1
|
Mao H, Ding L. Downregulation of miR-21 suppresses 1-methyl-4-phenylpyridinium-induced neuronal damage in MES23.5 cells. Exp Ther Med 2019; 18:2467-2474. [PMID: 31555359 DOI: 10.3892/etm.2019.7853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/14/2019] [Indexed: 12/29/2022] Open
Abstract
Accumulating evidence suggests that overproduction of oxidative stress, increases neuroinflammation and activates apoptosis. These two processes are associated with the development of Parkinson's disease (PD). The present study aimed to investigate the role of miR-21 in the development of PD. 1-Methyl-4-phenylpyridinium (MPP+) was used to induce a PD-like model in MES23.5 cells. The results of the reverse transcription-quantitative PCR assays indicated that miR-21 levels were markedly increased in MES23.5 cells following MPP+ treatment. Furthermore, MES23.5 cells were transfected with miR-21 inhibitor, mimics and/or relevant negative control, following MPP+ administration. The results of the functional assays revealed that downregulation of miR-21 significantly attenuated the induction of cell apoptosis and reactive oxygen species (ROS) production, while it enhanced the survival of MPP+-induced MES23.5 cells. Furthermore, downregulation of miR-21 increased the expression levels of tyrosine hydroxylase, whereas suppression of miR-21 inhibited the production of pro-inflammatory cytokines [interleukin (IL)-6, IL-1β and tumor necrosis factor-α] in MES23.5 cells. Western blot analysis further indicated that the Bcl-2/Bax protein expression ratio was significantly increased and double luciferase assay analysis confirmed that Bcl-2 was a direct target of miR-21. Taken collectively, the data demonstrated that downregulation of miR-21 protected cells from MPP+-mediated cytotoxicity by the inhibition of apoptosis induction, the reduction of the inflammatory response and the suppression of ROS production. The present findings may provide novel approaches for PD clinical treatment.
Collapse
Affiliation(s)
- Huawu Mao
- Department of Neurology, The Second People's Hospital of Taizhou, Taizhou, Jiangsu 225500, P.R. China
| | - Lidong Ding
- Department of Neurology, The Second People's Hospital of Taizhou, Taizhou, Jiangsu 225500, P.R. China
| |
Collapse
|
2
|
A workflow for the integrative transcriptomic description of molecular pathology and the suggestion of normalizing compounds, exemplified by Parkinson's disease. Sci Rep 2018; 8:7937. [PMID: 29784986 PMCID: PMC5962550 DOI: 10.1038/s41598-018-25754-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
The volume of molecular observations on human diseases in public databases is continuously increasing at accelerating rates. A bottleneck is their computational integration into a coherent description, from which researchers may derive new well-founded hypotheses. Also, the need to integrate data from different technologies (genetics, coding and regulatory RNA, proteomics) emerged in order to identify biomarkers for early diagnosis and prognosis of complex diseases and therefore facilitating the development of novel treatment approaches. We propose here a workflow for the integrative transcriptomic description of the molecular pathology in Parkinsons’s Disease (PD), including suggestions of compounds normalizing disease-induced transcriptional changes as a paradigmatic example. We integrated gene expression profiles, miRNA signatures, and publicly available regulatory databases to specify a partial model of the molecular pathophysiology of PD. Six genetic driver elements (2 genes and 4 miRNAs) and several functional network modules that are associated with PD were identified. Functional modules were assessed for their statistical significance, cellular functional homogeneity, literature evidence, and normalizing small molecules. In summary, our workflow for the joint regulatory analysis of coding and non-coding RNA, has the potential to yield clinically as well as biologically relevant information, as demonstrated here on PD data.
Collapse
|
3
|
Shamsuzzama, Kumar L, Nazir A. Modulation of Alpha-synuclein Expression and Associated Effects by MicroRNA Let-7 in Transgenic C. elegans. Front Mol Neurosci 2017; 10:328. [PMID: 29081733 PMCID: PMC5645510 DOI: 10.3389/fnmol.2017.00328] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/28/2017] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative Parkinson’s disease (PD) is a multi-factorial disorder lacking complete cure. Understanding the complete mechanism of initiation and progression of this disease has been quite challenging; however, progress has been made toward deciphering certain genetic aspects related to the disease condition. Genetics studies have provided clues toward the role of microRNAs (miRNAs) in various disease conditions. One of the crucial miRNA molecules, let-7, is highly conserved miRNA and is known to regulate important functions of development and viability; its altered expression has been reported in C. elegans model of PD. We carried out studies with let-7, employing transgenic C. elegans model expressing ‘human’ alpha-synuclein and developed a let-7 loss-of-function model toward studying the downstream effects related to PD. We observed that let-7 miRNA was upregulated in C. elegans model of PD and figured that loss of let-7 miRNA leads to decreased alpha-synuclein expression, increased autophagy, increased Daf-16 expression, increased oxidative stress and increased lipid content with no effect on dopaminergic/acetylcholinergic neurons. Our findings indicate that let-7 miRNA regulates PD-associated pathways. Our study provides insight toward the role of let-7 in regulating expression of genes associated with these pathways which might have implications on the multi-factorial nature of PD. Potential pharmacological agents modulating the expression of let-7 could be studied toward targeting the multi-factorial aspect of PD.
