1
|
Zhu N, Wei J, Wang LM, Huang H, Xiao H. Overexpression of PTPN21 promotes proliferation of EGF-stimulated acute lymphoblastic leukemia cells via the MAPK signaling pathways. Hematology 2024; 29:2356292. [PMID: 38785187 DOI: 10.1080/16078454.2024.2356292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVES This study aims to investigate the role of excessive Protein Tyrosine Phosphatase Non-Receptor Type 21 (PTPN21) in the proliferation of Acute Lymphoblastic Leukemia (ALL) cells with EGF stimulation. METHODS PTPN21 was overexpressed in ALL cell lines by lentiviral transfection. Apoptosis was assayed by Annexin V/7-AAD staining. The proliferation and cell cycle of EGF-treated ALL cells were assessed by MTT and Ki-67/7-AAD staining respectively. The phosphorylation of Src tyrosine kinase and mediators of distinct MAPK pathways were assessed by Western blot. RESULTS Overexpression of PTPN21 had minimal effect on the apoptosis of ALL cells, but significantly promoted the proliferation and cell cycle progression of ALL cells stimulated with EGF. The activity of Src tyrosine kinase and the MAPK pathways was elevated. Inhibition of MAPK pathways by specific inhibitors mitigated this pro-proliferative effect of excessive PTPN21 on EGF-stimulated ALL cells. CONCLUSION PTPN21 may facilitate ALL progression by promoting cell proliferation via the Src/MAPK signaling pathways.
Collapse
Affiliation(s)
- Ni Zhu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People's Republic of China
| | - Jieping Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Li-Mengmeng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Eroglu B, Jin X, Deane S, Öztürk B, Ross OA, Moskophidis D, Mivechi NF. Dusp26 phosphatase regulates mitochondrial respiration and oxidative stress and protects neuronal cell death. Cell Mol Life Sci 2022; 79:198. [PMID: 35313355 PMCID: PMC10601927 DOI: 10.1007/s00018-022-04162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 11/29/2022]
Abstract
The dual specificity protein phosphatases (Dusps) control dephosphorylation of mitogen-activated protein kinases (MAPKs) as well as other substrates. Here, we report that Dusp26, which is highly expressed in neuroblastoma cells and primary neurons is targeted to the mitochondrial outer membrane via its NH2-terminal mitochondrial targeting sequence. Loss of Dusp26 has a significant impact on mitochondrial function that is associated with increased levels of reactive oxygen species (ROS), reduction in ATP generation, reduction in mitochondria motility and release of mitochondrial HtrA2 protease into the cytoplasm. The mitochondrial dysregulation in dusp26-deficient neuroblastoma cells leads to the inhibition of cell proliferation and cell death. In vivo, Dusp26 is highly expressed in neurons in different brain regions, including cortex and midbrain (MB). Ablation of Dusp26 in mouse model leads to dopaminergic (DA) neuronal cell loss in the substantia nigra par compacta (SNpc), inflammatory response in MB and striatum, and phenotypes that are normally associated with Neurodegenerative diseases. Consistent with the data from our mouse model, Dusp26 expressing cells are significantly reduced in the SNpc of Parkinson's Disease patients. The underlying mechanism of DA neuronal death is that loss of Dusp26 in neurons increases mitochondrial ROS and concurrent activation of MAPK/p38 signaling pathway and inflammatory response. Our results suggest that regulation of mitochondrial-associated protein phosphorylation is essential for the maintenance of mitochondrial homeostasis and dysregulation of this process may contribute to the initiation and development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Binnur Eroglu
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA
| | - Xiongjie Jin
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA
| | - Sadiki Deane
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Bahadır Öztürk
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA
- Medical Biochemistry Department, Selcuk University Medical Faculty, Konya, Turkey
| | - Owen A Ross
- Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA
| | - Demetrius Moskophidis
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA.
- Department of Medicine, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA.
| | - Nahid F Mivechi
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA.
- Departments of Radiation Oncology, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA.
