip was used to perform a genome-wide scan of LD and N e . Three methods to estimate genetic distances were investigated: 1) M1: a ratio fixed across the whole genome of one Megabase per centiMorgan; 2) M2: the ratios of genetic distance (using M3, below) over physical distance fixed for each chromosome; and, 3) M3: a genetic map of inter-SNP distances estimated using CRIMAP software (v2.503). RESULTS The estimates obtained with M2 and M3 showed much less variability between autosomes than those with M1, which tended to give lower N e results and higher LD decay. The results suggest that N e has decreased since the development of sheep breeds in Europe and this reduction in Ne has been accelerated in the last three decades. The N e estimated for five generations in the past ranged from 71 to 237 for Texel and Romney breeds, respectively. A low level of genetic kinship and inbreeding was estimated in those breeds suggesting avoidance of mating close relatives. CONCLUSIONS M3 was considered the most accurate method to create genetic maps for the estimation of LD and Ne. The findings of this study highlight the history of genetic selection in New Zealand crossbred and purebred sheep and these results will be very useful to understand genetic diversity of the population with respect to genetic selection. In addition, it will help geneticists to identify genomic regions which have been preferentially selected within a variety of breeds and populations.
Collapse
Affiliation(s)
- Vincent Prieur
- AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053 New Zealand
- Current address: France Limousin Sélection, Pôle de Lanaud, 87220 Boisseuil, France
| | - Shannon M. Clarke
- AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053 New Zealand
| | - Luiz F. Brito
- Centre for Genetic Improvement of Livestock, University of Guelph, N1G2W1, Guelph, Canada
| | - John C. McEwan
- AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053 New Zealand
| | - Michael A. Lee
- Department of Mathematics and Statistics, University of Otago, Dunedin, 9058 New Zealand
| | - Rudiger Brauning
- AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053 New Zealand
| | - Ken G. Dodds
- AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053 New Zealand
| | - Benoît Auvray
- Department of Mathematics and Statistics, University of Otago, Dunedin, 9058 New Zealand
| |
Collapse
|
49
|
Estimates of linkage disequilibrium and effective population sizes in Chinese Merino (Xinjiang type) sheep by genome-wide SNPs. Genes Genomics 2017; 39:733-745. [PMID: 28706593 PMCID: PMC5486679 DOI: 10.1007/s13258-017-0539-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 03/19/2017] [Indexed: 12/14/2022]
Abstract
Knowledge of linkage disequilibrium (LD) is important for effective genome-wide association studies and accurate genomic prediction. Chinese Merino (Xinjiang type) is well-known fine wool sheep breed. However, the extent of LD across the genome remains unexplored. In this study, we calculated autosomal LD based on genome-wide SNPs of 635 Chinese Merino (Xinjiang type) sheep by Illumina Ovine SNP50 BeadChip. A moderate level of LD (r2 ≥ 0.25) across the whole genome was observed at short distances of 0–10 kb. Further, the ancestral effective population size (Ne) was analyzed by extent of LD and found that Ne increased with the increase of generations and declined rapidly within the most recent 50 generations, which is consistent with the history of Chinese Merino sheep breeding, initiated in 1971. We also noted that even when the effective population size was estimated across different single chromosomes, Ne only ranged from 140.36 to 183.33 at five generations in the past, exhibiting a rapid decrease compared with that at ten generations in the past. These results indicated that the genetic diversity in Chinese Merino sheep recently decreased and proper protective measures should be taken to maintain the diversity. Our datasets provided essential genetic information to track molecular variations which potentially contribute to phenotypic variation in Chinese Merino sheep.
Collapse
|
50
|
Study on the introgression of beef breeds in Canchim cattle using single nucleotide polymorphism markers. PLoS One 2017; 12:e0171660. [PMID: 28182737 PMCID: PMC5300224 DOI: 10.1371/journal.pone.0171660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/24/2017] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to evaluate the level of introgression of breeds in the Canchim (CA: 62.5% Charolais—37.5% Zebu) and MA genetic group (MA: 65.6% Charolais—34.4% Zebu) cattle using genomic information on Charolais (CH), Nelore (NE), and Indubrasil (IB) breeds. The number of animals used was 395 (CA and MA), 763 (NE), 338 (CH), and 37 (IB). The Bovine50SNP BeadChip from Illumina panel was used to estimate the levels of introgression of breeds considering the Maximum likelihood, Bayesian, and Single Regression method. After genotype quality control, 32,308 SNPs were considered in the analysis. Furthermore, three thresholds to prune out SNPs in linkage disequilibrium higher than 0.10, 0.05, and 0.01 were considered, resulting in 15,286, 7,652, and 1,582 SNPs, respectively. For k = 2, the proportion of taurine and indicine varied from the expected proportion based on pedigree for all methods studied. For k = 3, the Regression method was able to differentiate the animals in three main clusters assigned to each purebred breed, showing more reasonable according to its biological viewpoint. Analyzing the data considering k = 2 seems to be more appropriate for Canchim-MA animals due to its biological interpretation. The usage of 32,308 SNPs in the analyses resulted in similar findings between the estimated and expected breed proportions. Using the Regression approach, a contribution of Indubrasil was observed in Canchim-MA when k = 3 was considered. Genetic parameter estimation could account for this breed composition information as a source of variation in order to improve the accuracy of genetic models. Our findings may help assemble appropriate reference populations for genomic prediction for Canchim-MA in order to improve prediction accuracy. Using the information on the level of introgression in each individual could also be useful in breeding or crossing design to improve individual heterosis in crossbred cattle.
Collapse
|