Collapse
Affiliation(s)
- Shamsuzzama
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Lalit Kumar
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
4
|
Helmschrodt C, Höbel S, Schöniger S, Bauer A, Bonicelli J, Gringmuth M, Fietz SA, Aigner A, Richter A, Richter F. Polyethylenimine Nanoparticle-Mediated siRNA Delivery to Reduce α-Synuclein Expression in a Model of Parkinson's Disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:57-68. [PMID: 29246324 PMCID: PMC5602522 DOI: 10.1016/j.omtn.2017.08.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 02/07/2023]
Abstract
RNA interference (RNAi)-based strategies that mediate the specific knockdown of target genes by administration of small interfering RNAs (siRNAs) could be applied for treatment of presently incurable neurodegenerative diseases such as Parkinson’s disease. However, inefficient delivery of siRNA into neurons hampers in vivo application of RNAi. We have previously established the 4–12 kDa branched polyethylenimine (PEI) F25-LMW with superior transfection efficacy for delivery of siRNA in vivo. Here, we present that siRNA complexed with this PEI extensively distributes across the CNS down to the lumbar spinal cord after a single intracerebroventricular infusion. siRNA against α-synuclein (SNCA), a pre-synaptic protein that aggregates in Parkinson’s disease, was complexed with PEI F25-LMW and injected into the lateral ventricle of mice overexpressing human wild-type SNCA (Thy1-aSyn mice). Five days after the single injection of 0.75 μg PEI/siRNA, SNCA mRNA expression in the striatum was reduced by 65%, accompanied by reduction of SNCA protein by ∼50%. Mice did not show signs of toxicity or adverse effects. Moreover, ependymocytes and brain parenchyma were completely preserved and free of immune cell invasion, astrogliosis, or microglial activation. Our results support the efficacy and safety of PEI nanoparticle-mediated delivery of siRNA to the brain for therapeutic intervention.
Collapse
Affiliation(s)
- Christin Helmschrodt
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Sabrina Höbel
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, Leipzig 04107, Germany
| | - Sandra Schöniger
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Anne Bauer
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Jana Bonicelli
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Marieke Gringmuth
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Simone A Fietz
- Veterinary Institute of Anatomy, Histology, and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, Leipzig 04107, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany.
| | - Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany
| |
Collapse
|
5
|
Li J, Xie M, Wang X, Ouyang X, Wan Y, Dong G, Yang Z, Yang J, Yue J. Sex hormones regulate cerebral drug metabolism via brain miRNAs: down-regulation of brain CYP2D by androgens reduces the analgesic effects of tramadol. Br J Pharmacol 2015; 172:4639-54. [PMID: 26031356 DOI: 10.1111/bph.13206] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/13/2015] [Accepted: 05/21/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Brain cytochrome P450 2D (CYP2D) metabolises exogenous neurotoxins, endogenous substances and neurotransmitters. Brain CYP2D can be regulated in an organ-specific manner, but the possible regulatory mechanisms are poorly understood. We investigated the involvement of miRNAs in the selective regulation of brain CYP2D by testosterone and the corresponding alteration of the pharmacological profiles of tramadol by testosterone. EXPERIMENTAL APPROACH The regulation of CYP2D and brain-enriched miRNAs by testosterone was investigated using SH-SY5Y cells, U251 cells, and HepG2 cells as well as orchiectomized growth hormone receptor knockout (GHR-KO) mice and rats. Concentration-time curves of tramadol in rat brain were determined using a microdialysis technique. The analgesic action of tramadol was assessed by the tail-flick test in rats. KEY RESULTS miR-101 and miR-128-2 bound the 3'-untranslated region of the CYP2D6 mRNA and decreased its level. Testosterone decreased CYP2D6 catalytic function via the up-regulation of miR-101 and miR-128-2 in SH-SY5Y and U251 cells, but not in HepG2 cells. Orchiectomy decreased the levels of miR-101 and miR-128-2 in the hippocampus of male GHR-KO mice, indicating that androgens regulate miRNAs directly, not via the alteration of growth hormone secretion patterns. Changes in the pharmacokinetic and pharmacodynamic profiles of tramadol by orchiectomy was attenuated by either testosterone supplementation or a specific brain CYP2D inhibitor. CONCLUSIONS AND IMPLICATIONS The selective regulation of brain CYP2D via brain-enriched miRNAs, following changes in androgen levels, such as in testosterone therapy, androgen deprivation therapy and/or ageing may alter the response to centrally active substances.
Collapse
Affiliation(s)
- Jie Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Mengmeng Xie
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xiaoshuang Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xiufang Ouyang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yu Wan
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Guicheng Dong
- Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Zheqiong Yang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Jing Yang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Jiang Yue
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
6
|
Midbrain dopamine neurons in Parkinson's disease exhibit a dysregulated miRNA and target-gene network. Brain Res 2015; 1618:111-21. [PMID: 26047984 DOI: 10.1016/j.brainres.2015.05.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/09/2015] [Accepted: 05/15/2015] [Indexed: 11/21/2022]
Abstract
The degeneration of substantia nigra (SN) dopamine (DA) neurons in sporadic Parkinson׳s disease (PD) is characterized by disturbed gene expression networks. Micro(mi)RNAs are post-transcriptional regulators of gene expression and we recently provided evidence that these molecules may play a functional role in the pathogenesis of PD. Here, we document a comprehensive analysis of miRNAs in SN DA neurons and PD, including sex differences. Our data show that miRNAs are dysregulated in disease-affected neurons and differentially expressed between male and female samples with a trend of more up-regulated miRNAs in males and more down-regulated miRNAs in females. Unbiased Ingenuity Pathway Analysis (IPA) revealed a network of miRNA/target-gene associations that is consistent with dysfunctional gene and signaling pathways in PD pathology. Our study provides evidence for a general association of miRNAs with the cellular function and identity of SN DA neurons, and with deregulated gene expression networks and signaling pathways related to PD pathogenesis that may be sex-specific.
Collapse
|