- Charlie Norwood VAMC, One Freedom Way, Augusta, GA, 30904, USA.
| |
Collapse
|
3
|
Thompson EM, Stoker AW. A Review of DUSP26: Structure, Regulation and Relevance in Human Disease. Int J Mol Sci 2021; 22:ijms22020776. [PMID: 33466673 PMCID: PMC7828806 DOI: 10.3390/ijms22020776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
Dual specificity phosphatases (DUSPs) play a crucial role in the regulation of intracellular signalling pathways, which in turn influence a broad range of physiological processes. DUSP malfunction is increasingly observed in a broad range of human diseases due to deregulation of key pathways, most notably the MAP kinase (MAPK) cascades. Dual specificity phosphatase 26 (DUSP26) is an atypical DUSP with a range of physiological substrates including the MAPKs. The residues that govern DUSP26 substrate specificity are yet to be determined; however, recent evidence suggests that interactions with a binding partner may be required for DUSP26 catalytic activity. DUSP26 is heavily implicated in cancer where, akin to other DUSPs, it displays both tumour-suppressive and -promoting properties, depending on the context. Here we review DUSP26 by evaluating its transcriptional patterns, protein crystallographic structure and substrate binding, as well as its physiological role(s) and binding partners, its role in human disease and the development of DUSP26 inhibitors.
Collapse
|
4
|
Acharige NPN, Pflum MKH. l-Lactate Dehydrogenase Identified as a Protein Tyrosine Phosphatase 1B Substrate by Using K-BIPS. Chembiochem 2021; 22:186-192. [PMID: 33002308 PMCID: PMC8104301 DOI: 10.1002/cbic.202000499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/30/2020] [Indexed: 11/10/2022]
Abstract
Kinases and phosphatases are major players in a variety of cellular events, including cell signaling. Aberrant activity or mutations in kinases and phosphatases can lead to diseases such as cancer, diabetes, and Alzheimer's. Compared to kinases, phosphatases are understudied; this is partly a result of the limited methods for identifying substrates. As a solution, we developed a proteomics-based method called kinase-catalyzed biotinylation to identify phosphatase substrates (K-BIPS) that previously identified substrates of Ser/Thr phosphatases using small molecule inhibitors. Here, for the first time, K-BIPS was applied to identify substrates of a tyrosine phosphatase, protein tyrosine phosphatase 1B (PTP1B), under siRNA knockdown conditions. Eight possible substrates of PTP1B were discovered in HEK293 cells, including the known substrate pyruvate kinase. In addition, l-lactate dehydrogenase (LDHA) was validated as a novel PTP1B substrate. With the ability to use knockdown conditions with Ser/Thr or Tyr phosphatases, K-BIPS represents a general discovery tool to explore phosphatases biology by identifying unanticipated substrates.
Collapse
Affiliation(s)
- Nuwan P N Acharige
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
5
|
Porras P, Barrera E, Bridge A, Del-Toro N, Cesareni G, Duesbury M, Hermjakob H, Iannuccelli M, Jurisica I, Kotlyar M, Licata L, Lovering RC, Lynn DJ, Meldal B, Nanduri B, Paneerselvam K, Panni S, Pastrello C, Pellegrini M, Perfetto L, Rahimzadeh N, Ratan P, Ricard-Blum S, Salwinski L, Shirodkar G, Shrivastava A, Orchard S. Towards a unified open access dataset of molecular interactions. Nat Commun 2020; 11:6144. [PMID: 33262342 PMCID: PMC7708836 DOI: 10.1038/s41467-020-19942-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The International Molecular Exchange (IMEx) Consortium provides scientists with a single body of experimentally verified protein interactions curated in rich contextual detail to an internationally agreed standard. In this update to the work of the IMEx Consortium, we discuss how this initiative has been working in practice, how it has ensured database sustainability, and how it is meeting emerging annotation challenges through the introduction of new interactor types and data formats. Additionally, we provide examples of how IMEx data are being used by biomedical researchers and integrated in other bioinformatic tools and resources.
Collapse
Affiliation(s)
- Pablo Porras
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Elisabet Barrera
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Alan Bridge
- SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 rue Michel Servet, CH-1211, Geneva, Switzerland
| | - Noemi Del-Toro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Gianni Cesareni
- University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Margaret Duesbury
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK.,UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Krembil Research Institute, University Health Network, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada.,Departments of Medical Biophysics, and Computer Science, University of Toronto, Toronto, ON, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Krembil Research Institute, University Health Network, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada
| | | | - Ruth C Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - David J Lynn
- Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Birgit Meldal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Bindu Nanduri
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, USA
| | - Kalpana Paneerselvam
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Simona Panni
- Università della Calabria, Dipartimento di Biologia, Ecologia e Scienze della Terra, Via Pietro Bucci Cubo 6/C, Rende, CS, Italy
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Krembil Research Institute, University Health Network, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, UCLA, Box 951606, Los Angeles, CA, 90095-1606, USA
| | - Livia Perfetto
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Negin Rahimzadeh
- UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Prashansa Ratan
- UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sylvie Ricard-Blum
- ICBMS, UMR 5246 University Lyon 1 - CNRS, Univ. Lyon, 69622, Villeurbanne, France
| | - Lukasz Salwinski
- UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Gautam Shirodkar
- UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Anjalia Shrivastava
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK.,Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
6
|
DAF-16/FOXO requires Protein Phosphatase 4 to initiate transcription of stress resistance and longevity promoting genes. Nat Commun 2020; 11:138. [PMID: 31919361 PMCID: PMC6952425 DOI: 10.1038/s41467-019-13931-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
In C. elegans, the conserved transcription factor DAF-16/FOXO is a powerful aging regulator, relaying dire conditions into expression of stress resistance and longevity promoting genes. For some of these functions, including low insulin/IGF signaling (IIS), DAF-16 depends on the protein SMK-1/SMEK, but how SMK-1 exerts this role has remained unknown. We show that SMK-1 functions as part of a specific Protein Phosphatase 4 complex (PP4SMK-1). Loss of PP4SMK-1 hinders transcriptional initiation at several DAF-16-activated genes, predominantly by impairing RNA polymerase II recruitment to their promoters. Search for the relevant substrate of PP4SMK-1 by phosphoproteomics identified the conserved transcriptional regulator SPT-5/SUPT5H, whose knockdown phenocopies the loss of PP4SMK-1. Phosphoregulation of SPT-5 is known to control transcriptional events such as elongation and termination. Here we also show that transcription initiating events are influenced by the phosphorylation status of SPT-5, particularly at DAF-16 target genes where transcriptional initiation appears rate limiting, rendering PP4SMK-1 crucial for many of DAF-16’s physiological roles. The transcription factor DAF-16/FOXO mediates a wide variety of aging-preventive responses by driving the expression of stress resistance and longevity promoting genes. Here the authors show that transcriptional initiation at many DAF-16/FOXO target genes requires the dephosphorylation of SPT-5 by Protein Phosphatase 4.
Collapse
|
7
|
Way GP, Allaway RJ, Bouley SJ, Fadul CE, Sanchez Y, Greene CS. A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma. BMC Genomics 2017; 18:127. [PMID: 28166733 PMCID: PMC5292791 DOI: 10.1186/s12864-017-3519-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules. RESULTS We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 - 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 - 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier's NF1 score was associated with NF1 protein concentration in these samples. CONCLUSIONS We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine.
Collapse
Affiliation(s)
- Gregory P. Way
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 10-131 SCTR 34th and Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Robert J. Allaway
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, HB 7650, Hanover, NH 03755 USA
| | - Stephanie J. Bouley
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, HB 7650, Hanover, NH 03755 USA
| | - Camilo E. Fadul
- Department of Neurology, University of Virginia, Charlottesville, VA USA
| | - Yolanda Sanchez
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, HB 7650, Hanover, NH 03755 USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH USA
| | - Casey S. Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 10-131 SCTR 34th and Civic Center Blvd, Philadelphia, PA 19104 USA
| |
Collapse
|
8
|
Abstract
Phosphatases play key roles in normal physiology and diseases. Studying phosphatases has been both essential and challenging, and the application of conventional genetic and biochemical methods has led to crucial but still limited understanding of their mechanisms, substrates, and exclusive functions within highly intricate networks. With the advances in technologies such as cellular imaging and molecular and chemical biology in terms of sensitive tools and methods, the phosphatase field has thrived in the past years and has set new insights for cell signaling studies and for therapeutic development. In this review, we give an overview of the existing interdisciplinary tools for phosphatases, give examples on how they have been applied to increase our understanding of these enzymes, and suggest how they-and other tools yet barely used in the phosphatase field-might be adapted to address future questions and challenges.
Collapse
Affiliation(s)
- Sara Fahs
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| | - Pablo Lujan
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| |
Collapse
|
9
|
A subset of RAB proteins modulates PP2A phosphatase activity. Sci Rep 2016; 6:32857. [PMID: 27611305 PMCID: PMC5017145 DOI: 10.1038/srep32857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/16/2016] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is one of the most abundant serine-threonine phosphatases in mammalian cells. PP2A is a hetero-trimeric holoenzyme participating in a variety of physiological processes whose deregulation is often associated to cancer. The specificity and activity of this phosphatase is tightly modulated by a family of regulatory B subunits that dock the catalytic subunit to the substrates. Here we characterize a novel and unconventional molecular mechanism controlling the activity of the tumor suppressor PP2A. By applying a mass spectrometry-based interactomics approach, we identified novel PP2A interacting proteins. Unexpectedly we found that a significant number of RAB proteins associate with the PP2A scaffold subunit (PPP2R1A), but not with the catalytic subunit (PPP2CA). Such interactions occur in vitro and in vivo in specific subcellular compartments. Notably we demonstrated that one of these RAB proteins, RAB9, competes with the catalytic subunit PPP2CA in binding to PPP2R1A. This competitive association has an important role in controlling the PP2A catalytic activity, which is compromised in several solid tumors and leukemias.
Collapse
|
10
|
Haesen D, Abbasi Asbagh L, Derua R, Hubert A, Schrauwen S, Hoorne Y, Amant F, Waelkens E, Sablina A, Janssens V. Recurrent PPP2R1A Mutations in Uterine Cancer Act through a Dominant-Negative Mechanism to Promote Malignant Cell Growth. Cancer Res 2016; 76:5719-5731. [PMID: 27485451 DOI: 10.1158/0008-5472.can-15-3342] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/14/2016] [Indexed: 11/16/2022]
Abstract
Somatic missense mutations in the Ser/Thr protein phosphatase 2A (PP2A) Aα scaffold subunit gene PPP2R1A are among the few genomic alterations that occur frequently in serous endometrial carcinoma (EC) and carcinosarcoma, two clinically aggressive subtypes of uterine cancer with few therapeutic options. Previous studies reported that cancer-associated Aα mutants exhibit defects in binding to other PP2A subunits and contribute to cancer development by a mechanism of haploinsufficiency. Here we report on the functional significance of the most recurrent PPP2R1A mutations in human EC, which cluster in Aα HEAT repeats 5 and 7. Beyond predicted loss-of-function effects on the formation of a subset of PP2A holoenzymes, we discovered that Aα mutants behave in a dominant-negative manner due to gain-of-function interactions with the PP2A inhibitor TIPRL1. Dominant-negative Aα mutants retain binding to specific subunits of the B56/B' family and form substrate trapping complexes with impaired phosphatase activity via increased recruitment of TIPRL1. Accordingly, overexpression of the Aα mutants in EC cells harboring wild-type PPP2R1A increased anchorage-independent growth and tumor formation, and triggered hyperphosphorylation of oncogenic PP2A-B56/B' substrates in the GSK3β, Akt, and mTOR/p70S6K signaling pathways. TIPRL1 silencing restored GSK3β phosphorylation and rescued the EC cell growth advantage. Our results reveal how PPP2R1A mutations affect PP2A function and oncogenic signaling, illuminating the genetic basis for serous EC development and its potential control by rationally targeted therapies. Cancer Res; 76(19); 5719-31. ©2016 AACR.
Collapse
Affiliation(s)
- Dorien Haesen
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Layka Abbasi Asbagh
- VIB Center for the Biology of Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Antoine Hubert
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefanie Schrauwen
- Laboratory of Gynaecological Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yana Hoorne
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frédéric Amant
- Laboratory of Gynaecological Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Anna Sablina
- VIB Center for the Biology of Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Li X, Köhn M. Prediction and verification of novel peptide targets of protein tyrosine phosphatase 1B. Bioorg Med Chem 2016; 24:3255-8. [PMID: 27025565 PMCID: PMC4957924 DOI: 10.1016/j.bmc.2016.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/26/2022]
Abstract
Phosphotyrosine peptides are useful starting points for inhibitor design and for the search for protein tyrosine phosphatase (PTP) phosphoprotein substrates. To identify novel phosphopeptide substrates of PTP1B, we developed a computational prediction protocol based on a virtual library of protein sequences with known phosphotyrosine sites. To these we applied sequence-based methods, biologically meaningful filters and molecular docking. Five peptides were selected for biochemical testing of their potential as PTP1B substrates. All five peptides were equally good substrates for PTP1B compared to a known peptide substrate whereas appropriate control peptides were not recognized, showing that our protocol can be used to identify novel peptide substrates of PTP1B.
Collapse
Affiliation(s)
- Xun Li
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany; European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
12
|
Via A, Zanzoni A. A prismatic view of protein phosphorylation in health and disease. Front Genet 2015; 6:131. [PMID: 25904935 PMCID: PMC4387955 DOI: 10.3389/fgene.2015.00131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Allegra Via
- Department of Physics, Sapienza University of Rome Rome, Italy
| | - Andreas Zanzoni
- Technological Advances for Genomics and Clinics (TAGC), UMR_S1090, INSERM Marseille, France ; Technological Advances for Genomics and Clinics (TAGC), UMR_S1090, Aix Marseille Université Marseille, France
| |
Collapse
|